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The rising importance of data-intensive applications has fueled the 
growth of a plethora of distributed computing frameworks, including 
Hadoop, Spark, and GraphLab. We have developed a system called 

Grappa [1, 2] to aid programmers in developing new frameworks. Grappa pro-
vides a distributed shared memory abstraction to hide complexity from the 
programmer, and takes advantage of parallelism in the data to hide remote 
access latency and to trade latency for more performance. These techniques 
allow it to outperform existing frameworks by up to an order of magnitude.

Data-Intensive Applications on Distributed Shared Memory
Software distributed shared memory (DSM) systems provide shared memory abstractions 
for clusters. Historically, these systems performed poorly, largely due to limited inter-node 
bandwidth, high inter-node latency, and the design decision of piggybacking on the virtual 
memory system for seamless global memory accesses. Past software DSM systems were 
largely inspired by symmetric multiprocessors, attempting to scale that programming 
mindset to a cluster. However, applications were only suitable for them if they exhibited sig-
nificant locality, limited sharing, and coarse-grained synchronization—a poor fit for many 
modern data-intensive applications.

DSM offers the promise of simpler implementations of data-intensive application frame-
works. Figure 1 shows a minimal example of a “word count”-like application in actual Grappa 
DSM code. The input array, chars, and output hash table, cells, are distributed over multiple 
nodes. A parallel loop runs on all nodes to process shards of the input array, hashing each key 
to its cell and incrementing the corresponding count atomically. The code looks similar to 
plain shared-memory code, yet it spans multiple nodes and scales efficiently.

Applying the DSM concept to common data-intensive computing frameworks is similarly 
straightforward:

MapReduce. Data parallel operations like Map and Reduce are simple to think of in terms 
of shared memory. Map is simply a parallel loop over the input (an array or other distributed 
data structure). It produces intermediate results into a hash table similar to that in Figure 1. 
Reduce is a parallel loop over all the keys in the hash table.

Vertex-centric. GraphLab/PowerGraph is an example of a vertex-centric execution model, 
designed for implementing machine-learning and graph-based applications. Its three-phase 
gather-apply-scatter (GAS) API for vertex programs enables several optimizations pertinent 
to natural graphs. Such graphs are difficult to partition well, so algorithms traversing them 
exhibit poor locality. Each phase can be implemented as a parallel loop over vertices, but 
fetching each vertex’s neighbors results in many fine-grained data requests.

Relational query execution. Decision support, often in the form of relational queries, is 
an important domain of data-intensive workloads. All data is kept in hash tables stored in a 
DSM. Communication comes from inserting into and looking up in hash tables. One parallel 
loop builds a hash table, followed by a second parallel loop that filters and probes the hash 
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table, producing the results. These steps rely heavily on consistent, fine-grained updates to 
hash tables. 

While these frameworks are easy to express conceptually in a DSM system, obtaining good 
performance can be challenging for a number of reasons:

Small messages. Programs written to a shared memory model tend to access small pieces 
of data. On a DSM system this requires communication. What were simple load or store 
operations become implicit, complex transactions involving the network. When these mes-
sages are small (~32 bytes), the network (optimized for multi-kilobyte packets) struggles to 
achieve a fraction of its peak throughput.

Poor locality. Data-intensive applications often exhibit poor locality. For example, the vol-
ume of communication in GraphLab’s gather and scatter operations is a function of the graph 
partition. Complex graphs frustrate even the most advanced partitioning schemes. This 
leads to poor spatial locality. Moreover, which vertices are accessed varies from iteration to 
iteration. This leads to poor temporal locality.

Need for fine-grained synchronization. Typical data-parallel applications offer coarse-
grained concurrency with infrequent synchronization—e.g., between phases of processing 
a large chunk of data. Conversely, graph-parallel applications exhibit fine-grained concur-
rency with frequent synchronization—e.g., when done processing work associated with a 
single vertex. Therefore, for a DSM solution to be general, it needs to support fine-grained 
synchronization efficiently.

Fortunately, data-intensive applications have properties that can be exploited to make DSMs 
efficient: their abundant data parallelism enables high degrees of concurrency; and their 
performance depends not on the latency of execution of any specific parallel task, as it  
would in, for example, a Web server, but rather on the aggregate execution time (i.e., through-
put) of all tasks.

Grappa Design
Figure 2 shows an overview of Grappa’s DSM system. We will first describe the multithread-
ing and communication layers and then explore the distributed shared memory layer, which 
is built on top of these lower-level components. Our recent USENIX ATC paper [2] describes 
these in more detail.

Expressing and Exploiting Parallelism
Work is most commonly expressed in Grappa using parallel for loops. Tasks may also be 
spawned individually, with optional data locality constraints. Under the hood, both methods 
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// distributed input array

GlobalAddress<char> chars = load_input();

// distributed hash table:

using Cell = std::map<char,int>;

GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {

  // hash the char to determine destination

  size_t idx = hash(c) % ncells;

  delegate(&cells[idx], [=](Cell& cell)

  { // runs atomically

    if (cell.count(c) == 0) cell[c] = 1;

    else cell[c] += 1;

  });

});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using Grappa’s distributed shared memory
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work by pushing closures into a global task pool. These closures 
are generally expressed using C++11 lambda constructs to pro-
vide both code to execute and initial state. Tasks are executed 
by idle threads on cores across the system, which pull from the 
global task queue subject to the tasks’ locality constraints. When 
a task executes a long-latency operation, it is suspended until the 
operation is complete; the core it is running on is kept busy with 
other, independent, work.

Grappa is built around a user level, cooperative multithreading 
system. Due to the large inter-node latencies that must be toler-
ated in a distributed system like Grappa, the scheduler is built to 
support on the order of 1000 concurrent threads per core. We do 
this by storing and switching minimal context for threads, and 
by prefetching thread contexts into cache before switching to 
them, thereby enabling context switches to happen at a rate lim-
ited only by DRAM bandwidth, rather than cache miss latency.

Communication Support
Grappa’s communication layer has two components. The upper 
(user-level) layer is designed to support sending very small mes-
sages—tens of bytes—at a high rate, with low memory overhead. 
We use an asynchronous active message approach: the sender 
creates a message holding a C++11 lambda or other closure, and 
the receiver executes the closure. We take advantage of the fact 
that our homogeneous cluster hardware runs the same binary 
in every process: each message consists of a template-generated 
deserializer pointer, a byte-for-byte copy of the closure, and an 
optional dynamically sized data payload.

At the lower (network) level, Grappa moves these small messages 
over the network efficiently by transparently aggregating inde-
pendent messages destined for common network destinations. 
This process, shown in Figure 3, works as follows. When a com-
pute task sends a message, the data is not immediately placed on 
the network but instead is stored in a per-core buffer. A com-

munication task runs periodically; when it finds a large group 
of messages headed for the same node, or messages that have 
been waiting for a long time, it serializes them into a single, large 
network packet, which it sends to the destination node. When 
the remote node receives the packet, it distributes the messages 
to their destination cores, where messages are deserialized and 
their handlers are executed.

Grappa uses RDMA to move messages, but only indirectly. 
User-level messages are created using non-temporal memory 
operations and prefetches to avoid cache pollution. Aggregated 
messages are moved between nodes using MPI for portability, 
tuned to use RDMA when available. By amortizing network 
invocation costs across many messages, we are able to obtain 
significantly better performance than using native RDMA 
operations: on a simple random-access benchmark, Grappa’s 
DSM operations performed atomic increments 25 times faster 
than native RDMA increments on our 128-node AMD Interlagos 
cluster connected with 40 Gb Mellanox ConnectX-2 InfiniBand 
cards.

Addressing in Grappa’s Distributed Shared Memory
In Grappa, memory is partitioned across cores; each byte is 
considered local to a single core within a node in the system. 
Accesses to local memory occur through conventional pointers. 
Local pointers cannot refer to memory on other cores; they are 
valid only on their home core. Local accesses are used to refer-
ence many things in Grappa, including the stack associated with 
a task, scheduling and debugging data structures, and the slice of 
global memory local to a core.

Accesses to non-local memory occur through global pointers. 
Grappa allows any local data on a core’s stacks or heap to be 
exported to the global address space and made accessible to 
other cores across the system. This uses a partitioned global 
address space (PGAS) model, where each address is a tuple of a 
core ID and an address local to that core.
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Figure 2: Grappa’s distributed shared memory abstraction is designed 
to make it easy to implement data-intensive application frameworks. It 
uses lightweight threads to tolerate remote access latencies by exploiting 
fine-grained parallelism in the data, and it transparently aggregates small 
messages into larger ones to improve communication performance.

Figure 3: Grappa achieves high throughput for small messages by auto
matically batching messages with a common destination in order to move 
larger packets over the network, amortizing network invocation and 
delivery costs over multiple messages.
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Grappa also supports symmetric allocations, which reserves 
space for a copy of an object on every core in the system. The 
behavior is identical to performing a local allocation on all cores, 
but the local addresses of all the allocations are guaranteed to 
be identical. Symmetric objects are often treated as a proxy for 
a global object, holding local copies of constant data, or allowing 
operations to be transparently buffered. A separate publication 
[3] describes how this was used to implement Grappa’s synchro-
nized global data structures, including vector and hash map.

Figure 4 shows an example of how global, local, and symmetric 
memory can all be used together for a simple graph data struc-
ture. In this example, vertices are allocated from the global heap, 
automatically distributing them across nodes. Symmetric point-
ers are used to access local objects which hold information about 
the graph, such as the base pointer to the vertices, from any core 
without communication. Finally, each vertex holds a vector of 
edges allocated from their core’s local heap, which other cores 
can access by going through the vertex.

Accessing Memory with Delegate Operations
Access to Grappa’s distributed shared memory is provided 
through delegate operations, which are short operations per-
formed at a memory location’s home core. When the data access 
pattern has low locality, it is more efficient to modify the data on 
its home core rather than bringing a copy to the requesting core 
and returning a modified version. While delegates can trivially 
implement read/write operations to global memory, they can also 
implement more complex read-modify-write and synchroniza-
tion operations (e.g., fetch-and-add, mutex acquire, queue insert).

We have explored two approaches for expressing delegate opera-
tions. In the first, the programmer calls functions in Grappa’s 
API—a change from the traditional DSM model. Generally, these 
delegates are expressed as C++11 lambdas or other closures; Fig-
ure 5 shows an example. The second approach uses a compiler 
pass implemented with LLVM to automatically identify and 
extract productive delegate operations from ordinary code; this 
approach is explored in another publication [4]. In practice, we 
usually use the library-based approach, since exploiting avail-

able locality is important for getting maximum performance in a 
distributed system, and writing explicit delegate operations is an 
easy way to express that locality.

Delegates and Memory Consistency
Memory consistency and efficient synchronization are a result 
of delegation in Grappa.

All sharing, whether between cores within a node or between 
two nodes, as well as synchronization, is done via delegate opera-
tions. A delegate operation can execute arbitrary code subject to 
two restrictions: first, the code can reference only data local to 
the core on which the delegate is executing; and second, the code 
may not execute operations that lead to a context switch.

Since delegate operations execute on a particular core in some 
serial order and only touch data owned by that core, they are 
guaranteed to be globally linearizable, with their updates visible 
to all cores across the system in the same order. In addition, 
only one synchronous delegate will be in flight at a time from a 
particular task, so synchronization operations from a particular 
task are not subject to reordering. Moreover, once one core is able 
to see an update from a synchronous delegate, all other cores 
are too. Consequently, all synchronization operations execute in 
program order and are made visible in the same order to all cores 
in the system. These properties are sufficient to guarantee a 
memory model that offers sequential consistency for data-race-
free programs, which is what underpins C/C++.

The synchronous property of delegates provides a clean model 
but can be overly restrictive for operations that are protected by 
collective synchronization like a global barrier. For such cases, 
we also support asynchronous delegates, which, like delegate 
operations, execute non-blocking regions of code atomically on 
a single core’s memory. Asynchronous delegates are treated as 
task spawns in the memory model and are generally linked with 
a collective synchronization operation to detect completion.
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Figure 4: Using global addressing for graph layout

Global Heap

0 0 00 0 00 000 10

GlobalAddress<int> A = global_alloc<int>(N);

forall(0, N, [A](int i) {

  int j = random(i) % N;

  delegate( A + j, [](int& A_j){

    A_j += 1;

  });

});

[](int& A_j){

 A_j += 1;

}

move execution

notify completion

Node 0 Node 2Node 1

Figure 5: Grappa delegate example
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Measuring Performance with Prototype Applica-
tion Frameworks
We implemented three prototype application frameworks in 
Grappa. The first is an in-memory MapReduce implementation, 
which we compared with Spark [5] with fault tolerance disabled. 
The second is a distributed backend for the Raco relational alge-
bra compiler and optimization framework [6], which we com-
pared with Shark [7]. The third is a vertex-centric programming 
framework in the spirit of GraphLab [8], which we compare with 
native GraphLab.

The full performance results are reported in our USENIX ATC 
paper [2]; here we provide a brief summary. On the cluster men-
tioned previously, we found the Grappa MapReduce implemen-
tation to be 10 times faster than Spark on a k-means clustering 
benchmark. The Grappa query processing engine was 12.5 
times faster than Shark on the SP2Bench benchmark suite [9]. 
The Grappa vertex-centric framework was 1.33 times faster than 
GraphLab on graph analytics benchmarks from the GraphBench 
suite [10].

Conclusion
Our work builds on the premise that writing data-intensive 
applications and frameworks in a shared memory environment 
is simpler than developing custom infrastructure from scratch. 
Based on this premise, we show that a DSM system can be effi-
cient for this application space by judiciously exploiting the key 
application characteristics of concurrency and latency tolerance. 
Our work demonstrates that frameworks such as MapReduce, 
vertex-centric computation, and query execution can be easy to 
build and are efficient in a DSM system.
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