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A B"-tree is an example of a write-optimized data structure and can be used to organize 
on-disk storage for an application, such as a database or file system. A B"-tree provides a key-
value API, similar to a B-tree, but with better performance, particularly for inserts, range 
queries, and key-value updates. This article describes the B"-tree, compares its asymptotic 
performance to B-trees and Log-Structured Merge trees (LSM-trees), and presents real-
world performance measurements. After finishing this article, a reader should have a basic 
understanding of how a B"-tree works, its performance characteristics, how it compares to 
other key-value stores, and how to design applications to gain the most performance from a 
B"-tree.

B"-trees
B"-trees were proposed by Brodal and Fagerberg [1] as a way to demonstrate an asymptotic 
performance tradeoff curve between B-trees [2] and buffered repository trees [3]. Both data 
structures support the same operations, but a B-tree favors queries, whereas a buffered 
repository tree favors inserts.

Researchers, including the authors of this article, have recognized the practical utility of a 
B"-tree when configured to occupy the “middle ground” of this curve—realizing query per-
formance comparable to a B-tree but insert performance orders of magnitude faster than a 
B-tree. The B"-tree has since been used by both the high-performance, commercial TokuDB 
database [4] and the BetrFS research file system [5]. For the interested reader, we have cre-
ated a simple, reference implementation of a B"-tree, available at https://github.com/oscarlab 
/Be-Tree.

We first explain how the basic operations on a B"-tree work. We then give the motivation 
behind these design choices and illustrate how these choices affect the asymptotic analysis.

API and basic structure. A B"-tree is a B-tree-like search tree for organizing on-disk data, 
as illustrated in Figure 1. Both B-trees and B"-trees export a key-value store API:

◆◆ insert(k, v)

◆◆ delete(k)

◆◆ v = query(k)

◆◆ [v1, v2,…] = range-query(k1, k2)

Like a B-tree, the node size in a B"-tree is chosen to be a multiple of the underlying storage 
device’s block size. Typical B"-tree node sizes range from a few hundred kilobytes to a few 
megabytes. In both B-trees and B"-trees, internal nodes store pivot keys and child pointers, 
and leaves store key-value pairs, sorted by key. For simplicity, one can think of each key-value 
or pivot-pointer pair as being unit size; both B-trees and B"-trees can store keys and values  
of different sizes in practice. Thus, a leaf of size B holds B key-value pairs, which we call 
items below.

The distinguishing feature of a B"-tree is that internal nodes also allocate some space 
for a buffer, as shown in Figure 1. The buffer in each internal node is used to store messages, 
which encode updates that will eventually be applied to items in leaves under this node. This 
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buffer is not an in-memory data structure; it is part of the node and is written to disk, evicted 
from memory, etc., whenever the node is. The value of ", which must be between 0 and 1, is a 
tuning parameter that selects how much space internal nodes use for pivots ( ≈ B" ) and how 
much space is used as a buffer ( ≈ B − B" ).

Inserts and deletes. Insertions are encoded as “insert messages,” addressed to a particular 
key and added to the buffer of the root node of the tree. When enough messages have been 
added to a node to fill the node’s buffer, a batch of messages are flushed to one of the node’s 
children. Generally, the child with the most pending messages is selected. Over the course of 
flushing, each message is ultimately delivered to the appropriate leaf node, and the new key 
and value are added to the leaf. When a leaf node becomes too full, it splits, just as in a B-tree. 
Similar to a B-tree, when an interior node gets too many children, it splits and the messages 
in its buffer are distributed between the two new nodes.

Moving messages down the tree in batches is the key to the B"-tree’s insert performance. 
By storing newly inserted messages in a buffer near the root, a B"-tree can avoid seeking all 
over the disk to put elements in their target locations. The B"-tree only moves messages to a 
subtree when enough messages have accumulated for that subtree to amortize the I/O cost. 
Although this involves rewriting the same data multiple times, this can improve performance 
for smaller, random inserts, as our analysis in the next section shows.

B"-trees delete items by inserting “tombstone messages” into the tree. These tombstone 
messages are flushed down the tree until they reach a leaf. When a tombstone message is 
f lushed to a leaf, the B"-tree discards both the deleted item and the tombstone message. 
Thus, a deleted item, or even entire leaf node, can continue to exist until a tombstone mes-
sage reaches the leaf. Because deletes are encoded as messages, deletions are algorithmically 
very similar to insertions.

A high-performance B"-tree should detect and optimize the case where a large series of mes-
sages all go to one leaf. Suppose a series of keys are inserted that will completely fill one leaf. 
Rather than write these messages to an internal node only to immediately rewrite them to 
each node on the path from root to leaf, these messages should flush directly to the leaf, along 
with any other pending messages for that leaf. The B"-tree implementation in TokuDB and 
BetrFS includes some heuristics to avoid writing to intermediate nodes when a batch of mes-
sages are all going to a single child.

Point and range queries. Messages addressed to a key k are guaranteed to be applied to k’s 
leaf or in some buffer along the root-to-leaf path towards key k. This invariant ensures that 
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Figure 1: A B"-tree. Each node is roughly of size B, and  controls how much of an internal node’s space 
is used for pivots (B") and how much is used for buffering pending updates (B − B"). As in a B-tree, items 
are stored in leaves, and the height of the tree is logarithmic in the total number of items (N), based on the 
branching factor (here B").
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point and range queries in a B"-tree have a similar I/O cost to a 
B-tree.

In both a B-tree and a B"-tree, a point query visits each node 
from the root to the correct leaf. However, in a B"-tree, answer-
ing a query also means checking the buffers in nodes on this path 
for messages, and applying relevant messages before returning 
the results of the query. For example, if a query for key k finds an 
entry (k,v) in a leaf and a tombstone message for k in the buffer 
of an internal node, then the query will return “NOT FOUND”, 
since the entry for key k has been logically deleted from the tree. 
Note that the query need not update the leaf in this case—it will 
eventually be updated when the tombstone message is flushed 
to the leaf. A range query is similar to a point query, except 
that messages for the entire range of keys must be checked and 
applied as the appropriate subtree is traversed.

In order to make searching and inserting into buffers efficient, 
the message buffers within each node are typically organized 
into a balanced binary search tree, such as a red-black tree. 
Messages in the buffer are sorted by their target key, followed by 
timestamp. The timestamp ensures that messages are applied 
in the correct order. Thus, inserting a message into a buffer, 
searching within a buffer, and f lushing from one buffer to 
another are all fast.

Performance Analysis
We analyze the behavior of B-trees, B"-trees, and LSM-trees in 
this article in terms of I/Os. Our primary interest is in data sets 
too large to fit into RAM. Thus, the first-order performance 
impact is how many I/O requests must be issued to complete 
each operation. In the algorithms literature, this is known as 
the disk-access-machine (DAM) model, the external-memory 
model, or the I/O model [6].

Performance model. In order to compare B-trees and B"-trees in 
a single framework, we make a few simplifying assumptions. We 
assume that all key-value pairs are the same size and that each 
node in the tree can hold B key-value pairs. The entire tree 
stores N key-value pairs. We also assume that each node  
can be accessed with a single I/O transaction—i.e., on a rotat-
ing disk, the node is stored contiguously and requires only one 
random seek.

This model focuses on the principal performance characteris-
tics of a block storage device, such as a hard drive or SSD. For 
instance, on a hard drive, this model captures the latency of a 
random seek to read a node. In the case of an SSD, the model 
captures the I/O bandwidth costs, i.e., the number of blocks that 
must be read or written from the device per operation. Regard-
less of whether the device is bandwidth or latency bound, for a 
given node size B, minimizing the number of nodes accessed 
minimizes both bandwidth and latency costs.

B"-tree I/O performance. Table 1 lists the asymptotic 
complexities of each operation in a B-tree and B"-tree. We will 
explain upserts and epsilon ("), as well as how they affect per-
formance, later in the article. For this discussion, note that " is 
a tuning parameter between 0 and 1; " is generally set at design 
time and becomes a constant in the analysis.

The point-query complexities of a B-tree and a B"-tree are both 
logarithmic in the number of items (O(logB  N)); a B"-tree adds 
a constant overhead of 1/". Compared to a B-tree with the same 
node size, a B"-tree reduces the fanout from B to B", making the 
tree taller by a factor of 1/". Thus, for example, querying a B"-tree 
where " = 1/2 will require, at most, twice as many I/Os.

Range queries incur a logarithmic search cost for the first key, as 
well as a cost that is proportional to the size of the range and how 
many disk blocks the range is distributed across. The scan cost is 
roughly the number of keys read (k) divided by the block size (B). 
The total cost of a range query is O(k/B + logB  N) I/Os. 

Compared to a B-tree, batching messages divides the insertion 
cost by the batch size (B1−"). For example, if B = 1024 and " = 1/2, a 
B"-tree can perform inserts = 16 times faster 
than a B-tree.

Write optimization. Batching small, random inserts is an 
essential feature of write-optimized data structures (WODS), 
such as a B"-tree or LSM-tree. Although a WODS may issue a 
small write multiple times as a message moves down the tree, 
once the I/O cost is divided among a large batch, the cost per 
insert or delete is much smaller than one I/O per operation. In 
contrast, a workload of random inserts to a B-tree requires a 
minimum of one I/O per insert—to write the new element to its 
target leaf.

The B"-tree flushing strategy is designed to ensure that it can 
always move elements in large batches. Messages are only 
flushed to a child when the buffer of a node is full, containing 
B − B" ≈ B messages. When a buffer is flushed, not all messages 
are necessarily flushed—messages are only flushed to children 
with enough pending messages to offset the cost of rewriting the 
parent and child nodes. Specifically, at least (B − B")/B" ≈ B1−" 
messages are moved from the parent’s buffer to the child’s on 
each flush. Consequently, any node in a B"-tree is only rewritten 
if a sufficiently large portion of the node will change.

Caching. Most systems cache a subset of the tree in RAM. With 
an LRU replacement policy, accesses to the top of the tree are 
likely to hit in the cache, whereas accesses to leaves and “lower 
nodes” will more commonly miss. Thus, when the cache is warm, 
the actual cost of a search may be much less than O(logB N) I/Os. 
For both B-trees and B"-trees, if only the leaves are out-of-cache, 
point queries and updates require a single I/O, whereas a range 
query has an I/O cost that is linear in the number of leaves read.
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The Impact of Node Size (B) on Performance
B-trees have small nodes to balance the cost of insertions 
and range queries. B-tree implementations face a tradeoff 
between update and range-query performance. A larger node size 
B favors range queries, and a smaller node size favors inserts and 
deletes. Larger nodes help range-query performance because 
the I/O costs, such as seeks, can be amortized over more data. 
However, larger nodes make updates more expensive because a 
leaf node and possibly internal nodes must be completely rewrit-
ten each time a new item is added to the index, and larger nodes 
mean more to rewrite.

Thus, many B-tree implementations use small nodes (tens to 
hundreds of KB), resulting in sub-optimal range-query perfor-
mance. As free space on disk becomes fragmented, B-tree nodes 
may also become scattered on disk; this is sometimes called 
aging. Now a range query must seek for each leaf in the scan, 
resulting in poor bandwidth utilization.

For example, with 4 KB nodes stored on a disk with a 5 ms seek 
time and 100 MB/s bandwidth, updating a single key only 
rewrites 4 KB. Range queries, however, must perform a seek for 
each 4 KB leaf node, resulting in a net bandwidth of 800 KB/s, 
less than 1% of the disk’s potential bandwidth.

B"-trees have efficient updates and range queries even 
when nodes are large. In contrast, batching in a B"-tree allows 
B to be much larger in a B"-tree than in a B-tree. In a B"-tree the 
bandwidth cost per insert is , which grows much more 
slowly as B increases. As a result, B"-trees use node sizes of a few 
hundred kilobytes to a few megabytes.

By using large B, B"-trees can perform range queries at near 
disk bandwidth. For example, a B"-tree using 4 MB nodes need 
perform only one seek for every 4 MB of data it returns, yielding 
a net bandwidth of over 88 MB/s on the same disk as above.

In the comparison of insert complexities above, we stated that a 
B"-tree with " = 1/2 would be twice as deep as a B-tree, as some 

fanout is sacrificed for buffer space. This is only true when the 
node size is the same. Because a B"-tree can use larger nodes in 
practice, a B"-tree can still have close to the same fanout and 
height as a B-tree.

The Role of "
The parameter " in a B"-tree was originally designed to show 
that there is an optimal tradeoff curve between insert and point 
query performance. Parameter " ranges between 0 and 1. As  
we explain in the rest of this section, making " an exponent 
simplifies the asymptotic analysis and creates an interesting 
tradeoff curve.

Intuitively, the tradeoff with parameter " is how much space 
in the node is used for storing pivots and child pointers ( ≈ B") 
and how much space is used for message buffers ( ≈ B − B"). As " 
increases, so does the branching factor (B"), causing the depth of 
the tree to decrease and searches to run faster. As " decreases, 
the buffers get larger, batching more inserts for every flush and 
improving overall insert performance.

At one extreme, when " = 1, a B"-tree is just a B-tree, since interior 
nodes contain only pivot keys and child pointers. At the other 
extreme, when " = 0, a B"-tree is a binary search tree with a large 
buffer at each node, called a buffered repository tree [3].

The most interesting configurations place " strictly between 
0 and 1, such as " = 1/2. For such configurations, a B"-tree has 
the same asymptotic point query performance as a B-tree, but 
asymptotically better insert performance.

For inserts, setting " = 1/2 divides the cost by the square root of 
node size. Formally, the cost then becomes:  
Since the insert cost is divided by  selecting larger nodes 
(increasing B) can dramatically improve insert performance.

Assuming all other parameters are the same, decreasing " slows 
down point queries by a constant 1/". To see the query per-
formance for " = 1/2, evaluate the point query cost in Table 1: 

 doubling the 
number of I/Os. Changing " from 1/2 to 1/4 would 
make this a factor of 4. This cost can be offset by 
increasing B, which, as pointed out above, also 
improves insert performance.

The above analysis assumes all keys have unit size 
and that nodes can hold B keys; real systems must 
deal with variable-sized keys, so B, and hence ", 
are not fixed or known a priori. Nonetheless, the 
main insight of B"-trees—that we can speed up 
insertions by buffering items in internal nodes 
and flushing them down the tree in batches—still 
applies in this setting.

Table 1: Asymptotic I/O costs of important operations. B"-trees simultaneously support 
efficient inserts, point queries (even in the presence of upserts), and range queries. These 
complexities apply for 0  "  1. Note that " is a design-time constant. We show the com-
plexity for general " and evaluate the complexity when " is set to a typical value of 1/2. The 
1/" factor evaluates to a constant that disappears in the asymptotic analysis.
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In practice, B"-tree implementations select a fixed physical node 
size and fanout (B"). For the implementation in TokuDB and 
BetrFS, nodes are approximately 4 MB, and the branching factor 
ranges from 4 to 16. As a result, the B"-tree can always flush data 
in batches of at least 256 KB.

How to Speed up Applications by Using a B"-tree
A practical consequence of the analysis above is that a B"-tree 
can perform updates orders of magnitude faster than point 
queries. This search-insert asymmetry has two implications for 
designing applications on B"-trees.

Performance rule. Avoid query-before-update whenever 
possible.

Because of the search-insert asymmetry, the common read-mod-
ify-write (or query-modify-insert) pattern will be bound to the 
speed of a query, which is no faster in a B"-tree than in a B-tree.

Upserts. B"-trees support a new upsert operation, to help 
applications bridge this performance asymmetry. An upsert is a 
type of message that encodes an update with a callback function 
which does not require first knowing the value of the key.

Upserts can encode any modification that is asynchronous and 
depends only on the key, the old value, and some auxiliary data 
that can be stored with the upsert message. Tombstones are a 
special case of upserts. Upserts can also be used to increment a 
counter, update the access time on a file, update a user’s account 
balance after a withdrawal, and many other operations.

With upserts, an application can update the value associated 
with key k in the B"-tree by inserting an “upsert message” 
(k, ( f, ∆)) into the tree, where f is a call-back function and ∆ 
is auxiliary data specifying the update to be performed. This 
upsert message is semantically equivalent to performing a 
query followed by an insert: 

v      ! query(k); insert(k, f (v, ∆)).

However, the upsert does not perform these operations. Rather, 
the message (k, ( f, ∆)) is inserted into the tree like an insert or 
tombstone message.

When an upsert message (k, ( f, ∆)) is flushed to a leaf, the value v 
associated with k in the leaf is replaced by f (v, ∆) and the upsert 
message is discarded. If the application queries k before the 
upsert message reaches a leaf, then the upsert message is applied 
to v before the query returns.

As with any insert or delete message, multiple upserts can be 
buffered for the same key between the root and leaf. If a key is 
queried with multiple upserts pending, each upsert must be col-
lected on the path from root to leaf and applied to the key in the 
order they were inserted into the tree.

The upsert mechanism does not interfere with I/O performance 
of searches, because the upsert messages for a key k always lie on 
the search path from the root of the B"-tree to the leaf containing 
k. Thus, the upsert mechanism can accelerate updates by one to 
two orders of magnitude without slowing down queries.

Performance rule. Use insert performance to improve query 
performance by maintaining appropriate indices.

Secondary indices. In a database, secondary indices can 
greatly speed up queries. For example, consider a database 
table with three columns, k1, k2, and k3, and an application that 
sometimes performs queries using k1 and sometimes using k2. 
If the table is implemented as a B-tree sorted on k1, then queries 
using k1 are fast, but queries using k2 are extremely slow—they 
may have to scan essentially the entire database. To solve this 
problem, the table can be configured to maintain two indices—
one sorted by k1 and one sorted by k2. Queries can then use the 
appropriate index based on the type of the query.

When multiple indices are maintained with B-trees, each index 
update requires an additional insert. Because inserts are as 
expensive as a point query, maintaining an index on each column 
is often impractical. Thus, the table designer must carefully ana-
lyze factors such as the expected type of queries and distribution 
of keys in deciding which columns to index, in order to ensure 
good overall performance.

B"-trees turn these issues upside down. Indices are cheap to 
maintain. Point queries are fundamentally expensive—B"-tree 
point queries are no faster than in a B-tree. Thus, B"-tree appli-
cations should maintain whatever indices are needed to perform 
queries efficiently.

There are three rules for designing good B"-tree indices.

First, maintain indices sorted by the keys used to query the data-
base. For example, in the above example, the database should 
maintain two B"-trees—one sorted by k1 and one sorted by k2.

Second, ensure that each index has all the information required 
to answer the intended queries. For example, if the application 
looks up the k3 value using key k2, then the index sorted by k2 
should store the corresponding k3 value for each entry. In many 
databases, the secondary index contains only keys into the 
primary index. Thus, for example, a query on k2 would return 
the primary key value, k1. To obtain k3, the application has to 
perform another query in the primary index using the k1 value 
obtained from the secondary index. An index that contains all 
the information relevant to a query is called a covering index for 
that query.

Finally, design indices to enable applications to perform range 
queries whenever possible. For example, if the application wants 
to look up all entries (k1, k2, k3) for which a  k1  b, and k2 satisfies 
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some predicate, then the application should maintain a second-
ary index sorted by k1 that only contains entries for which k2 
matches the predicate.

Log-Structured Merge-Trees
Log-structured merge trees (LSM-trees) [7] are a WODS with 
many variants [8, 9]. An LSM-tree typically consists of a loga-
rithmic number of B-trees of exponentially increasing size. Once 
an index at one level fills up, it is emptied by merging it into the 
index at the next level. The factor by which each level grows is a 
tunable parameter comparable to the branching factor (B") in a 
B"-tree. For ease of comparison, Table 1 gives the I/O complexi-
ties of operations in an LSM-tree with growth factor B".

LSM-trees can be tuned to have the same insertion complexity 
as a B"-tree, but queries in a naïvely implemented LSM-tree can 
require  I/Os because the query must be repeated in 
O(logB N) B-trees. Most LSM-tree implementations use Bloom 
filters to avoid queries in all but one of the B-trees, improving 
point query performance to  I/Os.

One problem for LSM-trees is that the benefits of Bloom filters 
do not extend to range queries. Bloom filters are only designed to 
improve point queries and do not support range queries. Thus, a 
range query must be done on every level of the LSM-tree—squar-
ing the search overhead in Table 1 and yielding strictly worse 
asymptotic performance than a B"-tree or a B-tree.

A second advantage of a B"-tree over an LSM-tree is that B"-
trees can effectively use upserts, whereas upserts in an LSM-
tree will ruin the performance advantage of adding Bloom 
filters. As discussed above, upserts address a search-insert 
asymmetry common to any WODS, including LSM-trees. When 
an application uses upserts, it is possible for a message for that 
key to be present in every level of the tree containing a pending 
message for the key. Thus, a subsequent point query will still 
have to query every level of the tree, defeating the purpose of 
adding Bloom filters. Note that querying every level of an LSM-
tree also squares the overhead compared to a B"-tree or B-tree, 
and is more expensive than walking the path from root-to-leaf  
in a B"-tree.

In summary, Bloom-filter-enhanced LSM-trees can match the 
performance of B"-trees for some but not all workloads. B"-trees 
asymptotically dominate LSM-tree performance. In particular, 
B"-trees are asymptotically faster than LSM-trees for small 
range queries and point queries in upsert-intensive workloads.

Performance Comparison
To give a sense of how B"-trees perform in practice, we present 
some data from BetrFS, an in-kernel, research file system based 
on B"-trees. We compare BetrFS to other file systems, including 

Btrfs, which is built with B-trees. A more thorough evaluation 
appears in our recent FAST paper [5].

All experimental results were collected on a Dell Optiplex 790 
with a four-core 3.40 GHz Intel Core i7 CPU, 4 GB RAM, and a 
250 GB, 7200 RPM ATA disk. Each file system used a 4096-byte 
block size. The system ran Ubuntu 13.10, 64-bit, with Linux ker-
nel version 3.11.10. Each experiment compared several general-
purpose file systems, including Btrfs, ext4, XFS, and ZFS. Error 
bars and ± ranges denote 95% confidence intervals. Unless 
otherwise noted, benchmarks are cold-cache tests.

Small writes. We used the TokuBench benchmark [10] to 
create 3 million 200-byte files in a balanced directory tree 
with fanout of 128, using four threads (one per CPU). In BetrFS, 
file creations are implemented as B"-tree inserts, and small 
file writes are implemented using upserts, so this benchmark 
demonstrates the B"-tree’s performance on these two operations. 
Figure 2 shows the sustained rate of file creation in each file sys-
tem (note the log scale). In the case of ZFS, the file system crashed 
before completing the benchmark, so we reran the experiment 
five times and used data from the longest-running iteration. 
BetrFS is initially among the fastest file systems, and continues 
to perform well for the duration of the experiment. The steady-
state performance of BetrFS is an order of magnitude faster than 
the other file systems.

This performance distinction is attributable to both fewer total 
writes and fewer seeks per byte written—i.e., better aggregation 
of small writes. Based on profiling from blktrace, one major 
distinction is total bytes written: BetrFS writes 4–10x fewer 
total MB to disk, with an order of magnitude fewer total write 
requests. Among the other file systems, ext4, XFS, and ZFS 
wrote roughly the same amount of data, but realized widely 
varying underlying write throughput.

Figure 2: Sustained rate of file creation for 3 million 200-byte files, using 
four threads. Higher is better.
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Locality and directory operations. In BetrFS, fast range 
queries translate to fast large directory scans. Table 2 reports 
the time taken to run “find” and “grep -r” on the Linux 3.11.10 
source tree, starting from a cold cache. The grep test recursively 
searches the file contents for the string “cpu_to_be64”, and the 
find test searches for files named “wait.c”.

Both the find and grep benchmarks do well because file system 
data and metadata are stored in large nodes and sorted lexi-
cographically by full path. Thus, related files are stored near 
each other on disk. BetrFS also maintains a second index that 
contains only metadata, so that metadata scans can be imple-
mented as range queries. As a result, BetrFS can search direc-
tory metadata and file data one or two orders of magnitude 
faster than the other file systems.

Limitations. It is important to note that BetrFS is a still a 
research prototype and currently has three primary cases where it 
performs considerably worse than other file systems: large direc-
tory renames, large deletes, and large sequential writes (more 

details in [5]). Renames and deletes are slow because BetrFS 
does not map them directly onto B"-tree operations. Sequential 
writes are slow largely because the underlying B"-tree appends 
all data to a log before inserting it into the tree, so everything 
is written to disk at least twice. We believe these issues can be 
addressed in ongoing research and development efforts; our goal, 
supported by the asymptotic analysis, is for BetrFS to match or 
exceed the performance of other file systems on all workloads.

Conclusion
B"-tree implementations can match the search performance of 
B-trees, perform inserts and delete orders of magnitude faster, 
and execute range queries at near disk bandwidth. The design 
and implementation of B"-trees converts a tradeoff between 
update and range query costs into a mutually beneficial synergy 
between batching small updates and large nodes. Our results 
with BetrFS demonstrate that the asymptotic improvements 
of B"-trees can yield practical performance improvements 
for applications that are designed for B"-tree’s performance 
characteristics.
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FS find grep
BetrFS 0.36 ± 0.06 3.95 ± 0.28
Btrfs 3.87 ± 0.94 14.91 ± 1.18
ext4 2.47 ± 0.07 46.73 ± 3.86
XFS 19.07 ± 3.38 66.20 ± 15.99
ZFS 11.60 ± 0.81 41.74 ± 0.64

Table 2: Directory operation benchmarks, measured in seconds. Lower is 
better.
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