
2    O C TO B ER 20 1 5   VO L .  4 0,  N O.  5 	 www.usenix.org

EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org During the HotCloud ’15 workshop, I was invited to join a discussion 

group. We were supposed to decide which was better, VMs or con-
tainers. An hour later, we really hadn’t answered the question posed 

to us, but we did have some answers.

Virtual machine technology has been around since IBM developed VMs as a method for shar-
ing mainframes. That might sound funny, but mainframes in businesses were used to run 
batch jobs or long-running transaction processing applications, like managing accounts for  
a bank. Sharing the computer, even if that computer wasn’t always busy, was a side issue.

With VMs, customers could run other applications when demand by the main application 
was low. You could even run IBM’s version of UNIX, AIX, and later, Linux, providing the 
illusion of a time-sharing system that we are most familiar with. 

In the early noughts, VM technology really took off. Xen and VMware became popular ways 
of sharing underused systems. And like the original IBM VMs, you could run applications 
requiring different operating systems all on the same server.

Containers
Container technology was taking off at about the same time, and the biggest users of con-
tainers were companies with clusters all running the same OS. For those uses, running one 
operating system inside of another, however stripped down, was a waste of processing power. 
Also, why run an operating system per VM when you could just have a single operating sys-
tem supporting all of your containers?

For many years, VMs were the prominent technology, with containers being used at Google 
or hosting companies. And there are both advantages and disadvantages to using containers. 
While containers were great at improving efficiency and making management easier because 
there was just one set of system software to manage, containers were not as good as VMs for 
security. That extra level of separation, eventually supported by special CPU instructions, 
really did make the combination of a hypervisor and VMs more secure than a system running 
containers using a single Linux kernel.

And those were, roughly, the results of our discussion group: that VMs were best for running 
legacy applications and for security, while containers were a packaging framework that is 
more efficient and easier to manage than VMs. But we did discuss one other technology, one 
not included in our original remit: unikernels.

The Middle Path
We had two people from Cambridge in our group, and they suggested that we should also 
consider unikernels, like MirageOS. So let’s talk about unikernels.

Where VMs are entire operating systems that happen to be running applications, and 
containers are namespaces [1] used to isolate just one application, unikernels are more like 
applications that run directly on top of a hypervisor [2]. Unikernels can be even more efficient 
than containers because instead of sharing an operating system, like containers, unikernels 

http://www.usenix.org
mailto:rik@usenix.org


www.usenix.org	   O C TO B ER 20 1 5   VO L .  4 0,  N O.  5  3

EDITORIAL
Musings

don’t have an operating system. Unikernels by design run a 
single-threaded application and rely on the hypervisor for access 
to hardware resources.

You might just be thinking that being constrained to a single 
thread can be a serious issue, and you’d be right—for some 
applications. But for many others, a single, stripped down to  
bare essentials, dedicated thread is just right. Unikernels jet-
tison almost all of the support found in traditional operating 
systems in exchange for single-minded efficiency.

The unikernel focus on doing one thing has security benefits as 
well. While VMs and containers include a whole array of applica-
tions, such as shells, administrative commands, and compilers, 
unikernels have nothing except the application and the support 
library needed by that application for communication with the 
hypervisor. Unikernels are a manifestation of least privilege and 
minimal configuration hard to achieve with VMs or containers.

And it turns out that because the security model of containers 
is weaker than that of VMs or unikernels, most people who 
use containers run containers belonging to the same security 
domain within a VM. I was surprised to learn this because 
it means that most of the gain in performance over VMs gets 
tossed for stronger security. That containers are still used at all 
speaks to how much easier it is to manage applications within 
containers as compared to entire VMs. Someone who works for 
a company that runs giant clusters mentioned that they even run 
VMs from within containers, meaning that they start with a VM 
that runs containers that run VMs. Sounds silly, but the point is 
that containers are easier to manage than VMs, and that is actu-
ally very important to people who run huge clusters.

You might be wondering why we don’t see unikernels everywhere, 
and you are right to wonder. Unikernels appear to be the best 
choice when it comes to efficiency and security for many appli-
cations. But there are some things that the unikernel people 
aren’t going to tell you.

MirageOS, with its Cambridge and Xen connections, is the best 
known of unikernels today, but there are others: LING, based on 
Erlang, and HaLVM, based on Haskell, to name two. MirageOS 
uses OCaml, a functional programming language. Erlang and 
Haskell are also functional programming languages. Functional 
programming languages have real advantages when it comes to 
security, although OCaml does not require the programmer to 
write purely functional code. Learning how to write in Haskell, 
for example, requires serious effort on the part of the program-
mer: you need to think differently, more like a mathematician, to 
become a useful functional programmer. 

The requirement of needing to be a programmer, familiar with 
functional languages, is currently a huge impediment to the suc-
cess of unikernels. Unlike VMs, which provide an environment 

that appears identical to the one that most people normally work 
with, and with containers, which focus on packaging, working 
with a unikernel today means using an application written for a 
particular unikernel technology. You can certainly do that, but 
you best be a programmer who can adopt the application of your 
choice to run in that environment.

Perhaps the easiest unikernel technology to use are rump kernels 
based on NetBSD, as the environment is POSIX and the language 
commonly used is C. Antti Kantee, one of the primary creators 
of rump kernels, has written an article in this issue arguing for 
the use of unikernels. One of his many points is that much of 
what operating systems provide us with is support needed by 
time-sharing systems. Time-sharing was a method designed for 
sharing mainframes among multiple users; today, most servers 
run applications that provide services, and their users are other 
applications, not people. Times have changed, but operating 
systems have remained the same.

Well, I am exaggerating. Operating systems haven’t remained 
quite the same. They have grown. Enormously. For example, 
Linux has grown from 123 system calls [3] in version 1 to nearly 
400 system calls for the 3.2 kernel. Microsoft Windows Server 
2012 has 1144 system calls [4]. Operating systems have become 
incredibly complex.

While researching how to run legacy code securely within Web 
browsers, Douceur et al. [5] discovered that they could run some 
desktop applications with minimal modifications while using 
just a handful of system calls. Unikernels move us closer to a 
similarly minimal environment.

The Lineup
We start out this issue with an opinion piece by Antti Kantee. 
While Kantee certainly has his own axe to grind, he also makes 
some very good points while being amusing at the same time.

Next we have an article about Grappa (no, not the liquor), a dis-
tributed shared memory framework developed by a group at the 
University of Washington, Nelson et al. The Grappa framework 
creates an abstraction of a single memory space for program-
mers seeking to develop software that works like Hadoop, Spark, 
or GraphLab. Their system also hides the latency of remote 
memory accesses by taking advantage of the parallelism inher-
ent in processing big data.

We next take a look at a different issue, also caused by non-uniform 
memory access. Lepers et al. studied how the core interconnects 
work in server-class AMD processors, and discovered that the 
bandwidth between cores in AMD chips varies tremendously. 
They developed and tested software that can determine the best 
placement for multithreaded applications, and migrate threads 
to cores with more bandwidth between them.

http://www.usenix.org


4    O C TO B ER 20 1 5   VO L .  4 0,  N O.  5 	 www.usenix.org

EDITORIAL
Musings

Both of these articles are based on papers presented at USENIX 
ATC ’15. The next article was related to a FAST ’15 paper and 
presents a novel algorithm for fast inserts, deletes, and updates 
in B-trees, while providing the same level of read performance. 
B-epsilon trees trade space used for pivot keys in each node 
for space used to buffer writes, and the article by Bender et al. 
explains how the algorithm works, as well as proving it to be 
faster than B-trees for writes.

Singh et al. present Beam, part of a Microsoft project with a goal 
of collecting more useful information about certain events from 
the Internet of Things (IoT). While one type of sensor can provide 
potentially useful information, having an abstraction for multiple 
sensors can better answer a query such as “Is someone home?”

Andrea Spadaccini and Kavita Guliani continue the series of 
articles about the practices of System Resource Engineers 
(SREs) within Google. They explain how SRE teams handle  
on-call, one of the many vexing issues facing anyone who sup-
ports software services, in a way that has proven to work well 
and be fair to all participants.

Brendan Burns explains the Kubernetes (pronounced koo-ber-
net-tees) project. While Docker has made containers into an 
easy-to-use packaging system, Kubernetes focuses on managing 
the services presented by applications running in containers. 
Kubernetes presents a single IP address for a group of contain-
ers, handles load balancing, keeps the configured number of 
services running, and handles scaling and upgrades.

Andy Seely has more tips for technical managers. In this column, 
Andy explains how time management is different for managers 
(compared to sysadmins and other technical staff), and provides 
advice from his own experience on how to best manage your time.

Dave Beazley’s Python column explains some new syntax in 
Python 3.5. * and ** have been available for use in function 
arguments, where the function needs to be able to accept a vari-
able number of arguments. Version 3.5 extends how this syntax 
works, including for specifying keyword-only arguments and 
conversion of arguments.

David Blank-Edelman explains how you can get Perl to work 
with WordPress. WordPress currently has a WP-API plugin that 
might become a standard part of WordPress, and David demon-
strates how to get that plugin to work gracefully with the CRUST 
Web service.

Dave Josephsen wanted to be able to monitor the relative per-
formance of some apps on different laptops. Dave shows how to 
install and use the Nagios Cross-Platform Agent for Linux and 
Apple systems.

Dan Geer discusses the denominator of risk: when we attempt 
to calculate risk, how best to choose the number of systems at 
risk. When comparing the number of unpatched exploits to the 
number of potential targets (the denominator), knowing the 
denominator can make a huge difference.

Robert Ferrell decides to redesign the Internet for better secu-
rity, working as a non-network non-specialist.

Mark Lamourine has two book reviews this time, on The Essen-
tial Turing and Drift into Failure.

Peter Salus has written another in his series of columns on 
the history of USENIX, covering the change from having two 
Annual Tech conferences each year to having many more 
focused workshops and conferences. Salus also discusses the 
journal Computer Systems.

We conclude this issue with a portion of an interview conducted 
with Dan Geer in 2000, where he talks about why he became 
President of the USENIX Board of Directors. We included these 
statements because Geer explains both where USENIX was at 
this time (much larger) and his own remarkably insightful pro-
jections about the future he imagined 15 years ago.

Speaking of the future, I think we will continue to see both con-
tainers and VMs used on the same system. Whether unikernels 
will become as popular is still up in the air. Containers and VMs 
provide something familiar, and it is always easier for people 
to continue dealing with the familiar than to launch into the 
wilderness of the new. If support for unikernel-based applica-
tions continues to grow, these streamlined packages are likely 
to become just as popular.

Resources
[1] James Bottomley and Pavel Emelyanov, “Containers,” 
;login:, vol. 39, no. 5, October 2014: https://www.usenix.org 
/publications/login/october-2014-vol-39-no-5/containers.

[2] Unikernels: http://wiki.xenproject.org/wiki/Unikernels.

[3] Linux system calls: http://man7.org/linux/man-pages 
/man2/syscalls.2.html, http://asm.sourceforge.net/syscall 
.html.

[4] Microsoft, Supported System Calls: https://technet 
.microsoft.com/en-us/library/Cc754234.aspx.

[5] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob 
R. Lorch, Microsoft Research, “Leveraging Legacy Code to 
Deploy Desktop Applications on the Web”: http://www.usenix 
.org/events/osdi08/tech/full_papers/douceur/douceur_html 
/index.html.

http://www.usenix.org
https://www.usenix.org/publications/login/october-2014-vol39-no-5/containers
http://wiki.xenproject.org/wiki/Unikernels
http://man7.org/linux/man-pages/man2/syscalls.2.html
http://asm.sourceforge.net/syscall.html
https://technet.microsoft.com/en-us/library/Cc754234.aspx
https://technet.microsoft.com/en-us/library/Cc754234.aspx
http://www.usenix.org/events/osdi08/tech/full_papers/douceur/douceur_html/index.html
http://www.usenix.org/events/osdi08/tech/full_papers/douceur/douceur_html/index.html


www.usenix.org	   O C TO B ER 20 1 5   VO L .  4 0,  N O.  5  5

EDITORIAL
Letters to the Editor

Hello,

I received an issue of ;login: magazine, “Sysadmin and Distributed 
Computing” (April 2015) while attending SouthEast LinuxFest 
(SELF) in June.  I was very impressed with your publication and 
am now thoroughly disgusted with Wired magazine.

There was a mention of a Student Programs contact program, 
and I wanted to ask if you already have a rep on the Virginia Tech 
campus.  If you have a rep, I would like to talk to them; if not, I 
would be glad to set up a Web site for USENIX info and library, 
which I can restrict to campus authorization.

I’ll also be glad to forward USENIX info to our student Linux 
Users Group, VTLUG, and the Tech Support and/or Sys Admin 
campus groups.

Denton Yoder 
Computer Systems Engineer 
Biological Systems Engineering 
Virginia Tech

Rik,

Thank you…USENIX is a great org and ;login: a great mag. When 
it arrives, I know there will be an hour coming up shortly where I 
can put on the headphones, kick back, and read about people and 
ideas that relax and educate my poor tired computational soul.  
Good things by good people working for a better Net.

Thanks, and I promise to get on the stick and start submitting. 
Cyberville here is going 90 mph and just getting warmed up. 
Look forward to seeing folks out in my neck of the woods for 
WOOT and then for LISA.

Keep the faith…

Best,  
Hal Martin 
University of Maryland, Baltimore County

Do you have a  USENIX Representative on your university or college campus?
If not, USENIX is  interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association 
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is 
always looking for academics to participate. The  program is designed for faculty who directly interact with students. We 
fund one representative from a campus at a time. In return for service as a campus representative, we offer a complimen-
tary membership and other benefits.

A campus rep’s responsibilities include:
■  Maintaining a library (online and in print) of  USENIX 

publications at your university for student use
■  Distributing calls for papers and upcoming event 

 brochures, and re-distributing informational emails 
from  USENIX

■  Encouraging students to apply for travel grants to 
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas 
of the USENIX Web site, free conference registration once a year (after one full year of service as a  Campus Representative), 
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty 
have access.

To qualify as a campus representative, you must:
■ Be full-time faculty or staff at a four-year accredited university
■  Have been a dues-paying member of USENIX for at least one full year in the past

■  Providing students who wish to join USENIX with infor-
mation and applications

■  Helping students to submit research papers to  relevant 
USENIX conferences

■  Providing USENIX with feedback and suggestions on 
how the organization can better serve students

For more information about our Student Programs, contact 
Julie Miller, Marketing Communications Manager, julie@usenix.org

http://www.usenix.org



