
www.usenix.org J U N E 20 1 5 VO L . 4 0, N O. 3 79

BOOKSBook Reviews
M A R K L A M O U R I N E

Graph Databases
Ian Robinson, Jim Webber, and Emil Eifrem
Neo Technology Inc., O’Reilly Media, 2013, 210 pages
ISBN 978-1-449-35626-2
Graph Databases starts off really well. It opens with a definition
and then a detailed description of what makes up a graph data-
base and what makes graph databases special.

Some of it is pretty striking. I remember the “aha!” moment when
I read that conventional relational databases don’t contain rela-
tionships as first-class entities. It’s true. Relational databases
force all data into a table form, and then relationships are repre-
sented using second-class column types (FOREIGN KEY) and
JOIN operations. In a graph database the relationships between
data entities are first-class entities of their own.

The authors present ways of representing data relationships
both graphically (naturally enough) and textually, as is required
to communicate with a service over network (serialized) media.
It’s when they get to demonstration and implementation that I
started to lose my enthusiasm.

While the title might lead a reader to believe that the book covers
graph databases in general, it turns out that only one database
system is presented. In the middle of Chapter 4, the authors
begin talking about implementation options, but the only real
option offered is Neo4j. I continued reading on, hoping to find
some variation or alternatives, something to lead back to the
general topic of graph databases, and alternate implementations,
but I was disappointed. At some point I stopped and looked up
two different things:

1. Graph database implementations—there are dozens
2. The authors—all employees of Neo4j

In fact, the copyright for the book is held by Neo4j Inc., not by the
authors. To be fair, the forward and the bios on the back cover
both make it clear that the three authors are the co-founders of
Neo4j. If the title of the book had been “Graph Databases with
Neo4j” I would not have felt so disappointed, but then I might not
have picked it up in the first place. Once I realigned my expecta-
tions, I went back to reading.

In the remainder of the book, the authors talk about real-world
instances of data well suited to graph modeling and representa-
tion in a graph database. Many applications today represent the
links between people, objects, and concepts in a mesh or network
(in the mathematical or social sense). Whether the application
is an enterprise network or a social one, the links between nodes
are more important than the individual attributes when trying to
discover patterns of behavior or data flow.

Near the end of the book, the authors discuss database internals
with an eye to performance, reliability, and scaling. They close with
a chapter on how common problems can be represented more intui-
tively with a graph than with more traditional data structures.

Overall, the writing is clear, and the progression led me to a
better understanding of how a graph database works. I will
definitely be more likely to recognize an application that would
suit modeling and implementation with a graph database, and I
would certainly consider Neo4j for the implementation. I do wish
that the focus on Neo4j had been more explicit in the title and on
the front cover. If you want to learn about Neo4j, this is certainly
a good place to begin.

Interactive Data Visualization for the Web
Scott Murray
O’Reilly Media Inc., 2013, 256 pages
ISBN 978-1-449-33973-9
I spend a fair amount of time drawing boxes and lines when I’m
trying to explain things in documentation. Often I’m represent-
ing tabular data or collections with relationships. When it comes
to representing data sets that change over time, I generally don’t
even try.

Recently, though, I had a problem I needed to understand myself:
What are the relationships between RPMs with dependencies?
And what effect does the addition of a single package with com-
plex dependencies have on the total package set installed on a
host? I didn’t want to see just the list of new packages to add but
where (and why) each new package was pulled in. I also wanted
to be able to view what would change if I added just a subset or
tried to remove a dependency. I remembered that a coworker had
created some great dynamic visualizations using reveal.js, but
that by itself didn’t seem to have the data representation I was
looking for. I asked him what he used. He pointed me at D3, and I
went looking for books.

D3 is a JavaScript library (available at http://d3js.org). You embed
it in your application in the same way you would JQuery or any
other JavaScript library. D3 offers me a capability for browser-
based graphics and data visualization that I just would have
found impossible otherwise, and Scott Murray’s book was a great
way to get started.

Murray starts off with the traditional definition and features,
but he’s careful to outline what D3 is and is not good for. He
devotes an entire section to other tools that might suit better
than D3 depending on your needs and your application. He spends
another large section bringing readers new to Web programming
for browsers up to speed. There’s a short section on HTML and

80  J U N E 20 1 5 VO L . 4 0, N O. 3 www.usenix.org

BOOKS

DOM programming as well as simple SVG and HTML can-
vas programming. This is sprinkled with outside resources so
 readers can get more detail and come back if needed.

This is when Murray really gets rolling. He shows how to use
D3 to retrieve your data from a Web server and how to use it to
populate your document with HTML and SVG elements, which
the browser will draw for you. Simple graphing such as scat-
terplots and bar charts requires some labeling and scales for the
axes, and each of these gets a section, as do dynamic updates and
user interaction.

Things get really cool when Murray gets to D3 layouts. Layouts
provide ways for D3 to automatically place the elements and
draw them and even move them around in response to clicks
and drags in the browser. When using layouts, you don’t specify
where each data element will be placed. Rather, D3 does it for you
dynamically based on the data values themselves.

Murray demonstrates three common layouts. The Pie and
Stack layouts yield fairly common-looking graphics. The Force
layout, Murray admits, is overused because it is so cool. In a
Force layout each data object is assigned a repulsive force. The
elements are arranged randomly at first (constrained by links
between elements that are related in some way), and the Force
layout applies the forces, moving each element until they reach
equilibrium. This is very slick to watch and it is seductive. I used
the Force layout for my RPM dependency data, but a Tree layout
might have been more appropriate, and I am going to try it to see.

The layout and writing of Interactive Data Visualization are
themselves appealing. This is one of the first books of this type
that I’ve read which uses full color for both the illustrations and
for the example texts. The source code and HTML representa-
tions are taken from the Safari browser debugging tool set, and
the colorization of the text is a welcome and familiar feature
(although I use Emacs and Chrome).

As you may have noticed, I’m pretty enthusiastic about both D3
and Interactive Data Visualization. As a sysadmin with a strong
coding background and some experience with JavaScript and
browser development, I have with D3 a powerful new tool for
understanding and explaining the behavior of the systems I’m
working on using output from the CLI tools I already have, but
it’s unlikely that I’ll use it often enough to stay fluent. Murray’s
book is one I’ll return to for a refresher when I find a new ques-
tion that cries out for a graphic representation.

Scratch Programming in Easy Steps
Sean McManus
In Easy Steps Ltd., 2014, 216 pages
ISBN 978-1-84078-1
I’ve looked at Scratch and reviewed books on it before, but some-
thing made me pull Scratch Programming off the shelf at my

local bookstore and thumb through it. I was impressed instantly
with its high-quality feel, the texture of the paper, and the weight
of it in my hand. It’s not a thick volume but its heft makes me
think it’s likely to be durable in the hands of the middle school
students I think it is meant for.

Once I started working through the book, I noticed something
else right away: Scratch has become a Web application. Scratch
2.0 is hosted by MIT at http://scratch.mit.edu. You can open
the development screen in any modern browser. If you create an
account and log in, you can save and publish your applications.
Scratch 1.4 is still available as a standalone application. Scratch
Programming uses Scratch 2.0 as its base, but it also includes
information on running Scratch 1.4 on a Raspberry Pi. The text
consistently and clearly includes graphics and instructions that
show how 1.4 will differ from the default.

Getting and keeping the interest of middle schoolers can be a
challenge. In books like this, I look for the hooks that will help
hold the attention and enthusiasm of the students. McManus
does a great job of mixing narrative with engaging graphics and
layout to sustain interest.

Scratch Programming is color coded to make it easy to find one’s
place and return quickly to work when picking the book up, and
each chapter presents a project, a mixture of simple graphi-
cal games, musical applications for sound, quiz games, and
logic puzzles. Each section brings a new aspect of coding and
makes good use of the Scratch graphical programming model to
illustrate the points. McManus leaves enough room for the kids
to experiment, make mistakes, and discover the solutions for
themselves. He builds each concept or construct in a linear way,
allowing for the reader to race ahead or off on a tangent and be
guided gently back.

The last two sections bring in discussions of hardware sensors
that can be used to provide additional inputs for game behavior
and response. McManus covers using a computer’s Webcam
or a USB device called a “Picoboard,” which can interface with
Scratch to respond to sounds (such as a handclap) and changes
in light or temperature.

In the final chapter, McManus provides seven short, complete
programs and encourages the reader to experiment with them,
changing parameters or logic and observing how the changes
affect the behavior of the program.

I’m impressed with Scratch Programming, and I actually fol-
lowed several of the projects to completion in Scratch because I
was having fun in a way I hadn’t since I’d done similar things on
the Apple in my own high school. I have a couple of friends with
girls the right age who’ve expressed interest in coding, and I
mean to pass on the review copy and maybe even buy an addi-
tional one to give to them.

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors by writing to board@usenix.org.

President
Brian Noble, University of Michigan
noble@usenix.org
Vice President
John Arrasjid, EMC
johna@usenix.org
Secretary
Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org
Treasurer
Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

Directors
Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon, Cornell University
hakim@usenix.org
Executive Director
Casey Henderson
casey@usenix.org

USENIX Member Benefits
Members of the USENIX Association receive the following benefits:

• Free subscription to ;login:, the Association’s magazine, published six times a year, fea-
turing technical articles, system administration articles, tips and techniques, practical
columns on such topics as security, Perl, networks, and operating systems, book reviews,
and reports of sessions at USENIX conferences.

• Access to ;login: online from December 1997 to the current month:
www.usenix.org/publications/login/

• Discounts on registration fees for all USENIX conferences.

• Special discounts on a variety of products, books, software, and periodicals: www.use-
nix.org/member-services/discount-instructions

• The right to vote on matters affecting the Association, its bylaws, and election of its
directors and officers.

For more information regarding membership or benefits:
please see www.usenix.org/membership/
or contact office@usenix.org. Phone: 510-528-8649

