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Thread and Memory Placement on NUMA Systems
Asymmetry Matters 

B A P T I S T E  L E P E R S ,  V I V I E N  Q U É M A ,  A N D  A L E X A N D R A  F E D O R O V A

Industry uses NUMA multicore machines for its servers. On NUMA 
machines, the conventional wisdom is to place threads close to the 
memory they access, and to collocate the threads that share data on the 

same CPU nodes. However, this is often not optimal. Indeed, modern NUMA 
machines have asymmetric interconnect links between CPU nodes, which 
can strongly affect performance, with best placement outperforming worst 
placement on nodes by a factor of almost two. We present the AsymSched 
algorithm, which uses CPU performance counters to measure performance 
and dynamically migrate threads and memory to achieve the best placement.

Modern Computers Are Asymmetric
Modern multicore machines are structured as several CPU/memory nodes connected via an 
interconnect. These architectures are usually characterized by non-uniform memory access 
times (NUMA), meaning that the latency of data access depends on where (which CPU-
cache or memory node) the data is located. For this reason, the placement of threads and 
memory plays a crucial role in performance. To that end, both researchers and practitioners 
designed a variety of NUMA-aware thread and memory placement algorithms [8, 7, 5, 13, 14, 
4]. Their insight is to place threads close to their memory, to spread the memory pages across 
the system to avoid the overload on memory controllers and interconnect links, to collocate 
data-sharing threads on the same node while avoiding memory controller contention, and 
to segregate threads competing for cache and memory bandwidth on different nodes. These 
algorithms assume that the interconnect between nodes is symmetric: given any pair of 
nodes connected via a direct link, the links have the same bandwidth and the same latency. 
On modern NUMA systems this is not the case. 

Figure 1 depicts an AMD Bulldozer NUMA machine with eight nodes, each hosting eight 
cores. Interconnect links exhibit many disparities: 

1.	 Links have different bandwidths: some have 16-bit width, some have 8-bit width. 

2.	 Some links can send data faster in one direction than in the other (i.e., one side sends data at 
3/4 the speed of a 16-bit link, while the other side can only send data at the speed of an 8-bit 
link). We call these links 16/8-bit links.

3.	 Links are shared differently. For instance, the link between nodes 4 and 3 is only used by 
these two nodes, while the link between nodes 2 and 3 is shared by nodes 0, 1, 2, 3, 6, and 7.

4.	 Some links are unidirectional. For instance, node 7 sends requests directly to node 3, but 
node 3 routes its answers via node 2. This creates an asymmetry in read/write bandwidth: 
node 7 can write at 4 GB/s to node 3, but can only read at 2 GB/s.
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Impact of Asymmetry on Performance
The asymmetry of interconnect links has dramatic and at times 
surprising effects on performance. Figure 2 shows the per-
formance of 20 different applications on the 64-core machine 
shown in Figure 1. Each application runs with 24 threads, so 
it needs three nodes to run on. We vary which three nodes are 
assigned to the application and hence the connectivity between 
the nodes. The relative placement of threads and memory on 
those nodes is identical in all configurations. The only differ-
ence is how the chosen nodes are connected. The figure shows the 
performance on the best-performing and the worst-performing 
subset of nodes for that application compared to the average 
(obtained by measuring the performance on all 336 unique 
subsets of nodes and computing the mean). We make several 

observations. First, the performance on the best subset is up to 
88% faster than the average, and the performance on the worst 
subset is up to 44% slower. Second, the maximum performance 
difference between the best and the worst subsets is 237% (for 
FaceRec). Finally, the mean difference between the best and 
worst subsets is 40% and the median 14%.

We measured that the memory accesses performed by FaceRec 
are approximately 600 cycles faster when running on the best 
subset of nodes relative to the average, and 1400 cycles faster 
relative to the worst. The latency differences are tightly corre-
lated with the performance difference between configurations. 

To further understand the cause of very high latencies on “bad” 
configurations, we analyzed streamcluster, an application from 

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies; some paths are unidirectional (e.g., between 7 and 3), and links may be 
shared by multiple nodes. Machine A has 64 cores (8 cores per node—not represented in the picture), and machine B has 48 cores (6 cores per node). Not 
shown in the picture: the links between nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from 
node 7 to 2 and node 1 to 4.

Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread placement on Machine A. Applica-
tions run with 24 threads on three nodes. Graph500, SPECjbb, streamcluster, PCA, and FaceRec are highly affected by the choice of nodes and are shown 
separately with a different y-axis range. 
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the PARSEC [11] benchmark suite, which is among the most 
affected by the placement of its threads and memory. We ran 
streamcluster with 16 threads on two nodes. Table 1 presents 
the salient metrics for each possible two-node subset. Depend-
ing on which two nodes we chose, we observe large (up to 133%) 
disparities in performance. The data in Table 1 leads to several 
crucial observations:

◆◆ Performance is correlated with the latency of memory ac-
cesses.

◆◆ Surprisingly, the latency of memory accesses is not correlated 
with the number of hops between the nodes: some two-hop 
configurations (shown in bold) are faster than one-hop 
configurations.

◆◆ The latency of memory accesses is actually correlated with 
the bandwidth between the nodes. Note that this makes sense: 
the difference between one-hop vs. two-hop latency is only 80 
cycles when the interconnect is nearly idle. So a higher number 
of hops alone cannot explain the latency differences of thou-
sands of cycles.

As a summary, we can say that bandwidth between the nodes 
matters more than the distance between them.

Computers Are Increasingly Asymmetric
Asymmetric interconnect is not a new phenomenon. Neverthe-
less, its effects on performance are increasing as machines are 
built with more nodes and cores. We measured the performance 
of streamcluster on four different asymmetric machines: two 
recent machines with 64 and 48 cores, respectively, and eight 
nodes (Machines A and B, Figure 1), and two older machines 
with 24 and 16 cores, respectively, and four nodes (Machines C 
and D, not depicted). All of these machines use AMD Opteron 

processors. Machines A and B have highly asymmetric inter-
connect. Machines C and D have a less pronounced asymmetry. 
Machine C has full connectivity, but two of the links are slower 
than the rest. Machine D has links with equal bandwidth, but 
two nodes do not have a link between them. 

Table 2 shows the performance of streamcluster with 16 threads 
on the best-performing and the worst-performing set of nodes 
on each machine. The performance difference between the best 
and worst configurations increases with the number of cores in 
the machine: from 3% for the 16-core machine to 133% for the 
64-core machine. We explain this as follows: 

1.	 On the 16-core Machine D, the only difference between con-
figurations is the longer wire delay between the nodes that 
are not connected via a direct link. This delay is not signifi-
cant compared to the extra latency induced by bandwidth 
contention on the interconnect. 

2.	 The CPUs on 24-core Machine C have a low frequency com-
pared to the other machines. As a result, the impact of longer 
memory latency is not as pronounced. More importantly, the 
network on this machine is still a fully connected mesh, so 
there is less asymmetry than on Machines A and B. 

3.	 The 48- and 64-core Machines B and A offer a wider range 
of bandwidth configurations, which increases the difference 
between the best and the worst placements. The 64-core 
machine is more affected than the 48-core machine because 
it has more cores per node, which increases the effects of 
bandwidth contention. 

Intel machines are currently built using symmetric intercon-
nect links, but we believe that, as the number of nodes in systems 
increases, this will no longer remain true in the future.

Table 1: Performance of streamcluster executing with 16 threads on two nodes on machine A. The performance depends on the connectivity between the 
nodes on which streamcluster is executing and on the node on which the master thread is executing. Numbers in bold indicate two-hop configurations that 
are as fast or faster than some one-hop configurations.
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Machine Best Time Worst Time Difference

A (64 cores) 148s 340s 133%

B (48 cores) 149s 277s  85%

C (24 cores) 171s 229s  33%

D (16 cores) 255s 262s  3%

Table 2: Performance of streamcluster executing on two nodes on ma-
chine A, B, C, and D. The performance of streamcluster depends on the 
placement of its threads. The impact of thread placement is more impor-
tant on recent machines (A and B) than on older ones (C and D).

Handling Asymmetry: The Challenges
To take into account interconnect asymmetry, the operating 
system should choose a “good” subset of nodes for each applica-
tion. More precisely, the operating system should try, for each 
application, to place threads and memory pages on a well-
connected subset of nodes. When an application executes on 
only two nodes on a machine similar to the one used in Table 1, 
the placement on the nodes connected with the widest (16-bit) 
link is always the best because it maximizes the bandwidth and 
minimizes the latency between the nodes. However, when an 
application needs more than two nodes to run, no configura-
tion exists with 16-bit links between every pair of nodes, so the 
operating system must decide which nodes to pick. Besides, 
when there is more than one application running, the operating 
system needs to decide how to allocate the nodes among multiple 
applications. Designing such a thread and memory placement 
algorithm raises several challenges that we list below.

Nodes % Perf. Relative to Best Subset

Streamcluster SPECjbb

0, 1, 3, 4, and 7 -64% 0% (best)

2, 3, 4, 5, and 6 0% (best) -9.4%

Table 3: Performance of streamcluster and SPECjbb on two different set 
of nodes on machine A, relative to the best set of nodes for the respective 
application 

Efficient online measurement of communication patterns 
is challenging: The algorithm must measure the volume of 
CPU-to-CPU and CPU-to-memory communication for different 
threads in order to determine the best placement. This measure-
ment process must be very efficient, because it must be done 
continuously in order to adapt to phase changes. 

Changing the placement of threads and memory may incur 
high overhead: Frequent migration of threads may be costly, 
because of the associated CPU overhead, but most importantly 
because cache affinity is not preserved. Moreover, when threads 
are migrated to “better” nodes, it might be necessary to migrate 
their memory in order to avoid the overhead of remote accesses 

and overloaded memory controllers. Migrating large amounts of 
memory can be extremely costly. Thus, thread migration must be 
done in a way that minimizes memory migration. 

Accommodating multiple applications simultaneously 
is challenging: Applications have different communication 
patterns and are thus differently impacted by the connectivity 
between the nodes they run on. As an illustration, Table 3 pres-
ents the performance of streamcluster and SPECjbb executing 
on two different sets of five nodes (the best set of nodes for the 
two applications, respectively). The two applications behave dif-
ferently on these two sets of nodes: streamcluster is 64% slower 
on the best set of nodes for SPECjbb than on its own best set. 
The algorithm must, therefore, determine the best set of nodes 
for every application. Furthermore, it cannot always place each 
application on its best set of nodes, because applications may 
have conflicting preferences. 

Selecting the best placement is combinatorially difficult: 
The number of possible application placements on an eight-node 
machine is very large (e.g., 5040 possible configurations for four 
applications executing on two nodes). So, (1) it is not possible 
to try all configurations online by migrating threads and then 
choosing the best configurations, and (2) doing even the simplest 
computation involving “all possible placements” can still add a 
significant overhead to a placement algorithm.

The AsymSched Algorithm
We designed AsymSched [9], a thread and memory placement 
algorithm that takes into account the bandwidth asymmetry of 
asymmetric NUMA systems. AsymSched’s goal is to maximize the 
bandwidth for CPU-to-CPU communication, which occurs between 
threads that exchange data, and CPU-to-memory communication, 
which occurs between a CPU and a memory node upon a cache 
miss. To that end, AsymSched places threads that perform exten-
sive communication on relatively well-connected nodes, and places 
the frequently accessed memory pages such that the data requests 
are either local or travel across high-bandwidth paths. 

AsymSched is implemented as a user-level process and interacts 
with the kernel and the hardware using system calls and /proc 
file system, but could also be easily integrated with the kernel 
scheduler if needed. 

AsymSched relies on three main techniques to manage threads 
and memory:

1.	 Thread migration: changing the node where a thread is 
running 

2.	 Full memory migration: migrating all pages of an applica-
tion from one node to another 

3.	 Dynamic memory migration: migrating only the pages that 
an application actively accesses as done in [7]
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The operating principle of AsymSched is the following: Asym-
Sched continuously gathers hardware counter values on the 
number of memory requests. Every second, AsymSched takes a 
thread placement decision. Roughly speaking, it groups threads 
of the same application that share data in virtual weighted clus-
ters. The weight of a cluster represents the intensity of memory 
accesses performed between threads belonging to the cluster. 
Then AsymSched computes possible placements for all the 
clusters. A placement is an array mapping clusters to nodes. For 
each placement, AsymSched computes the maximum bandwidth 
that each cluster would receive if it were put in this placement. 
AsymSched selects the placement, ensuring that clusters with 
the highest weights will be scheduled on the nodes with the best 
connectivity. Finally, AsymSched estimates the overhead of 
memory migration induced by the new placement. If the over-
head is deemed too high, the new placement will not be applied. 
Otherwise, AsymSched performs thread and memory migration 
to apply the new placement. 

AsymSched implements two main optimizations. The first opti-
mization allows fast memory migrations. When AsymSched 
performs full memory migration, all the pages located on one 
node are migrated to another node. The applications we tested 
have large working sets (up to 15 GB per node), and migrat-
ing pages is costly. Migrating 10 GB of data using the standard 
migrate_pages system call takes 51 seconds on average, making 
the migration of large applications impractical. 

We therefore designed a new system call for memory migration. 
This system call performs memory migration without locks in 
most cases, and exploits the parallelism available on multicore 
machines. Using our system call, migrating memory between 
two nodes is on average 17x faster than using the default Linux 
system call and is only limited by the bandwidth available on 
interconnect links. Unlike the Linux system call, our system call 
can migrate memory from multiple nodes simultaneously. So if 
we are migrating the memory simultaneously between two pairs 
of nodes that do not use the same interconnect path, our system 
call will run about 34x faster.

The second optimization avoids evaluating all possible place-
ments. It is based on two observations: 

1. 	 A lot of thread placement configurations are “obviously” bad. 
For instance, when a communication-intensive application 
uses two nodes, we only consider configurations with nodes 
connected with a 16-bit link. 

2.	 Several configurations are equivalent (e.g., in the machine 
depicted in Figure 1, the bandwidth between nodes 0 and 1 
and between nodes 2 and 3 is the same). To avoid estimating 
the bandwidth of all placements, we create a hash for each 
placement. The hash is computed so that equivalent configu-
rations have the same hash. 

Using simple dynamic programming techniques, we only 
perform computations on non-equivalent configurations. Our 
optimization allows skipping between 67% and 99% of computa-
tions in all tested configurations with clusters of two, three, or 
five nodes (e.g., with four clusters of two nodes, we only evaluate 
20 configurations out of 5040).

AsymSched Assessment
We evaluated the performance achieved when using AsymSched 
on Machine A. The latter is equipped with four AMD Opteron 
6272 processors, each with two NUMA nodes and eight cores 
per node (64 cores in total). The machine has 256 GB of RAM, 
uses HyperTransport 3.0, and runs Linux 3.9. We used several 
benchmark suites: the NAS Parallel Benchmarks suite [3], which 
is composed of numeric kernels; MapReduce benchmarks from 
Metis [10]; parallel applications from PARSEC [11]; Graph500 
[1], a graph processing application with a problem size of 21; 
FaceRec from the ALPBench benchmark suite [6]; and SPECjbb 
[2] running on OpenJDK7. 

Our goal was to evaluate the impact of asymmetry-aware 
thread placement in isolation from other effects, such as those 
stemming purely from collocating threads that share data on 
the same node. Performance benefits of sharing-aware thread 
clustering are well known [13]. AsymSched clusters threads 
that share data; the Linux thread scheduler, however, does not. 
We experimentally observed that Linux performed worse than 
clustered configurations. For instance, when Graph500 and 
SPECjbb are scheduled simultaneously, both run 23% slower on 
Linux than on an average clustered placement.

Since comparing Linux to AsymSched would not be meaning-
ful because of that, we instead compare AsymSched to the best 
and the worst static placements of data-sharing thread clusters. 
When running AsymSched, thread clusters are initially placed 
on a randomly chosen set of nodes. We also compare the aver-
age performance achieved under all static placements that are 
unique in terms of connectivity. We obtain all unique static place-
ments with respect to connectivity by examining the topology 
of the machine. There are 336 placements for single-application 
scenarios and 560 placements for multi-application scenarios.

Further, we want to isolate the effects of thread placement with 
AsymSched from the effects of dynamic memory migration. To 
that end, we compare AsymSched to the subset of our algorithm 
that performs the dynamic placement of memory only, turning 
off the parts performing thread placement. 

The results are presented in Figure 3. AsymSched always per-
forms close to the best static thread placement. In a few cases 
where it does not, the difference is not statistically significant. 
For applications that produce the highest degree of contention 
on the interconnect links (streamcluster, PCA, and FaceRec), 

http://www.usenix.org


20    O C TO B ER 20 1 5   VO L .  4 0,  N O.  5 	 www.usenix.org

SYSTEMS
Thread and Memory Placement on NUMA Systems: Asymmetry Matters

AsymSched achieves much better performance than the best 
thread placement, because the dynamic memory migration com-
ponent balances memory accesses across nodes, thus reducing 
contention on interconnect links and memory controllers. 

We also observe that dynamic memory migration without the 
migration of threads is not sufficient to achieve the best perfor-
mance. More precisely, dynamic memory migration alone often 
achieves performance close to average. Moreover, it produces a 
high standard deviation for many benchmarks: the minimum 
and maximum performance often being the same as that of 
the best and worst static thread placement. For instance, on 
SPECjbb, the difference between the minimum and maximum 
performance with dynamic memory migration alone is 91%.

In contrast, AsymSched produces a very low standard deviation 
for most benchmarks. Two exceptions are is.D and SPECjbb. 
This is because in both cases, AsymSched migrates a large 
amount of memory. Both applications become memory intensive 
after an initialization phase, and AsymSched starts migrating 
memory only after the entire working set has been allocated. For 
instance, in the case of is.D, AsymSched migrates between 0 GB 
and 20 GB, depending on the initial placement of threads. 

Conclusion
Asymmetry of the interconnect in modern NUMA systems dras-
tically impacts performance. We found that the performance 
is more affected by the bandwidth between nodes than by the 
distance between them. We developed AsymSched, a new thread 
and memory placement algorithm that maximizes the band-
width for communicating threads.

As the number of nodes in NUMA machines increases, the 
interconnect is less likely to remain symmetric. We believe that 
the clustering and placement techniques used in AsymSched 
will scale and be well adapted to these machines. Indeed, with 
very simple heuristics we were able to avoid computing up to 
99% of the possible thread placements. Such optimizations will 
still likely be possible on future machines, as machines are usu-
ally made of multiple identical cores/sockets (e.g., our 64-core 
machine has four identical sockets). On machines that offer a 
wider diversity of thread placements, a possibility will be to use 
statistical approaches, such as that of Radojković et al. [12] to 
find good thread placements with a bounded overhead.

Figure 3: Performance difference between the best and worst static thread placement, dynamic memory placement, and AsymSched relative to the average 
thread placement on Machine A. Applications run with 24 threads on three nodes. 
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