
82    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

REPORTSConference Reports

13th USENIX Conference on File and Storage Technologies
February 16–19, 2015, Santa Clara, CA
Summarized by Zhen Cao, Akhilesh Chaganti, Ming Chen, and Rik Farrow

Opening Remarks
Summarized by Rik Farrow

Erez Zadok opened the conference with the numbers: 130 submissions with 28 papers selected.
They used a two round online review process, with each paper getting three reviews during the
first round, and the 68 remaining papers getting two more reviews in the next round. The final
decisions were made in an all-day meeting at Stony Brook.

Jiri Schindler announced awards, starting with ACM Test-of-Time Fast Track awards going to
“RAIDShield: Characterizing, Monitoring, and Proactively Protecting against Disk Failures,” by
Ao Ma et al., and “BetrFS: A Right-Optimized Write-Optimized File System,” by William Jannen
et al. The Best Paper Award went to “Skylight—A Window on Shingled Disk Operation,” by Abu-
talib Aghayev and Peter Desnoyers. These researchers cut a window into a shingled (SMR) drive
so that they could use a high-speed camera to record disk seeks, an interesting form of reverse
engineering. I preferred the BetrFS paper myself, and asked the authors to write for ;login: about
the B-epsilon trees used to speed up writes. But, not surprisingly, I wasn’t part of the PC, which
did the work of selecting the 21% of submitted papers.

The Test-of-Time award, based on papers published between 2002 and 2005 at FAST, went to
“Hippodrome: Running Circles around Storage Administration,” by Eric Anderson et al. Hippo-
drome is a tool used to automate the design and configuration process for storage systems using
an iterative loop that continues until it finds a satisfactory solution to the target workload. Most
of the authors, all HP Lab employees, were present to receive the award.

Erez Zadok wanted his students to have the experience of summarizing presentations. Erez also
reviewed their summaries before the students sent them to me for editing.

The Theory of Everything: Scaling for Future Systems
Summarized by Ming Chen (mchen@cs.stonybrook.edu)

CalvinFS: Consistent WAN Replication and Scalable Metadata Management for
Distributed File Systems
Alexander Thomson, Google; Daniel J. Abadi, Yale University

Alexander Thomson began by noting that their distributed file system was the first attempt
to solve two difficult problems simultaneously: consistent file system replication over wide-
area network (WAN), and scalable metadata management. He emphasized the importance of
the problems and reviewed previous systems (HDFS, Ceph, etc.) which each addressed one of
these problems but not both. He then went through a file creation example to demonstrate how
CalvinFS handles file system operations and solves both problems.

CalvinFS achieves strong consistency across geographically distant replicas and high metadata
scalability by using CalvinDB, a partitioned database system that supports fast distributed trans-
actions. CalvinDB operates by (1) ordering and scheduling all transactions globally, (2) reading
and broadcasting all transaction inputs, and then (3) deterministically committing the transac-
tions on all replicas once all needed inputs and locks become available. CalvinDB’s deterministic
feature allows transactions to be committed without requiring a traditional two-phase commit
protocol. Consequently, each CalvinDB transaction incurs only one network RTT latency instead
of two as in two-phase commit. To be deterministic, the read- and write-set and locks of transac-
tions need to be known in advance, which is not always possible: for example, when the write-set
depends on the results of preceding read operations in the same transaction. CalvinDB solves this

In this issue:
82	� 13th USENIX Conference

on File and Storage
Technologies

90	� 2015 USENIX Research
in Linux File and Storage
Technologies Summit

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  83

CONFERENCE REPORTS

using an Optimistic Lock Location Prediction (OLLP) mecha-
nism. In addition to the metadata store based on CalvinDB,
CalvinFS also has a variable-size immutable block store, which
associates each block with a global unique ID (GUID) and assigns
it to block servers using hashing.

CalvinFS can store 3 billion small files that are replicated
among three geo-distributed datacenters (each running 100 EC2
instances) and could store even more if the authors could afford
to run more instances. CalvinFS can handle hundreds of thou-
sands of updates and millions of reads per second. By satisfying
reads locally, CalvinFS has low read latency (median of 5 ms, and
99th percentile of 120 ms); however, as a tradeoff for strong global
consistency, its writes suffer from WAN latency (200–800 ms).

In the Q&A session, Alexander acknowledged Zhe Zhang’s
(Cloudera) supposition that directory renaming is more expen-
sive than other recursive operations, such as changing permis-
sion of a directory. Zhe then asked about the order between
writing the block data and creating the file in the example. Alex-
ander answered that the order does not matter as long as the two
subtasks are committed at the same time. Brian (Johns Trading)
wondered how CalvinFS handles conflicting operations made
simultaneously by multiple datacenters. Alexander replied that
conflicting operations are easy to detect and handle because
CalvinFS has a global ordering of all operations.

Analysis of the ECMWF Storage Landscape
Matthias Grawinkel, Lars Nagel, Markus Masker, Federico Padua, and Andre
Brinkmann, Johannes-Gutenberg University Mainz; Lennart Sorth, European
Centre for Medium-Range Weather Forecasts

Matthias presented the first analysis of active archives (data to
be accessed at any time), specifically a 14.8 PB general-purpose
file archive (ECFS) and a 37.9 PB object database (MARS) at
the European Centre for Medium-Range Weather Forecasts
(ECMWF). Both systems use tapes as primary storage media
and disks as cache media.

As of September 2014, the ECFS archive system had a 1:43 disk-
to-tape ratio, and it contained 137.5 million files and 5.5 million
directories. From 1/1/2012 to 5/20/2014, ECFS served 78.3 mil-
lion PUT requests (11.83 PB in total size) involving 66.2 million
files; 38.5 million GET requests (7.24 PB in total size) involving
12.2 million files; 4.2 million DELETE requests; and 6.4 million
RENAME requests. The requests demonstrated high locality,
enabling an 86.7% disk cache hit ratio. Nevertheless, 73.7% of
the files on tape have never been read. In the simulation study of
various caching algorithms, the Belady algorithm performed the
best, the ARC and LRU algorithms followed closely after, and
MRU was the worst.

The MARS object database had a 1:38 disk-to-tape ratio, and
contained 170 billion fields in 9.7 million files and 0.56 million
directories. From 1/1/2010 to 2/27/2014, MARS served 115 mil-
lion archive requests and 1.2 billion retrieve requests. MARS’s
cache was very effective, and only 2.2% of the requests needed to

read data from tapes. Similar to ECFS, 80.4% tape files in MARS
were never read.

Matthias also presented some interesting tape statistics in the
HPSS backing ECFS and MARS: (1) there were about nine tape
loads per minute; (2) about 20% of all tapes accounted for 80%
of all mounts; (3) the median of the tape loading time was only
35 seconds, but its 95% and 99% percentiles were two and four
minutes, respectively.

Matthias concluded that disk caches on top of tapes are efficient
in non-interactive systems. He noted two drawbacks of heavy
use of tapes: high wear-out and unpredictable stacking latencies.
He also expressed one concern, considering that the decrease in
per-bit storage cost is slowing, of accommodating the fast-grow-
ing storage requirement (up to 53% annually) under a constant
budget. Their traces and scripts are published at https://github
.com/zdvresearch/fast15-paper-extras in order to help build
better archive systems.

Umesh Maheshwari (Nimble Storage) wondered what the cost
effect would be if the data were stored purely in disks since disk
price had dropped and disks could eliminate the difficulties of
loading tapes. Matthias thought pure disks would still be more
expensive, especially considering that disks keep spinning (and
consuming energy). Brent Welch (Google) commented that it
should be possible to simulate how much more disk cache would
be needed for the tape-and-disk hybrid system to perform as
well as the more expensive pure-disk solution. John Kaitschuck
(Seagate) wondered whether the data reported in this study
contained traffic introduced by data migration (e.g., from an old
format to a new format). Matthias was not sure of the answer.

Efficient Intra-Operating System Protection against
Harmful DMAs
Moshe Malka, Nadav Amit, and Dan Tsafrir, Technion–Israel Institute of
Technology

Moshe presented their work on improving the efficiency of using
IOMMU (Input/Output Memory Management Unit), whose
relationship to I/O devices is similar to the regular MMU’s rela-
tionship to processes. IOMMU manages direct memory accesses
(DMA) from I/O bus to main memory by maintaining mappings
from I/O virtual addresses to physical memory addresses.
Similar to MMU’s TLB cache, there is an IOTLB cache for
IOMMU. To protect the OS from errant/malicious devices and
buggy drivers, IOMMU mappings should be established only for
the moment they are used and be invalidated immediately after
the DMA transfers. However, the IOTLB invalidation was slow
and the IOVA (I/O Virtual Address) subsystem opts for batching
(deferring) multiple invalidations.

Using 40 Gbps NICs as examples, Moshe showed from bench-
marking data that the slowness of the invalidation was actually
mainly contributed by the IOVA allocator software instead of
the IOTLB hardware. The IOVA allocator used a constant-
complexity algorithm based on a red-black tree and a heuristic.

84    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

The allocator works well if the NIC has one transfer ring and one
receive ring. However, modern NICs usually have many transfer
and receive rings, interaction among which can break the heu-
ristic and convert the algorithm’s complexity to linear. To solve
the problem, Moshe showed how they converted the algorithm
back to constant-complexity by simply adding a free list before
the red-black tree. Through comprehensive evaluations, Moshe
showed they improved the IOVA allocator by orders of magni-
tude and improved workloads’ overall performance by up to 5.5x.
They performed their study on Linux, but they found a similar
problem on FreeBSD.

Raju Rangaswami (FIU) asked whether they had found similar
problems in fast multi-queue SSDs, which likely suffer from
the same interference among different queues. Moshe replied
that another student in his lab was actively working on that and
might come up with results in a few months.

Big: Big Systems
Summarized by Akhilesh Chaganti (akhilesh.chaganti@stonybrook.edu)

FlashGraph: Processing Billion-Node Graphs on an Array
of Commodity SSDs
Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay, Johns Hopkins University

Da Zheng started the Big Systems session with their paper
on large-scale graph analysis. He introduced FlashGraph, a
semi-external memory-based graph analysis framework built
over commodity f lash arrays to achieve scalability and per-
formance comparable to in-memory alternatives. He cited the
application of graphs in many real world problems ubiquitously
across industry and research as the main driver for developing
cost-effective efficient alternatives like FlashGraph. Da Zheng
explained the major challenges involved in graph analysis: (1)
massive sizes with billions of nodes and edges, (2) the random-
ness of vertex connection, and (3) the power-law distribution in
vertex degree, in which only a small number of vertices connect
to many other vertices, making load balancing a problem in dis-
tributed environments. Da Zheng then presented the audience
with the some popular alternatives employed in graph analysis
and their problems. The first option is to use expensive machines
with large RAM where the problem of cost and scalability is
evident. Another alternative is to leverage a cluster to scale out
graphs. Although this is popular, it is plagued by network laten-
cies owing to the random vertex connections and the frequent
network communications they invoke. The third option is to
scale graph analysis using HDDs thanks to its capacity to store
very large graphs. But random I/O performance and frequent
I/O from external memory-based graph engines makes this
solution very slow.

Da Zheng presented his position on how SSDs could offer a bet-
ter solution in scaling graphs. SSDs have some obvious advan-
tages compared to HDDs in terms of throughput and latency,
while being cheaper and larger compared to RAM. But there are
some potential problems that need to be addressed before using

SSDs: heavy locking overhead for reads on large SSD arrays,
and low throughput and high latency compared to RAM. Three
design decisions are used to tackle these problems: reducing I/O,
overlapping I/O and computation, and sequential I/O. All the
desired choices are implemented using SAFS, a user space file
system optimized for SSD array. Da Zheng then talked about the
rest of the design, where FlashGraph communicates with SAFS
and provides a graph-programming interface to the application
layer. The main task of FlashGraph is to schedule the vertex
programs written by the users and to optimize the I/O issues by
those programs. When FlashGraph receives tasks, part of the
computation is pushed to page cache to overlap computation
and I/O and to reduce the memory overhead. The FlashGraph
solution maintains the vertex state of the graph in memory
while storing the edge lists on SSDs. The advantages with this
model are quite evident. Compared to significant network-based
communications in the distributed memory model, this model
provides in-memory communication for all the vertices. This
is better than the external memory model in terms of I/O. Even
with SSDs, there is need for heavy I/O optimization. To achieve
this, FlashGraph fetches only the lists required by the appli-
cation. It also conservatively merges I/O requests on same or
adjacent pages to increase sequential I/O.

Da Zheng presented the performance results of FlashGraph
over some frequently used access patterns of graph applications.
The classes of applications consisted of (1) those where only a
subset of vertices access their own edge lists (e.g., Breadth First
Search); (2) applications where every vertex accesses their own
edge list (e.g., PageRank); and (3) applications where vertices
access edge lists of other vertices (e.g., Triangle Count). The
authors compared FlashGraph with other in-memory alterna-
tives like PowerGraph (distributed memory) and Galois; to
better understand its performance, they also benchmarked
it against an in-memory implementation of FlashGraph. The
in-memory implementation of FlashGraph is comparable to
the performance of Galois, and the semi-external version of it
is comparable to in-memory FlashGraph, sometimes reaching
80% of its performance. Surprisingly, FlashGraph outperforms
PowerGraph in most cases. FlashGraph is also benchmarked for
its scalability using the publicly available largest graph with 3.5
billion nodes and 129 billion edges. All classes of the algorithms
run in a reasonable amount of time (from five minutes for BFS to
130 minutes for Triangle Count) and space (from 22 GB for BFS
to 81 GB for Betweenness Centrality). The authors also used run-
time results of Google Pregel and Microsoft Trinity on a smaller
problem and better infrastructure to indirectly compare and
conclude that FlashGraph outperforms them. Da Zheng con-
cluded his talk saying that FlashGraph has performance compa-
rable to in-memory counterparts and has provided opportunities
to perform massive graph analysis on commodity hardware.

In the Q&A session, one participant asked why not use a NVME
interface instead of using different file systems to improve read

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  85

CONFERENCE REPORTS

performance of SATA-based SSD and wondered whether reads
would be compute-bound irrespective of the interface. Da Zheng
replied that NVME will definitely improve performance because
SAFS merges the I/O, which makes large and sequential reads
overlap computation with I/O. Brad Morrey (HP Labs) asked
whether adjacent pages in SSD were physically adjacent. Da
Zheng replied they use the mapping table in SSD.

Host-Side Filesystem Journaling for Durable Shared
Storage
Andromachi Hatzieleftheriou and Stergios V. Anastasiadis, University of
Ioannina

Andromachi Hatzieleftheriou gave a lively presentation on
improving the durability of shared data storage in a distributed
file system environment in a typical datacenter-like clustered
infrastructure. Before talking about durability problems, the
author first outlined how typical datacenter storage is imple-
mented as a multi-tier distributed system across clustered
commodity servers and storage. In such a system, data is usually
replicated on the client-side followed by a caching layer and
the backend storage. The clients are implemented as state-
less entities to reduce the communication across layers, which
compromised the durability guarantees on the data present in
the client’s volatile memory in case of crash/reboot. The author
has demonstrated the level of inconsistency such a model can
cause over the Ceph object-based scale-out file system. While
running Filebench fileserver workload over ten thousand files
for two minutes, on average 24.3 MB of dirty data is present in
the volatile memory because of write-back happening every five
seconds over data older than 30 seconds. Network storage is
usually implemented by providing one of either file-based, block-
based, or object-based interfaces to clients. One important aspect
of shared storage is the durable caching on the client side for
performance and efficiency. Most approaches use block-based
caching, which comes with significant problems like file shar-
ing, block translation overhead, and consistency issues that pop
up due to the semantic gap between file and block layers, which
complicates the atomic grouping of dirty pages and the ordering
of I/O requests.

The author then described how they improved durability of
in-memory based caches on the host side using a file-based
interface with better performance and efficiency. Key principles
of their proposed storage architecture included a POSIX-like
file interface with file sharing across different hosts, durabil-
ity of recent writes in case of client crash/reboot, improved
performance for write requests, and efficiently scaling out the
backend storage. The author proposed Arion which uses these
design principles and which relies on scale-out object-based
backend system with multiple data (DS) and metadata servers
(MDS). The clients (bare-metal or virtual) of the distributed
file system are integrated with a disk-based journal that logs
both data and metadata of I/O requests before the predefined
numbers of backend replicas are created. Dirty data in memory
is synchronously transferred to the journal either periodically or

on explicit flush, and write-back to the backend server is initi-
ated periodically or under tighter space conditions of memory
or journal. Once write-back is complete, the corresponding
entries in the journal are invalidated. The author then talked
about handling the consistency issues during file access. Shared
file access is achieved through the tokens leased to the client by
MDS. Upon any concurrent conflicting operation by a different
client, the client first checkpoints the pending updates, which
is followed by invalidation of journal entries before revocation
of token. Upon client reconnection or reboot, the client acquires
the token again and replays file updates if journaled metadata is
newer than metadata fetched from backend storage. For imple-
mentation, the Linux JBD2 is used to manage the journal, which
is integrated with CephFS kernel-level client. In order to manage
the file metadata in the journal, the JBD tag is expanded with
fields to identify the metadata. This tag is used to compare the
changes with metadata fetched from MDS.

The author provided the performance results of various experi-
ments conducted on virtual clients over the Linux host with a
storage backend cluster of five machines running Arion and
Ceph. Arion was allocated a 2 GB partition for the local journal.
All the experiments were based on Filebench and FIO work-
loads. Different configurations of Ceph and Arion were included
in the benchmarks. Ceph was examined with write-back and
expiration times set to 5 and 30 seconds (Ceph) and with both
times set to 1 second (Ceph-1). Another configuration of Ceph
was used where the file system was synchronously mounted
(Ceph-sync) eliminating caching. Arion was set to copy changes
to the journal every 1 second, while the write-back and expira-
tion times were set to 60 seconds (Arion-60) or infinity (Arion-
inf). The benchmarks were performed to analyze performance,
durability, and efficiency of Arion compared to the Ceph kernel
level client. Arion was found to reduce the average amount
vulnerable data in memory to 5.4 MB for Filebench fileserver
workload, significantly outperforming the Ceph client (24.3 MB).
In another experiment over the Filebench Mailserver work-
load, Arion achieved up to 58% higher throughput than Ceph.
Network traffic was also reduced by 30% in received load and
27% in transmitted load at one of the OSDs of the Ceph backend.
Both the systems were also explored with the FIO microbench-
mark with Zipfian random writes. The Arion-60 configuration
achieved 22% reduced write latency compared to the default
Ceph configuration, and total network traffic was reduced by
42% at one OSD. In the same experiment, the authors bench-
marked bandwidth utilization of the file system of OSD and
interestingly found that Arion reduced total file system disk
utilization by 82%. Andromachi concluded her talk by giving the
direction to future work and reiterated the benefits of host-side
file journaling.

In Q&A, one participant wondered why the Ceph-sync configu-
ration, where the file system is mounted with sync, had better
throughput and network load. Another participant applauded
the work and wondered how Arion handles a data loss case

86    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

where the client commits to the local journal and goes down and
meanwhile another client updates the corresponding file in the
backend storage.

LADS: Optimizing Data Transfers Using Layout-Aware
Data Scheduling
Youngjae Kim, Scott Atchley, Geoffroy R. Vallee, and Galen M. Shipman, Oak
Ridge National Laboratory

Youngjae Kim began by giving the background of big data trends
across scientific domains. The major challenges are storing,
retrieving, and managing such extreme-scale data. He estimated
that the Department of Energy’s (DOE) data generation rates
could reach 1 exabyte per year by 2018. Also, most scientific big
data applications need data coupling, i.e., combining data sets
physically stored in different facilities. So it is evident that effi-
cient movement of such massive data is not trivial. Youngjae also
noted that DOE is planning to enhance their network technology
to support a 1 TB/s transfer rate in the near future. But this does
not solve the problem because data is still stored on slow devices.

To motivate the research around finding efficient data move-
ment solutions, Youngjae talked about data management at Oak
Ridge Laboratory Computing Facility, which runs Titan, the
fastest supercomputer in the US. The spider file system based
on Lustre provides the petascale PFS for the multiple clusters
including Titan. Concurrent data accesses from clusters lead
to contentions across multiple network, file system, and stor-
age layers. In such an environment, data movement is usually
performed through data transfer nodes (DTN), which access the
PFS and send data over the network to the destination’s DTN.
Because of contentions, PFS can become bottlenecked during
data transfers across DTNs. The main problem here is that the
difference between the network bandwidth and I/O bandwidth is
growing, and PFS’s I/O bandwidth is underutilized in the exist-
ing schemes of data transfers.

To improve the utilization of PFS’s bandwidth on DTN for big
data transfers, Youngjae introduced Layout Aware Data Sched-
uling (LADS) as a solution. He first explained the problem with
traditional approaches and used Lustre as the base PFS. He
described Lustre’s architecture, which contains a metadata
server (MDS) and an object storage server (OSS). MDS holds
the directory tree and stores metadata about files and does not
involve file I/O. On the other hand, OSS manages object stor-
age targets (OSTs), which hold the stripes of file contents and
maintains locking of file contents when requested by Lustre
clients. In a typical scenario, the client requests file informa-
tion from MDS, which returns the location of the OSTs holding
the file. The client then makes RPC connections to file servers
to perform I/O. Youngjae made some key observations about
Lustre PFS: it views the file system as single namespace. But
the storage is not on a single disk—rather, storage is on multiple
disk arrays on multiple servers. PFS is also designed for paral-
lel I/O and traditional data transfer protocols and does not fully
utilize inherent parallelism. The main reason behind this is

that the traditional file-based approach completely ignores the
layout information of the file. For instance, if two threads are
working on different files present over the same OST or disk,
the threads contend for OST access. In such cases, the thread
application runtime increases by 25%. In another case, when
multiple threads work on a single file, the parallelism is limited
by stripe sizes across OSTs. Multiple threads can contend for
different stripes of the same file on the same OST, increasing the
runtimes by 50% in some cases. Existing toolkits for bulk data
movement (GridFTP, bbcp, RFTP, and SCP) suffer poor perfor-
mance because of this logical view of files.

LADS uses a physical view of files with which it can understand
physical layout of the objects of the file, the storage target hold-
ing the objects, and the topology of storage servers and targets.
With this knowledge a thread can be scheduled to work on any
object on any OST so that we can avoid contention that could
have happened in earlier cases. LADS has four design goals: (1)
maximized parallelism on multicore CPUs, (2) portability for
modern network technologies (using Common Communica-
tion Interface (CCI)), (3) leverage parallelism of PFS, and (4)
improved hotspot/congestion avoidance, which leads to an
end-to-end data transfer optimization reducing the difference
between faster network and slower storage. Youngjae then gave
a lucid description of the LADS architecture. Data transfers
happen between two entities called LADS source and sink. Each
of them implements CCI for communication and creates RMA
buffers on DRAM. It implements three types of threads: master
thread to maintain transfer state, I/O thread for reading/writing
data chunks, and comm thread for data transfer across DTNs.
Moreover, LADS implements layout-aware, congestion-aware,
and NVRAM-buffering algorithms. LADS implements as many
OST queues as there are OSTs. A round robin scheduler removes
the data chunk from these queues and places it in an RMA buffer
while it’s not full. When it’s full, the I/O threads are put to sleep
while the comm thread transfers the contents of the RMA buffer.
Once the RMA is available, the I/O threads carry on the leftover
I/O and place the chunks in respective queues. I/O conges-
tion control is implemented using a threshold-based reactive
algorithm. A threshold value is used to determine the congested
servers, and a skip value is used to skip a number of servers. An
NVM buffer is also used as extended memory if the RMA is full,
which is a typical scenario when the sink is experiencing wide-
spread congestion.

With this overview, Youngjae presented the performance results
of LADS. Two Intel Xeon servers were used as DTNs in the
testbed and connected with two Fusion-I/O SSDs for NVM and
were backed by a Lustre file system over 32 HDDs. An IB QDR
40G network connected the two DTNs. To fairly evaluate the
framework, the author increased the message size to make sure
the storage bandwidth was not over-provisioned compared to
network bandwidth. At 16 KB, the maximum network bandwidth
was 3.2 GB/s whereas the I/O bandwidth was 2.3 GB/s. A snap-

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  87

CONFERENCE REPORTS

shot of the spider file system revealed that 85% of files were less
than 1 MB, and the larger blocks occupied most of the file system
space. So for benchmarking, one hundred 1 GB files (big files
workload) and ten thousand 1 MB files (small files workload)
were used. For the baseline, in the environment without conges-
tion, the transfer rate increased linearly with the number of I/O
threads for both workloads, whereas traditional bbcp does not
improve with an increase in the number of TCP streams to oper-
ate on the same file. This experiment also revealed that LADS
moderately uses CPU and memory.

LADS was also evaluated on a storage-congested environment.
To simulate congestion, a Linux I/O load generator was used.
When a source was congested, a congestion awareness algo-
rithm performed up to 35% better than the baseline configura-
tion without congestion awareness. When sink was congested,
the performance impact was significant compared to that of the
source congestion. Due to time constraints, the author sum-
marized the remaining experiments. He evaluated the effective-
ness of the NVM buffer at source. Throughputs increased with
an increase in the size of the available buffer. Actual DTNs at
ORNL were also evaluated by transferring data from one cluster
with a 20 PB file system to another cluster; LADs showed 6.8
times higher performance compared to bbcp. Youngjae sum-
marized this section and reiterated the effectiveness of layout-
aware and congestion-aware models in efficient data transfers.
He concluded the talk with his vision to have an optimized
virtual path for data transfer from any source to any sink so as to
promote collaborative research among organizations.

In the Q&A session, one participant asked the author to compare
and contrast the Lustre community’s Network Request Sched-
uler with LADS. Youngjae pointed out that with knowledge of
file layout, many smart scheduling schemes could be employed
at the application level. The questioner pointed out that the per-
fectly working environment used in the evaluation does not exist
in production environments like that of ORNL, where events like
disk failures and Lustre client evictions are common. The ques-
tioner wondered whether the authors considered such scenarios
in designing LADS. Youngjae mentioned that the current work
does not deal with failures.

Having Your Cake and Eating It Too: Jointly Optimal
Erasure Codes for I/O, Storage, and Network-Bandwidth
K.V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, and Kannan
Ramchandran, University of California, Berkeley

K.V. Rashmi began by presenting background for using redun-
dancy in distributed storage environments. Historically, durabil-
ity and availability of data became essential elements in the
design of distributed storage. One of the popular ways to achieve
this redundancy is to replicate data across multiple locations. An
alternative approach is to employ erasure code to achieve this. It
is well known that erasure codes utilize the storage space more
efficiently to achieve redundancy when compared to replication.
Traditional codes like Reed Solomon provide the maximum pos-

sible fault tolerance for the storage overhead used. But the more
interesting metric in evaluation of erasure codes is the mainte-
nance costs for the reconstruction of lost data in order to main-
tain the required level of redundancy. This is quite a frequent
operation in distributed systems and becomes heavy in terms
of network and I/O. Traditional erasure codes are particularly
inefficient in this respect. Both the theory and systems research
communities have been working on this problem for quite some
time. As a result, a powerful class of erasure coding framework
is proposed that optimizes storage and network bandwidth costs
of reconstruction. Rashmi extended this class of coding tech-
niques to optimize for I/O as well.

Before delving into the details of this work, Rashmi gave an over
view on why traditional codes are inefficient for reconstruction.
In a replicated environment, to reconstruct a lost block, one block
from a different location has to be transferred, which incurs the
cost of I/O and network in transferring the block. In general, one
of the popular codes like Reed Solomon takes in k data blocks
and generates n − k parity blocks using carefully designed func-
tions for optimal storage and fault tolerance. Now any of the k
out of n blocks can be used to reconstruct the missing data. It is
clearly evident that the I/O and network costs bump up k times
compared to replication cost; for typical variables this cost is
increased 10–20x. To address this problem, one of the effective
solutions is to use Minimum Storage Regeneration (MSR) codes,
which optimize storage and network bandwidth by figuring
out the minimum amount of information needed to transfer for
reconstruction. The MSR framework, like Reed Solomon, has
k data blocks and n − k parity blocks. Under MSR, any block can
be reconstructed by connecting to any d (> k) helper blocks of
remaining blocks and by transferring a small amount of data from
each. The total amount of data transferred is significantly smaller
compared to Reed Solomon. Although MSR optimizes storage
and network bandwidth, it does not consider I/O optimization.
In fact I/O is much worse compared to Reed Solomon because
the nodes performing reconstruction read the entire block and
transfer only a small amount of information. This optimizes
bandwidth but performs d full block reads (I/O) whereas Reed
Solomon performs only k block reads. In summary, the MSR
framework optimizes storage and network but performs much
worse in I/O. This work attempts to improve the I/O while
retaining the storage and network bandwidth optimization.

Rashmi presented two algorithms that transform MSR codes
into codes that provide efficient I/O, storage, and network. The
first algorithm transforms MSR codes so that they locally opti-
mize I/O at each of the helper blocks, while the second algorithm
builds on top of first to minimize I/O costs globally across all
blocks. Rashmi first discussed the kind of performance that can
be obtained by applying the transformations. The transforma-
tions are applied to a class of practical MSR codes called Product
Matrix MSR (PM) codes. PM codes work with storage overhead
of less than 2x and provide optimal fault tolerance. They are

88    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

usually employed in applications that need high fault tolerance.
The author implemented both the original PM codes and trans-
formed (PM_RBT) codes in C and evaluated them on an Amazon
EC2 cluster, employing Jerasure2 and GF-complete for imple-
menting finite field arithmetic and Reed Solomon. The evalua-
tion was performed for six data blocks with five parity blocks and
a block size of 16 MB. The author observed that both the original
PM and PM_RBT had approximately 3.27x less data transferred
compared to Reed Solomon and emphasized that transformed
code retained the bandwidth optimality of the original PM
codes. In terms of IOPS consumed during reconstruction, it was
evident that PM codes required more IOPS than Reed Solomon.
PM_RBT saved up to 5x fewer IOPS than PM and 3x fewer IOPS
than Reed Solomon, showing significant performance improve-
ment in terms of I/O. A similar trend was observed for the higher
block size of 128 MB. Rashmi next presented I/O completion
time for reconstruction. The transformed code (PM_RBT)
resulted in 5 to 6 times faster I/O making it significantly faster
than Reed Solomon and PM codes.

With performance results in mind, Rashmi described how the
transformations work using two algorithms. In MSR, a helper
unnecessarily reads a whole block even though it only needs a
minor portion of the block; optimally, it reads just the informa-
tion that’s needed. When a helper works in this approach, it’s
called “reconstruction-by-transfer” (RBT), i.e., it does not do any
computation but just reads and transfers. The first algorithm
transforms MSR codes to achieve RBT to the maximum extent
possible and is applicable to all MSR codes with two properties.
First, the function computed at the helper is not dependent on
blocks from other helpers (i.e., each block has a predetermined
function that aids in reconstruction of another block). The
next property deals with independence of these functions at a
particular block. Any subset of functions, which produces data
of block size, is considered to be independent. The main idea
behind this algorithm is to pre-compute and store the results
of one such independent set in a block. So now this block can be
used for the reconstruction of the blocks corresponding to the
functions in the subset. Under MSR, whenever a helper does
RBT, it can simply read the data corresponding to a particular
function in the block, and hence only a minimum amount of data
is read and transferred. But the question of how to choose which
functions for which block is dealt with by the second algorithm.
Rashmi mentioned that it uses a greedy approach to optimally
assign RBT-helpers to minimize I/O cost globally across all
the blocks and asked the users to refer to the paper for detailed
information on how it’s done. She discussed two extreme cases of
this algorithm: (1) all the blocks helping all the data blocks to the
maximum extent possible (SYS pattern) and (2) all the blocks
getting equal treatment and each block helping the following
blocks in a cyclic fashion (CYC pattern). Rashmi also evaluated
and concluded that the RBT does not affect the decoding speed
of PM and is similar to that of Reed Solomon. The encoding
speed is slower than that of Reed Solomon but is still practical;

she also observed that RBT-SYS has a higher encoding speed
than PM. With this, Rashmi summarized the work and restated
the benefits brought in by these transformations.

In the Q&A session, one participant was curious about how the
compute bandwidth was traded off, because with more help-
ers the speed is retained but the equations are more complex.
Rashmi agreed that there is a compute tradeoff in resource utili-
zation optimization, but it is still practical enough. She reminded
the audience that the compute cost during decoding was similar
to the cost of RS decoding with two parities. The compute cost
is actually not too high because the amount of data churned is
much less compared to Reed Solomon. Keith Smith (NetApp)
pointed out that the presentation examples used one erasure and
wondered about how the efficiency would turn out when there
are multiple erasures. Rashmi replied that currently the MSR
framework considers optimizing for a single failure and reiter-
ated since only d helpers are needed for reconstruction there is
room for considering multiple failures in that respect. She also
noted that most of the typical scenarios are single failure.

The Fault in Our Stars: Reliability
Summarized by Zhen Cao (zhccao@cs.stonybrook.edu)

Failure-Atomic Updates of Application Data in a Linux
File System
Rajat Verma and Anton Ajay Mendez, Hewlett-Packard; Stan Park, Hewlett-
Packard Labs; Sandya Mannarswamy, Hewlett-Packard; Terence Kelly and
Charles B. Morrey III, Hewlett-Packard Labs

Anton Ajay Mendez presented this paper on behalf of his col-
leagues in HP Labs, which mainly introduces the design, imple-
mentation, and evaluation of failure-atomic application data
updates in HP’s Advanced File System (AdvFS). Failure-atomic
updates would want applications to make their data structures
persistent and consistent. Applications would maintain a series
of atomic sync points, which provides the ability to revert back
to the previous successful sync point in the event of failures.
Ajay compared their work with existing mechanisms, including
relational databases and key-value stores, and listed some of the
previous work and their limitations. Inspired by failure-atomic
Msync, their work provides a better and more generalized solu-
tion than Msync.

Ajay then came to their solution, which is called O_ATOMIC.
It is a flag that can be passed to open() system call, and every
subsequent sync would make intervening writes atomic. They
also provided another call, syncv, for failure-atomically modify-
ing multiple files. The detailed implementation of their solution
leverages a file clone feature, which is a writable snapshot of
the file. When a file is opened with O_ATOMIC, a clone of the
file is made. When the file is modified the changed blocks are
remapped via COW mechanism, while the clone still points to
the original blocks. When a sync is called, the old clone is deleted
and a new clone is created. Recovery happens lazily on lockup: if
a clone exists, delete the file and rename the clone to the original

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  89

CONFERENCE REPORTS

file. Ajay said that their mechanism can be implemented in any
file system that supports clones.

To verify the correctness of the mechanism, they injected two
types of failure: crash point tests and power cycle tests. Ajay said
that test results showed that no corruption happened when files
opened with O_ATOMIC. He compared the performance of their
implementation against existing key-values stores, and proved
it is efficient enough. He also mentioned some caveats of their
implementations. Clones introduce fragmentation, but online
defragmentation may help here. Multi-process file updates need
to be carefully coordinated by the application.

During the questions, Haryadi Gunawi (University of Chicago)
asked whether they evaluated how much fragmentation the
deployment of their implementation introduced. Ajay replied
that they haven’t done evaluation on that yet. Justin Paluska
(EditShare) asked why multi-process coordination is compli-
cated. Ajay answered because you need to take care of the con-
currency issue. What’s more, if multiple processes opened the
same file, and one process crashed, there is no way to detect it.
John Ousterhout (Stanford University) asked about the perfor-
mance implications of this mechanism, especially when cloning
large files. Ajay said if you do the sync immediately after the
modification, there is an additional overhead, and it is related to
the amount of data changed.

A Tale of Two Erasure Codes in HDFS
Mingyuan Xia, McGill University; Mohit Saxena, Mario Blaum, and David A.
Pease, IBM Research Almaden

Mingyuan Xia gave a lively presentation of their new erasure-
coded file system, Hadoop Adaptively-Coded Distributed File
System (HACFS). He began by showing the fast-growing trend
toward global data and laying out the timeline of distributed
storage systems. Because of high storage overhead, most systems
began using erasure coding instead of the original replication-
based methods. Mingyuan gave an overview of erasure cod-
ing, using the Reed-Solomon code in Facebook’s HDFS as an
example. However, erasure coding brings the problems of high
degraded read latency and longer reconstruction time. He fur-
ther explained the two problems in detail. Their goal in this work
is to design a technique that can achieve faster recovery as well
as lower storage overhead.

Mingyuan then presented the HDFS data access skew. Ten
percent of the data gets the majority of the accesses, and 90% of
the data is accessed only a few times. Motivated by this find-
ing, they coded read hot files with a fast code with low recovery
cost, and coded the majority of the data with a compact code
with high storage efficiency. He used the product code family as
an example to illustrate this idea. The system will adapt to the
workload by converting files between fast and compact codes.
Mingyuan described the details of this conversion. When total
storage overhead exceeds the storage bound, the system will
select files encoded with fast code and upcode them to compact

code. Similarly but less likely, when the system is way below the
bound, files would be chosen to be downcoded. He provided an
example of upcoding operation of the product code family.

Mingyuan then presented the details of environment setting and
workloads for evaluation of HACFS. He also formally defined
their evaluation metrics: they are degraded read latency, recon-
struction time, and storage overhead. He compared HACFS with
other distributed storage systems as well as with other erasure
coding mechanisms. Mingyuan showed that HACFS always
maintains a low storage overhead, while improving the degraded
read latency, reconstruction time, and network and disk traffic
to a certain extent.

During the questions, Brent Welch (Google) asked whether the
codes being compared all have the same redundancy. Mingyuan
answered yes. Welch further asked about the data trace, because
if we have too much cold data, the recovery of cold data would
dominate. Mingyuan answered that in the HDFS data access
skew, they showed that the majority of the files are created,
read only once, and then stay there. Another researcher asked
whether we will lose redundancy by using erasure codes. Min-
gyuan replied that in three-way replication, replicas are sup-
posed to be placed in different nodes, and it is the same case with
erasure codes. So when a single machine fails, no two blocks in
one strip will lose at the same time. Rashmi Vinayak (UC Berke-
ley) asked whether reliability decreases after converting from
fast codes to compact codes. Mingyuan answered that they have
shown that it is no worse than the three-way replication and is
comparable to LRC codes.

How Much Can Data Compressibility Help to Improve
NAND Flash Memory Lifetime?
Jiangpeng Li, Kai Zhao, and Xuebin Zhang, Rensselaer Polytechnic Institute;
Jun Ma, Shanghai Jiao Tong University; Ming Zhao, Florida International
University; Tong Zhang, Rensselaer Polytechnic Institute

Jiangpeng Li began by giving an overview of NAND flash mem-
ory. He first explained how NAND flash memory cells gradually
wear out with program/erase (P/E) cycling. Methods have been
proposed to improve the lifetime of flash memories, including
log-structured file system, flash translation layer, error correc-
tion coding, and data compression.

Jiangpeng claimed that because of unused space in one NAND
flash page and the impact of compression ratio variance, the
common sense perception of the quantitative relationship
between data compressibility and memory lifetime improve-
ment will not always hold. Moreover, NAND flash memory may
further experience content-dependent memory damage. He then
showed test results on raw bit error rates (BER) of four differ-
ent patterns of content to support this. Inspired by this finding,
they fill unused space with certain bits so that the number of
low-damage patterns is increased and high-damage patterns are
reduced. Jiangpeng then proposed implicit data compression as
an alternative to complement explicit data compression.

90    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

Jiangpeng introduced the damage factor to quantify the impact
of different content on memory cell damage. He then derived
the mathematical model needed for estimating flash memory
lifetime. Simulation results on storage device survival prob-
ability when storing different types of files showed the lifetime
improved through use of data compression storage techniques.
He also discussed the impact of different data compression ratio
means and variances on the lifetime gain.

During questions, Nirmal Saxena (Samsung) asked whether
the sensitivity in lifetime would change if the wear-leveling
algorithm was introduced. Jiangpeng answered that their model
can support various kinds of data types. Another researcher
asked about the effect of one compressed block being placed on
two blocks on the lifetime of flash memory. Jiangpeng replied
that in this work they assumed that data are compressed by data
sectors. Justin Mazzola Paluska (EditShare) asked how using
encrypted file systems would affect the results of this work.
Jiangpeng answered that data compression actually would com-
plicate the file system, and in this work they just assumed the
granularity of compression is a data sector.

RAIDShield: Characterizing, Monitoring, and Proactively
Protecting against Disk Failures
Ao Ma, Fred Douglis, Guanlin Lu, and Darren Sawyer, EMC Corporation;
Surendar Chandra and Windsor Hsu, Datrium, Inc.

ACM Test-of-Time Fast Track Award!

Ao Ma gave a lively presentation on disk failure analysis and
proactive protection. Ao began by showing that disk failures
are commonplace and by giving an overview of RAID. Adding
extra redundancy ensures data reliability at the cost of stor-
age efficiency. By analyzing the data collected from one million
SATA disks, they revealed that disk failure is predictable, and
built RAIDShield, an active defense mechanism, which would
reconstruct failing disks before it becomes too late.

Ao then gave the formal definition of a whole-disk failure and
showed the statistics summary of their data collection. Disk
failure distribution analysis showed that a large fraction of
failed drives fail at a similar age. Also, the number of affected
disks with sector errors keeps growing, and sector error num-
bers increase continuously. As a result, passive redundancy is
inefficient. Instead, RAIDShield would proactively recognize
impending failures and migrate vulnerable data in advance.
Using experimental results, Ao showed that reallocated sector
(RS) count is a good indicator for failures, while media error
count is not. He then characterized its relation with disk failure
rate and disk failure time.

Based on previous findings, their single disk proactive protec-
tion, called PLATE, uses RS count to predict impending disk
failure in advance. Experiment results showed that both the
predicted failure and false positive rates decrease as the RS
count threshold increases. Ao analyzed the effects of PLATE
by comparing the causes of recovery incidents with and with-

out proactive protection, and found that RAID failures were
reduced by about 70%. However, PLATE may miss RAID failures
caused by multiple less reliable drives, which motivated them
to introduce ARMOR, the RAID group proactive protection.
Ao then gave an example of how disk group protection works. It
calculates the probability of a single disk failure and a vulnerable
RAID. Evaluation results also show that ARMOR is an effective
methodology to recognize endangered disk groups. In the end, Ao
went through some of the related work.

During the questions, John Ousterhout (Stanford University)
asked whether the distribution of lifetime of failed drives were
percentages of total disks or only of failed disks. Ao answered
they are the percentages of failed drives. John followed up about
the peak time of failure. Ao replied that they are still not sure
why the peak time happens around the third year. Another
researcher asked whether all the disks ran for the same span
of time. Ao answered yes. They wouldn’t replace a disk if there
were no errors. A questioner wondered about the zero percentage
of failures in the first year. Ao replied that their paper covered
six different types of drives, but his presentation only examined
the failure patterns of two types. Arkady Kanevsky (Dell) asked
whether their model would hold for disks of different types and
manufactures and whether their model indicates that we could
step back from more complicated protection methods into sim-
pler models. For the first question, Ao replied that now they only
considered SATA drives and that it would be interesting to try
other types of disks. Regarding the second question, Ao said that
they are still polishing their monitor mechanism.

2015 USENIX Research in Linux File and
Storage Technologies Summit
February 19, 2015, Santa Clara, CA
Summarized by Rik Farrow

Christoph Hellwig, a Linux I/O developer, opened the workshop
by having participants introduce themselves. There were profes-
sors and students from Florida International University (FIU),
Carnegie Mellon (CMU), Stony Brook University (SBU), Kook-
min University (KU), and the University of Wisconsin (UW)
present, as well as people from Google, EMC, Red Hat, Parallels,
and IBM Research. By the end of the afternoon, one proposal
would gain enthusiastic acceptance, while the person who had a
proposal accepted in 2014 updated us on his progress.

Attendees had submitted six proposals for discussion, four of
them based on FAST ’15 papers. Christoph wanted to start work-
ing through the proposals immediately, but Erez Zadok asked
whether there could first be some discussion of how the Linux
kernel submissions process works.

Christoph mentioned that you can use the various kernel mail-
ing lists (see [1] for names), and then displayed a nice diagram

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  91

CONFERENCE REPORTS

for the Linux storage stack [2]. Christoph mentioned different
list names, as he pointed to different blocks on the diagram. He
used the linux-scsi list most often, but there are other lists,
with the kernel list being the most useless because of the amount
of list traffic.

Greg Ganger (CMU) asked what Christoph was using for his
Non-Volatile Memory (NVM) development. Christoph said that
he has an emulator that allows him to play with NVM. Erez
pointed out that there is no single way to use NVM, and Chris-
toph responded that some vendor has been using NVM for a
while. One way of handling NVM is to mmap() sections of it into
user memory. Erez then asked where NVM would fit into the
diagram, and Christoph said it was modeled on the direct I/O
code (DIO) alongside the Virtual File Systems (VFS) box.

Raju Rangaswami (FIU) asked how the I/O path would be laid
out for NVDIMMs (NVM on the memory bus as opposed to
PCIe), with the answer also being DIO. James Bottomley (Paral-
lels) said that the diagram is a bit misleading, as all block I/O
goes through the block cache, but DIO has its own structure.

Don Porter (SBU) asked about the politics surrounding DIO.
Christoph replied that Linus doesn’t like it. DIO is the general-
ization of the classic UNIX raw device. Raw devices bypass the
block cache, and you can set a flag turning off the block cache for
a device. Database developers and vendors, like Oracle, as well as
virtualization developers want to manage block caches for them-
selves, which is where the interest in raw devices comes from.

Raju moved the discussion back to NVM, asking about Linux
developers’ view on the future of persistent memory. Christoph
answered that what matters is the implementation but not the
semantics. Right now, there are two cases: NVM that works like
DRAM, and NVM that sits on the PCIe bus. If NVM works like
DRAM, it gets treated like DRAM. James pointed out that NVM
is not identical to DRAM, because it has slower writes. He also
said that we don’t have a view—we are looking for a good imple-
mentation. Intel has had some interesting failures in this area,
and implementation for NVM appears to be an iterative process.
Christoph retorted that some NVM is battery-backed DRAM, so
it may be identical.

Erez asked about support for Shingled Magnetic Recording
(SMR) and zone-based storage devices. Christoph replied that
vendors have been pushing SMR on the kernel developers very
hard, and they don’t like that. James mentioned that they don’t
have pure SMR drives yet, because if used improperly, the drives’
performance would be bad. Christoph described that scenario
as host-managed drives, where you manage the drive yourself,
and that host-managed SMR will not be in the kernel soon. The
kernel can detect these drives, and use the SCSI path to support
them, but you need your own code to manage them. Managed
drives, what is currently being sold today, handle all the work of
SMR themselves, transparently. Especially if you have a window
into the drive and a high-speed camera, joked Christoph, refer-

ring to a paper that reverse-engineered a managed SMR drive
[3]. There is another SMR type, host-aware, where the drive pro-
vides some information to the device driver, so you can optimize
your drivers to work with it.

Someone thought SMR was an interesting idea but didn’t like
the interface the vendors were talking about for the host-aware.
Christoph agreed, saying it was not a good fit. A vendor could
build an in-kernel layer to support host-aware drives, if they
were interested. So far, work on host-aware is actually merged
into the kernel, but it is like the T10 (object storage standard)
code: bit rotting because it is relatively unused.

Remzi Arpaci-Dusseau (UW) asked Christoph about other
areas where he wished people were doing more research, and
Christoph immediately replied practical cache management
algorithms, backed up by James who asked for useful cache
work. Christoph elaborated, saying that there has been very little
research into multiple stacks of caches. Don summarized these
points as practical cache management, algorithms for multiple
interacting caches, and asked for more specific examples. Chris-
toph responded that the inode cache is the “mother of all caches,”
then the kernel caches for data and pages, and the really interest-
ing one, the directory entry (known as dentry) cache (also called
dcache). Anything in the inode cache must have a corresponding
dentry. When memory pressure forces cache evictions, inodes
can’t be freed unless there are no dentries referencing them.

Greg asked why dentries were so critical, as they only have to be
used for system calls that use pathnames. Christoph replied that
certain applications make a lot of use of pathnames, like build
farms and unpacking zipped files. James added that most of the
standard operational ways of handling files use names; that’s
why the Postmark benchmark is so important, as most mail
servers manipulate many files by name.

Don followed up, asking about interactions with device level
caching, and Christoph said they didn’t have much data for that.
Don observed that they have a lot of problems when memory
pressure occurs with determining which cache entries can be
thrown away, and throwing away the wrong entry is a problem.
Greg added that it’s not so much stacked caches as cache interac-
tions that are the real problem.

Christoph named the kernel code used to reclaim memory as
the shrinker. The shrinker has a direct hook into every cache,
a routine in each cache handler that is supposed to create free
space by releasing cache entries. And the space freed needs to
be in large blocks that can be passed to the slab allocator. James
explained that entangled knowledge, links between caches,
caused a lot of problems for the shrinker. Someone wondered why
not just use Least Recently Used (LRU) algorithms for shrink-
ing caches. Greg explained that if you remove an inode entry,
you also have to remove all the pages and dentries that the inode
entry refers to. Christoph agreed, saying that the kernel does
use LRU, but if a cache entry has lots of dependencies, it gets put

92    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

back into the queue of entries, while entries without dependencies
get freed. Robert Johnson (SBU) restated this by saying that you
can throw away the oldest stuff, but not the oldest stuff that has
dependencies, a description that James agreed with.

Don pointed out that what you actually want back are pages. Ted
Ts’o (Google) replied that certain objects are more likely to be
pinned, so if you want page level LRU to work, directory inodes
and dentries need to be on their own pages. Robert asked about
page size, which is usually 4K, and James pointed out that Intel
doesn’t use powers of two for page size, which can either be 4K or
2 MB currently.

Christoph attempted to start the proposal discussions for
the fourth time, but we took a short break instead. When we
returned, Vasily Tarasov (IBM Research) suggested using a file
system instead of caches, but Christoph said that this makes the
problems even more complicated. All file systems use the core
VFS (Virtual File System) for common services. Vasily pushed
his point, but both James and Ted Ts’o said, “No.” Ted Ts’o said
that items that are referenced must be there and can pin a page.
Christoph mentioned that compression might be used on inac-
tive entries, but that would involve following pointers or using
table lookups to find entries. The kernel developers had tried
different structures, such as trees, but once there is a reference
count, there are pointers between entries.

Vasily asked whether FUSE could be used to experiment with
caches, but Ted Ts’o responded that FUSE uses caches heavily
as a deliberate design choice, making FUSE a poor candidate
for experimentation. Christoph suggested writing your own
user space VFS, but it would be simpler to work with the kernel.
Ted Ts’o then explained that it would actually be easier working
within the kernel, as there are very rich debugging tools, much
better than in user space. Try using gdb to debug a highly multi-
threaded program.

Jun He (UW) asked about conflicts that can cause thrashing.
James replied that the kernel is a highly interactive system, and
that kernel developers do their best to avoid thrashing. The best
way to create thrashing is through memory pressure.

Someone pointed out that Linux is the only OS that uses a
dentry cache. Christoph agreed that Linux has a strong dentry
cache. Every open file has a filename associated with it, which
helps developers with the problem of locking in cross-directory
domains. Because of links, a file can have multiple parents, and
you could deadlock when manipulating names. This is an area
that can be extremely racy. James added that in UNIX, we think
of files as names. In Linux we started out with inodes as the pri-
mary object. It would be a massive effort to change that. Ted Ts’o
also weighed in, saying that this design allows a lot more of the
complexity to be pushed up into the VFS layer, and all the details
of locking can be down in the core VFS instead of in the underly-
ing file system. Locking is one of the hardest things to do right.

Don asked about the difference between how Linux and BSD
perform name lookups. While all systems start by passing the
entire path to namei(), BSD and other System V-based UNIX
systems process the path, while Linux iterates over each com-
ponent of the path. Christoph answered that the VFS has to do
work for each pathname component anyway. Ted Ts’o added
that if the file system is left to figuring out the inode specified
by a pathname, the file system has to understand mount points,
which can cross file system boundaries.

The Proposals
While all of the previous discussion might appear to be a big dis-
traction, a goal of the Linux developers is to help potential kernel
developers become involved. There is an existing culture, as well
as process, for making changes to the Linux kernel, and people
who wish to make changes need to understand both.

I also asked Ric Wheeler (Red Hat), who started the workshop,
but missed this one because he was snowed in near Boston, how
he would describe the workshop:

“The purpose of the workshop is to get the Linux kernel com-
munity and the FAST file and storage research communities to
know each other and our broad portfolio of work. On the FAST
side, a large chunk of [research] is Linux kernel based and it is
a challenge to know who to talk to in the Linux world and what
the Linux community is up to. It is also good to know if the Linux
community has already fixed a problem before a poor grad stu-
dent launches a thesis built around a solved issue.”

Proposal 1: Non-Blocking Writes to Files
Daniel Campello (FIU) presented the first proposal, based on
his FAST ‘15 paper [4] that attempts to solve the blocking write
problem. When a write occurs that will modify a portion of a
block, the process has to sleep until the page is brought into
memory. In their research, they store their changes someplace
in memory until the page arrives, and then they patch the page
before unlocking it. Daniel then asked what the kernel develop-
ers thought about this approach.

Christoph started by asking about real life workloads that cause
these small writes. Daniel didn’t answer this question. Ted Ts’o
suggested that they measure with a whole bunch of benchmarks
to see whether this is a huge win. Perhaps it would help with Bit-
Torrent, which often receives blocks out-of-order. Daniel stated
that they did put traces on writes, they checked for hits or misses,
and most applications were weakly consistent. Every time an app
wants to write, they recorded the size of the write. They used
the SpecSFS benchmarks, and the results seemed to match very
well: 30% of writes were not aligned to page boundaries.

Christoph asked how unaligned are the writes, but Ted Ts’o took
a different approach: the application is misbehaving. Ted used
the example of the BFD Linker, which does unaligned writes, as
opposed to the Gold Linker, which doesn’t. Use the Gold Linker,
said Ted, or fix the app. If they add complexity into the kernel,

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  93

CONFERENCE REPORTS

they have to support it forever. It is easier to fix the few applica-
tions that make the kernel more complex for corner cases. Chris-
toph suggested that another idea would be to simplify things: get
rid of the struct buffer head, one buffer head per page, and you
could have multiple buffer heads per page.

Christoph was a bit more positive overall than Ted, saying that
they could use this research to track changes at the byte level
to support these types of apps. Daniel said they use a patching
mechanism, with the changes hanging from the page headers.

Raju raised another question, about something they noticed
during their research, and asked what type of information the
developer would like to have about it. Ted suggested tracepoints,
which give you the process and username, and said it’s not that
hard to add a tracepoint to the kernel. Christoph offered to write
the tracepoint for them. Raju asked whether this is systemtap,
but Ted replied that this is different, and that some subsystems
are already heavily tracepointed. The tracepointing system is
very efficient by design.

Daniel continued by saying that they collected this data on the
file server for both Linux and Windows systems, including a
Linux Web server. Daniel thought that their non-blocking writes
really solved an important problem. But Ted was not so sure and
wanted to understand what was going on at multiple levels of the
storage stack to cause this. He worried that there is something
important that the developers were not understanding. Daniel
mentioned that they ignored files that have holes, and wondered
how often files contain holes (regions not yet written to). Chris-
toph answered that it is common for HPC and for VM images but
is rare on desktop systems.

Ted continued to worry that they might be missing something
important that causes this behavior. Daniel offered to get more
information and said that they had avoided collecting too much
because of privacy concerns. Raju wondered whether other
people had traces that could help. Ted suggested that SQLite
could be doing unaligned writes, or MS Word over SMB could be
doing it, as well as BitTorrent. Daniel mused that perhaps one of
these cases involves a process writing a small file and then going
back and overwriting the same page. Greg suggested it happens
with large files, when appending without reading first.

Ted said that many kernel developers don’t take file servers
seriously: cloud servers and personal desktops, yes, but not file
servers. There are a set of commercial companies who care about
this: those doing small NAS servers. But the kernel developers
care more about servers that scale out. Greg imagined a variety
of things that could do this, like a logfile that rarely gets written,
and its page gets evicted. Daniel said that the Chrome browser
actually does this a lot, writes a small file, then overwrites it,
every ten minutes. Ted argued that that’s a buggy application:
Chrome should truncate then overwrite, or write a new file then
do an atomic update. The app is doing something that is inher-
ently unsafe.

Erez had a quick follow-up. Key-value stores need to be really
efficient, use aligned pages, and use workloads designed to
overwrite an entire page, but the kernel still brought in the entire
page. James replied that Erez wants trim for the page cache, before
Christoph suggested they move on to the next proposal, BetrFS [5].

Proposal 2: BetrFS
Don said that the code they have right now is not ready for prime
time, and they wanted to get a sense of what should be done next.
Christoph got right to the point: Linux already has over 100 file
systems, so you must get people excited about your new file sys-
tem. Don responded that they like B-epsilon trees, and they plan
on writing an article about B-epsilon trees [for ;login:]. B-epsilon
trees are generally an order of magnitude or more faster for
inserts than B-trees.

Ted pointed out that kernel developers are very practical.
B-epsilon trees are very cool, but what’s not immediately obvious
is the killer app that needs them. For example, flash file-systems
developers have huge commercial imperatives to stabilize those
file systems, using 50–200 person years. But for BetrFS, he’s
not sure why anyone would invest that amount of time. Robert
replied that fractal trees [another name for B-epsilon trees] were
invented as a backend for MySQL. Using BetrFS with MySQL
might also result in 10–30 times the performance.

Christoph suggested that they try to fit their project into an
existing file system, then kernel developers could see the advan-
tages by the one-to-one comparison. Ted wondered whether
B-epsilon trees would fit well into the BtrFS, but he didn’t know
about the impedance matching. But the BtrFS folks would like a
faster B-tree.

Robert asked whether BtrFS uses a key-value store internally,
and Christoph answered that B-trees are used in some places.
Robert emphasized that B-epsilon does much faster inserts, and
suspected that it will fit into the kernel somewhere. James said
that usually they have a problem kernel developers need to solve,
and the Stony Brook researchers have a technology looking for
a problem. Robert said that they are certain there are problems,
and that this technology changes the performance landscape.

Where in file-system land would it be doing massively more
updates than queries, wondered Christoph. Robert suggested
that every read results in a write because reads mean updating
the atime. Someone pointed out that that is why atime updates
are disabled by default in Linux. Another person suggested that
SQLite does lots of small writes, and Christoph replied that
SQLite should have a sensible reimplementation.

Ted asked again about places in the kernel where inserts are
more common than queries; he believes this is more common
in apps. Erez suggested archival and backups, which Christoph
dismissed as write-once-read-never. Greg said that you must
read before you can write with backups, while Robert kept push-
ing, saying there must be a key-value store that will benefit from
B-epsilon trees.

94    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

Proposal 3: Dcache Lookup
Don said that they had been looking at dcache for a long time.
Dcache is used to speed up pathname-to-inode lookups by cach-
ing info from past lookups. Don had wondered whether they
could speed the process up, and found they could indeed, achiev-
ing a 5–26% performance increase.

Don proposed to speed up lookups of non-existent files (which
happen, for example, whenever a new file is successfully cre-
ated) by adding a flag to dcache entries for directories. The flag
would indicate that “the dcache contains a complete list of all the
entries in this directory.” This flag would enable a lookup that
fails to find an entry in the dcache to return a definitive “NO.”
Don described how to initialize this flag as part of a readdir()
call and pointed out that whenever an application created a new
directory, the flag could be set to TRUE. This could dramatically
speed up processes that create an entire directory hierarchy,
such as git checkout or untar. Currently, without this optimiza-
tion, the kernel queries the underlying FS for each file and direc-
tory created, even though the parent directory was just created
a moment earlier and the kernel has a full cache of its contents.
Then Don asked whether the developers would be open to trying
new lookup algorithms.

Christoph said simply: send your code to Linus now. Ted said
that Linus is really interested in improving path lookup and
complains when file stats are slow. Don said that they measure
a 26% improvement in getting file status. Christoph repeated,
send it to Linus, although Linus will rewrite whatever you send
him. Don said he doesn’t care, and pointed out that they were
compatible with SELinux. Christoph asked whether they still
have slowpath, and Don said they do, but worried about their
patch being slower when there is a rename in an early directory
in a long pathname. Greg said that renames near the beginning
of a path don’t happen often enough to optimize for, and Ted
suggested including a version with the cached info, so it could be
invalidated if needed. Christoph felt some concern about getting
the readdir() case right, but that the mkdir() case seemed simple
enough and gave a path for incremental deployment.

Robert presented the second part of their proposal, to speed up
readdir(). They want to keep negative results and add a bloom
filter. The bloom filter would be kept when memory pressure
results in freeing cached dentries. Ted worried about the mem-
ory used, and Christoph said this could be a good research paper.

Proposal 4: Chopper
Ted asked for a recap from the lead author of Chopper [6]. Jun He
(UW) said that they had tried their favorite workload and found
some problems in the block allocator. They wanted to search
the design space for file systems and needed a tool to help with
experimental design. They developed Chopper as that tool and
uncovered four different issues with ext4.

The first issue involved scheduler dependencies in ext4, when
many small files were created in a single directory. Ted asked

about the real world scenario where this happens; perhaps if the
app tried slow writes using multiple CPUs.

Jun plunged on with the details of their second finding, when
four threads are writing to one file. Again, Ted interrupted Jun,
saying that they must have delayed allocation disabled, and
that examples must be real world apps, not synthetic tests. Ted
went on to say that he found their testing framework, Chopper,
interesting and that perhaps there were other metrics he’d like to
test, such as the average size of free extents. He worried not just
about the goodness of written files, but also the goodness of the
free list. Another issue would be a change that helps metric A but
causes regression in metric B.

Jun never got through all four of their findings. Instead, we broke
for coffee, with just 90 minutes remaining in the workshop.

Proposal 5: A New Form of Storage Virtualization
Zev Weiss (UW) described the work in their paper [7], which
allows adding features from more advanced file systems, like
ZFS and BtrFS, to ext4 and XFS. The idea was to work at the
block layer to add features (e.g., snapshots, copy-on-write)
transparently to existing file systems. Christoph said that if
the researchers could take this further, it could be helpful and
very interesting. Ted said that he had written up a proposal for a
device mapper for a block, and that there were interesting things
that could be done at the device mapper layer. You do need to
have some communication between the device mapper and the
block layer, but this would be interesting to explore.

Don asked about the standard for getting a device mapper into the
kernel; Christoph said this can be done, and Vasily has done this.

Proposal 6: Deduper
Vasily Tarasov (IBM Research) presented his idea for an open
source, block-level deduper, at the 2014 Linux FAST workshop.
Vasily worked with Christoph, who helped him with his patch
set and with submitting the patch set to the device mapper list.
They immediately got back the response that they needed more
comments in their patch set. In July 2014, Vasily presented
a paper [8] on a device mapper deduper. In August 2014, they
submitted another patch set, and got some attention, but not a
lot of responses. In January 2015, one developer became devoted
to this module, working to fix things, and in that respect the
process has been good. The amount of work required to keep
the process of getting the patch into upstream has varied from
month to month.

Christoph asked Erez about the Stony Brook students’ poster
about dedupe. Erez said that not all data blocks are created
equally, that some are metadata. If you are submitting metadata,
you want to set a flag for “don’t dedupe.” A metadata hint was
what they needed, and they found that such a flag was there.
Christoph said that hint was there for tracing, and could be very
useful. Ted asked which file system has Sonam Mandal (not
present) worked on? Erez replied that she had worked on all the

www.usenix.org	   JUNE 2015  VOL. 40, NO. 3  95

CONFERENCE REPORTS

exts. Ted said that he thought ext4 was well marked, and Erez
replied that they are also looking into pushing hints further
up the storage stack for temp files and for files that will be
encrypted.

Ted said they are interested in discovering which hints have the
highest value so are worth implementing. You want to set these
hints in the inode, not in the page cache. Christoph worried about
trusting users with these hints, as they could be abused or simply
used poorly. Erez wanted to put the ability into libc, and Ted
thought that such hints would be useful for compiler temp files.

Erez asked about the existence of a metadata flag, and Christoph
said it was only used for tracing. That flag used to be in the I/O
scheduler, and is still present in ext2 and ext4. Ted said the flag
is there for the commit block, and nothing can go out until that
commit block has been committed. Erez joked that they didn’t
want to dedupe the duplicate superblocks, and people laughed.
They treated these duplicates as metadata, and wondered
whether they should submit patches that do that. Christoph
replied, “Sure.”

Ted continued the discussion by focusing on priority inheritance
in a scenario involving a low priority cgroup process wanting to
read a directory, locking it, but being unable to read it, and then a
cluster manager needs that block but can’t read it. Raju said they
found this problem in their work on non-blocking writes, but
didn’t fix this behavior. Ted said that read-ahead has a low prior-
ity, and if you have a process blocked because the process needs
that block, that really causes a problem. The right answer is that
we need to have better visibility. And the real problem is that
these problems have been hiding in the underbrush for years.

Raju asked whether this was a significant enough problem
for people to research. Ted replied that if this is a problem on
Android, but fixing it would break big servers with high per-
formance I/O, that would cause problems. They won’t risk
server performance to make Android faster. Samsung can apply
that patch locally [9] for their handsets, but we can’t push it
upstream.

Zev asked what type of interface was imagined for things like
block remapping. Christoph replied that they have thought about
operations for block devices for a long time. Zev then asked about
stable pages, where the page is locked. Ted said they just make
a copy of the block as a hack, and that they just worked around
it, the copy worked acceptably, but the patch cannot be pushed
upstream. James said he has seen a lot of email complaining
about the problem. Ted replied that they could send out the patch
to see whether there is any interest.

Discussion
We had finished with the formal proposals by 5:15, and Chris-
toph opened the floor to general discussions.

Dungyun Shin (KU) wants to measure times in the local I/O
stack performance so he can then learn which layer is causing a

problem. If he knows where the problem is, he knows what needs
to be optimized. Dungyun asked for feedback on which layer to
focus on. Dungyun is currently working on the block I/O layer
and the VFS layer.

Christoph said there are two parts to this question. You can get
perfect info using blocktrace, and there is a tool there for mea-
suring latency. There are also tools at the system call level, but
the problem is combining the two.

Ted said there has been recent related work at Google. They were
interested in long tail latency—2, 3, 4 nines latency—and they
measured worst-case times, and didn’t try cross-correlating.
They just wanted to find where the long tail was happening. For
them, CFQ (Completely Fair Queueing) was completely out to
lunch, or in the hardware, the drive was going out to lunch for
hundreds of milliseconds. Rather than trying to cross-correlate
all the way down, it was easiest to measure the long tail.

Dungyun asked whether it is a good strategy to correlate inter-
rupt times, since some benchmarks running on Android are very
variable, not consistent. They can’t trust the research because of
this. Dungyun tried experiments to eliminate the time spent I/O
handling, and then he got more consistent results.

Ted said he doesn’t have a high opinion of many of those bench-
mark scores—do they actually reflect what the user will see?
Measuring how long it takes to start the Facebook app, let’s mea-
sure that because that app is really big. Handset vendors actually
check the application ID so the CPU benchmarking scores can be
artificially high. Those scores are there for “benchmarketing.”
Facebook reads 100 MBs before it displays a pixel. If you want to
find out what is actually causing the delay—memory pressure,
locking—measure latencies at different levels of the I/O stack.
But then, why are you optimizing this?

Don asked about the developers’ perspective and the application
developers’ perspective. Ted countered by asking whether this is
the application you really care about? What is the real world case
where we are not optimized for this area? If he decided to fix this
in ext4, but people who run into this are using xfs, why should he
fix this? When thinking about writing papers, pick something
that will be high impact—that is, something that will affect lots of
users. That’s why Ted liked the Quasi I/O paper [9]. But does three
seconds instead of one second really matter to the handset user?

The meeting broke up just before 6 p.m., because Google needed
to secure the room they had loaned us.

96    JUNE 2015  VOL. 40, NO. 3 	 www.usenix.org

CONFERENCE REPORTS

References
[1] Info for Linux developers mailing list: http://vger.kernel.org/
vger-lists.html.

[2] Linux Storage Stack Diagram, Werner Fischer: https://www
.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram.

[3] A. Aghayev and P. Desnoyers, “Skylight—A Window on
Shingled Disk Operation,” FAST ’15: https://www.usenix.org/
conference/fast15/technical-sessions/presentation/aghayev.

[4] D. Campello, H. Lopez, L. Useche, R. Koller, R. Rangaswami,
“Non-Blocking Writes to Files,” FAST ’15: https://www.usenix
.org/conference/fast15/technical-sessions/presentation/
campello.

[5] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao,
A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, D. E. Porter, “BetrFS:
A Right-Optimized Write-Optimized File System,” FAST ’15:
https://www.usenix.org/conference/fast15/technical-sessions/
presentation/jannen.

[6] J. He, D. Nguyen, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“Reducing File System Tail Latencies with Chopper,” FAST ’15:
https://www.usenix.org/conference/fast15/technical-sessions/
presentation/he.

[7] Z. Weiss, S. Subramanian, S. Sundararaman, N. Talagala,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau; “ANViL: Advanced
Virtualization for Modern Non-Volatile Memory Devices,”
FAST ’15: https://www.usenix.org/conference/fast15/technical
-sessions/presentation/weiss.

[8] V. Tarasov, D. Jain, G. Kuenning, S. Mandal, K. Palanisami,
P. Shilane, S. Trehan, and E. Zadok, “Dmdedup: Device Mapper
Target for Data Deduplication,” OLS 2014: https://www.kernel
.org/doc/ols/2014/ols2014-tarasov.pdf.

[9] D. Jeong, Y. Lee, and J. Kim, “Boosting Quasi-Asynchronous
I/O for Better Responsiveness in Mobile Devices,” FAST ’15:
https://www.usenix.org/conference/fast15/technical-sessions/
presentation/jeong.

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

Real SolutionS
foR Real netwoRkS

Free
CD or DVD
in every Issue!

Order Online at: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 3/3/15 1:20:50 PM

