
10    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMSTrading Latency for Performance in
Data-Intensive Applications

J A C O B N E L S O N , B R A N D O N H O L T , B R A N D O N M Y E R S , P R E S T O N B R I G G S ,
S I M O N K A H A N , L U I S C E Z E , M A R K O S K I N

Jacob Nelson received a PhD in
computer science from the
University of Washington in
2014. His research interests
include computer architecture

and runtime systems for big data and
high-performance computing.
nelson@cs.washington.edu

Brandon Holt is a PhD student
in Computer Science and
Engineering at the University of
Washington, advised by Luis
Ceze and Mark Oskin. He is

interested in programming models, compilers,
and systems for clusters, especially
abstractions to mitigate real-world challenges
like high contention. bholt@cs.washington.edu

Brandon Myers is a PhD
candidate and Lecturer in
Computer Science and
Engineering at the University of
Washington, advised by Bill

Howe and Mark Oskin. He is interested in
building systems to enable fast and flexible
parallel programming, at the intersection of
high performance computing, data
management, and architecture.
bdmyers@cs.washington.edu

Preston Briggs is a Senior
Engineer at Reservoir Labs
and an Affiliate Professor in
Computer Science and
Engineering at the University of

Washington. He received a PhD in computer
science from Rice University in 1992.
preston@cs.washington.edu

The rising importance of data-intensive applications has fueled the
growth of a plethora of distributed computing frameworks, including
Hadoop, Spark, and GraphLab. We have developed a system called

Grappa [1, 2] to aid programmers in developing new frameworks. Grappa pro-
vides a distributed shared memory abstraction to hide complexity from the
programmer, and takes advantage of parallelism in the data to hide remote
access latency and to trade latency for more performance. These techniques
allow it to outperform existing frameworks by up to an order of magnitude.

Data-Intensive Applications on Distributed Shared Memory
Software distributed shared memory (DSM) systems provide shared memory abstractions
for clusters. Historically, these systems performed poorly, largely due to limited inter-node
bandwidth, high inter-node latency, and the design decision of piggybacking on the virtual
memory system for seamless global memory accesses. Past software DSM systems were
largely inspired by symmetric multiprocessors, attempting to scale that programming
mindset to a cluster. However, applications were only suitable for them if they exhibited sig-
nificant locality, limited sharing, and coarse-grained synchronization—a poor fit for many
modern data-intensive applications.

DSM offers the promise of simpler implementations of data-intensive application frame-
works. Figure 1 shows a minimal example of a “word count”-like application in actual Grappa
DSM code. The input array, chars, and output hash table, cells, are distributed over multiple
nodes. A parallel loop runs on all nodes to process shards of the input array, hashing each key
to its cell and incrementing the corresponding count atomically. The code looks similar to
plain shared-memory code, yet it spans multiple nodes and scales efficiently.

Applying the DSM concept to common data-intensive computing frameworks is similarly
straightforward:

MapReduce. Data parallel operations like Map and Reduce are simple to think of in terms
of shared memory. Map is simply a parallel loop over the input (an array or other distributed
data structure). It produces intermediate results into a hash table similar to that in Figure 1.
Reduce is a parallel loop over all the keys in the hash table.

Vertex-centric. GraphLab/PowerGraph is an example of a vertex-centric execution model,
designed for implementing machine-learning and graph-based applications. Its three-phase
gather-apply-scatter (GAS) API for vertex programs enables several optimizations pertinent
to natural graphs. Such graphs are difficult to partition well, so algorithms traversing them
exhibit poor locality. Each phase can be implemented as a parallel loop over vertices, but
fetching each vertex’s neighbors results in many fine-grained data requests.

Relational query execution. Decision support, often in the form of relational queries, is
an important domain of data-intensive workloads. All data is kept in hash tables stored in a
DSM. Communication comes from inserting into and looking up in hash tables. One parallel
loop builds a hash table, followed by a second parallel loop that filters and probes the hash

http://www.usenix.org
mailto:nelson@cs.washington.eduBrandon
mailto:bholt@cs.washington.eduBrandon
mailto:bdmyers@cs.washington.eduPreston
mailto:preston@cs.washington.edu

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  11

table, producing the results. These steps rely heavily on consistent, fine-grained updates to
hash tables.

While these frameworks are easy to express conceptually in a DSM system, obtaining good
performance can be challenging for a number of reasons:

Small messages. Programs written to a shared memory model tend to access small pieces
of data. On a DSM system this requires communication. What were simple load or store
operations become implicit, complex transactions involving the network. When these mes-
sages are small (~32 bytes), the network (optimized for multi-kilobyte packets) struggles to
achieve a fraction of its peak throughput.

Poor locality. Data-intensive applications often exhibit poor locality. For example, the vol-
ume of communication in GraphLab’s gather and scatter operations is a function of the graph
partition. Complex graphs frustrate even the most advanced partitioning schemes. This
leads to poor spatial locality. Moreover, which vertices are accessed varies from iteration to
iteration. This leads to poor temporal locality.

Need for fine-grained synchronization. Typical data-parallel applications offer coarse-
grained concurrency with infrequent synchronization—e.g., between phases of processing
a large chunk of data. Conversely, graph-parallel applications exhibit fine-grained concur-
rency with frequent synchronization—e.g., when done processing work associated with a
single vertex. Therefore, for a DSM solution to be general, it needs to support fine-grained
synchronization efficiently.

Fortunately, data-intensive applications have properties that can be exploited to make DSMs
efficient: their abundant data parallelism enables high degrees of concurrency; and their
performance depends not on the latency of execution of any specific parallel task, as it
would in, for example, a Web server, but rather on the aggregate execution time (i.e., through-
put) of all tasks.

Grappa Design
Figure 2 shows an overview of Grappa’s DSM system. We will first describe the multithread-
ing and communication layers and then explore the distributed shared memory layer, which
is built on top of these lower-level components. Our recent USENIX ATC paper [2] describes
these in more detail.

Expressing and Exploiting Parallelism
Work is most commonly expressed in Grappa using parallel for loops. Tasks may also be
spawned individually, with optional data locality constraints. Under the hood, both methods

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Luis Ceze is an Associate
Professor of Computer Science
and Engineering at the
University of Washington. His
research focuses on improving

programmability, reliability, and energy
efficiency of multiprocessor and multicore
systems. luisceze@cs.washington.edu

Simon Kahan is an Affiliate
Professor of Computer Science
and Engineering at the
University of Washington. His
current research focuses on

accelerating large-scale biological simulation
and numerical linear algebra.
skahan@cs.washington.edu

Mark Oskin is an Associate
Professor of Computer Science
and Engineering at the
University of Washington.
oskin@cs.washington.edu

Global Heap

Local heap

"a" 7

"g" 2

Cell[2] Cell[5]Cell[3] Cell[4]Cell[1]Cell[0]

Node 0 Node 1 Node 2 ...

...
"h""g""d""c""x""c""o" "b""q" "p""i""a"

"b" 1

"o" 1

"i" 5

"c" 3

"e" 1 "f" 2

"l" 1

// distributed input array

GlobalAddress<char> chars = load_input();

// distributed hash table:

using Cell = std::map<char,int>;

GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {

 // hash the char to determine destination

 size_t idx = hash(c) % ncells;

 delegate(&cells[idx], [=](Cell& cell)

 { // runs atomically

 if (cell.count(c) == 0) cell[c] = 1;

 else cell[c] += 1;

 });

});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using Grappa’s distributed shared memory

http://www.usenix.org
mailto:luisceze@cs.washington.edu
mailto:skahan@cs.washington.edu
mailto:oskin@cs.washington.edu

12    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

work by pushing closures into a global task pool. These closures
are generally expressed using C++11 lambda constructs to pro-
vide both code to execute and initial state. Tasks are executed
by idle threads on cores across the system, which pull from the
global task queue subject to the tasks’ locality constraints. When
a task executes a long-latency operation, it is suspended until the
operation is complete; the core it is running on is kept busy with
other, independent, work.

Grappa is built around a user level, cooperative multithreading
system. Due to the large inter-node latencies that must be toler-
ated in a distributed system like Grappa, the scheduler is built to
support on the order of 1000 concurrent threads per core. We do
this by storing and switching minimal context for threads, and
by prefetching thread contexts into cache before switching to
them, thereby enabling context switches to happen at a rate lim-
ited only by DRAM bandwidth, rather than cache miss latency.

Communication Support
Grappa’s communication layer has two components. The upper
(user-level) layer is designed to support sending very small mes-
sages—tens of bytes—at a high rate, with low memory overhead.
We use an asynchronous active message approach: the sender
creates a message holding a C++11 lambda or other closure, and
the receiver executes the closure. We take advantage of the fact
that our homogeneous cluster hardware runs the same binary
in every process: each message consists of a template-generated
deserializer pointer, a byte-for-byte copy of the closure, and an
optional dynamically sized data payload.

At the lower (network) level, Grappa moves these small messages
over the network efficiently by transparently aggregating inde-
pendent messages destined for common network destinations.
This process, shown in Figure 3, works as follows. When a com-
pute task sends a message, the data is not immediately placed on
the network but instead is stored in a per-core buffer. A com-

munication task runs periodically; when it finds a large group
of messages headed for the same node, or messages that have
been waiting for a long time, it serializes them into a single, large
network packet, which it sends to the destination node. When
the remote node receives the packet, it distributes the messages
to their destination cores, where messages are deserialized and
their handlers are executed.

Grappa uses RDMA to move messages, but only indirectly.
User-level messages are created using non-temporal memory
operations and prefetches to avoid cache pollution. Aggregated
messages are moved between nodes using MPI for portability,
tuned to use RDMA when available. By amortizing network
invocation costs across many messages, we are able to obtain
significantly better performance than using native RDMA
operations: on a simple random-access benchmark, Grappa’s
DSM operations performed atomic increments 25 times faster
than native RDMA increments on our 128-node AMD Interlagos
cluster connected with 40 Gb Mellanox ConnectX-2 InfiniBand
cards.

Addressing in Grappa’s Distributed Shared Memory
In Grappa, memory is partitioned across cores; each byte is
considered local to a single core within a node in the system.
Accesses to local memory occur through conventional pointers.
Local pointers cannot refer to memory on other cores; they are
valid only on their home core. Local accesses are used to refer-
ence many things in Grappa, including the stack associated with
a task, scheduling and debugging data structures, and the slice of
global memory local to a core.

Accesses to non-local memory occur through global pointers.
Grappa allows any local data on a core’s stacks or heap to be
exported to the global address space and made accessible to
other cores across the system. This uses a partitioned global
address space (PGAS) model, where each address is a tuple of a
core ID and an address local to that core.

Memory

Cores

Infiniband network, user level access

...

Memory

Cores

Memory

Cores

Memory

Cores

Message aggregation layer

Distributed
Shared
Memory

Lightweight
Multihreading w/
Global Task Pool

Communication
Layer

MapReduce GraphLab
Relational

Query
Engine

Irregular
apps, native
code, etc...

Core 0

Messages lists
aggregated

locally per core

Sending core
serializes
into buffer

Buffer moved
over network

via MPI/RDMA

Receiving core
distributes
messages

to dest. cores

Messages
deserialized;
handlers run

on home cores

Core 1

Core 0

Core 1

Node 0 Node n

Figure 2: Grappa’s distributed shared memory abstraction is designed
to make it easy to implement data-intensive application frameworks. It
uses lightweight threads to tolerate remote access latencies by exploiting
fine-grained parallelism in the data, and it transparently aggregates small
messages into larger ones to improve communication performance.

Figure 3: Grappa achieves high throughput for small messages by auto
matically batching messages with a common destination in order to move
larger packets over the network, amortizing network invocation and
delivery costs over multiple messages.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  13

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Grappa also supports symmetric allocations, which reserves
space for a copy of an object on every core in the system. The
behavior is identical to performing a local allocation on all cores,
but the local addresses of all the allocations are guaranteed to
be identical. Symmetric objects are often treated as a proxy for
a global object, holding local copies of constant data, or allowing
operations to be transparently buffered. A separate publication
[3] describes how this was used to implement Grappa’s synchro-
nized global data structures, including vector and hash map.

Figure 4 shows an example of how global, local, and symmetric
memory can all be used together for a simple graph data struc-
ture. In this example, vertices are allocated from the global heap,
automatically distributing them across nodes. Symmetric point-
ers are used to access local objects which hold information about
the graph, such as the base pointer to the vertices, from any core
without communication. Finally, each vertex holds a vector of
edges allocated from their core’s local heap, which other cores
can access by going through the vertex.

Accessing Memory with Delegate Operations
Access to Grappa’s distributed shared memory is provided
through delegate operations, which are short operations per-
formed at a memory location’s home core. When the data access
pattern has low locality, it is more efficient to modify the data on
its home core rather than bringing a copy to the requesting core
and returning a modified version. While delegates can trivially
implement read/write operations to global memory, they can also
implement more complex read-modify-write and synchroniza-
tion operations (e.g., fetch-and-add, mutex acquire, queue insert).

We have explored two approaches for expressing delegate opera-
tions. In the first, the programmer calls functions in Grappa’s
API—a change from the traditional DSM model. Generally, these
delegates are expressed as C++11 lambdas or other closures; Fig-
ure 5 shows an example. The second approach uses a compiler
pass implemented with LLVM to automatically identify and
extract productive delegate operations from ordinary code; this
approach is explored in another publication [4]. In practice, we
usually use the library-based approach, since exploiting avail-

able locality is important for getting maximum performance in a
distributed system, and writing explicit delegate operations is an
easy way to express that locality.

Delegates and Memory Consistency
Memory consistency and efficient synchronization are a result
of delegation in Grappa.

All sharing, whether between cores within a node or between
two nodes, as well as synchronization, is done via delegate opera-
tions. A delegate operation can execute arbitrary code subject to
two restrictions: first, the code can reference only data local to
the core on which the delegate is executing; and second, the code
may not execute operations that lead to a context switch.

Since delegate operations execute on a particular core in some
serial order and only touch data owned by that core, they are
guaranteed to be globally linearizable, with their updates visible
to all cores across the system in the same order. In addition,
only one synchronous delegate will be in flight at a time from a
particular task, so synchronization operations from a particular
task are not subject to reordering. Moreover, once one core is able
to see an update from a synchronous delegate, all other cores
are too. Consequently, all synchronization operations execute in
program order and are made visible in the same order to all cores
in the system. These properties are sufficient to guarantee a
memory model that offers sequential consistency for data-race-
free programs, which is what underpins C/C++.

The synchronous property of delegates provides a clean model
but can be overly restrictive for operations that are protected by
collective synchronization like a global barrier. For such cases,
we also support asynchronous delegates, which, like delegate
operations, execute non-blocking regions of code atomically on
a single core’s memory. Asynchronous delegates are treated as
task spawns in the memory model and are generally linked with
a collective synchronization operation to detect completion.

Symmetric Heap

Global Heap

Local heaps

Graph

5

1

4

0

7

7

5

0

4

Vertex 2 Vertex 5Vertex 3 Vertex 4Vertex 1Vertex 0

1

2

0

3

6

7

2

Graph Graph
SymmetricAddress<Graph> g

GlobalAddress<Vertex> verts

vector<Edge> out_edges

data data data data data data

Node 0 Node 1 Node 2 ...

...

Figure 4: Using global addressing for graph layout

Global Heap

0 0 00 0 00 000 10

GlobalAddress<int> A = global_alloc<int>(N);

forall(0, N, [A](int i) {

 int j = random(i) % N;

 delegate(A + j, [](int& A_j){

 A_j += 1;

 });

});

[](int& A_j){

 A_j += 1;

}

move execution

notify completion

Node 0 Node 2Node 1

Figure 5: Grappa delegate example

http://www.usenix.org

14    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
Trading Latency for Performance in Data-Intensive Applications

Measuring Performance with Prototype Applica-
tion Frameworks
We implemented three prototype application frameworks in
Grappa. The first is an in-memory MapReduce implementation,
which we compared with Spark [5] with fault tolerance disabled.
The second is a distributed backend for the Raco relational alge-
bra compiler and optimization framework [6], which we com-
pared with Shark [7]. The third is a vertex-centric programming
framework in the spirit of GraphLab [8], which we compare with
native GraphLab.

The full performance results are reported in our USENIX ATC
paper [2]; here we provide a brief summary. On the cluster men-
tioned previously, we found the Grappa MapReduce implemen-
tation to be 10 times faster than Spark on a k-means clustering
benchmark. The Grappa query processing engine was 12.5
times faster than Shark on the SP2Bench benchmark suite [9].
The Grappa vertex-centric framework was 1.33 times faster than
GraphLab on graph analytics benchmarks from the GraphBench
suite [10].

Conclusion
Our work builds on the premise that writing data-intensive
applications and frameworks in a shared memory environment
is simpler than developing custom infrastructure from scratch.
Based on this premise, we show that a DSM system can be effi-
cient for this application space by judiciously exploiting the key
application characteristics of concurrency and latency tolerance.
Our work demonstrates that frameworks such as MapReduce,
vertex-centric computation, and query execution can be easy to
build and are efficient in a DSM system.

Acknowledgments
This work was supported by NSF Grant CCF-1335466, Pacific
Northwest National Laboratory and gifts from NetApp and
Oracle.

References
[1] Grappa Web site and source code: http://grappa.io/.

[2] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin, “Latency-
Tolerant Software Distributed Shared Memory,” in Pro-
ceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC ’15), Santa Clara, CA.

[3] Brandon Holt, Jacob Nelson, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin, “Flat
Combining Synchronized Global Data Structures,” Interna-
tional Conference on PGAS Programming Models (PGAS),
October 2013.

[4] Brandon Holt, Preston Briggs, Luis Ceze, and Mark Oskin,
“Alembic: Automatic Locality Extraction via Migration,” in
Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages and Appli-
cations (OOPSLA ’14), 2014.

[5] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,
Scott Shenker, and Ion Stoica, “Spark: Cluster Computing
with Working Sets,” in Proceedings of the 2nd USENIX Confer-
ence on Hot Topics in Cloud Computing (HotCloud ’10), 2010.

[6] Raco: The relational algebra compiler: https://github.com
/uwescience/datalogcompiler, April 2014.

[7] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J.
Franklin, Scott Shenker, and Ion Stoica, “Shark: SQL and
Rich Analytics at Scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’13), 2013.

[8] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin, “PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs,” in Proceed-
ings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’12), 2012.

[9] Michael Schmidt, Thomas Hornung, Georg Lausen, and
Christoph Pinkel, “SP2Bench: A SPARQL Performance
Benchmark,” Computing Research Repository, abs/0806.4627,
2008.

[10] GraphBench: http://graphbench.org/, 2014.

http://www.usenix.org
http://grappa.io/
https://github.com/uwescience/datalogcompiler
http://graphbench.org/
https://github.com/uwescience/datalogcompiler

