
22    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS

An Introduction to B-trees and Write-
Optimization
M I C H A E L A . B E N D E R , M A R T I N F A R A C H - C O L T O N , W I L L I A M J A N N E N , R O B J O H N S O N ,
B R A D L E Y C . K U S Z M A U L , D O N A L D E . P O R T E R , J U N Y U A N , A N D Y A N G Z H A N

A B"-tree is an example of a write-optimized data structure and can be used to organize
on-disk storage for an application, such as a database or file system. A B"-tree provides a key-
value API, similar to a B-tree, but with better performance, particularly for inserts, range
queries, and key-value updates. This article describes the B"-tree, compares its asymptotic
performance to B-trees and Log-Structured Merge trees (LSM-trees), and presents real-
world performance measurements. After finishing this article, a reader should have a basic
understanding of how a B"-tree works, its performance characteristics, how it compares to
other key-value stores, and how to design applications to gain the most performance from a
B"-tree.

B"-trees
B"-trees were proposed by Brodal and Fagerberg [1] as a way to demonstrate an asymptotic
performance tradeoff curve between B-trees [2] and buffered repository trees [3]. Both data
structures support the same operations, but a B-tree favors queries, whereas a buffered
repository tree favors inserts.

Researchers, including the authors of this article, have recognized the practical utility of a
B"-tree when configured to occupy the “middle ground” of this curve—realizing query per-
formance comparable to a B-tree but insert performance orders of magnitude faster than a
B-tree. The B"-tree has since been used by both the high-performance, commercial TokuDB
database [4] and the BetrFS research file system [5]. For the interested reader, we have cre-
ated a simple, reference implementation of a B"-tree, available at https://github.com/oscarlab
/Be-Tree.

We first explain how the basic operations on a B"-tree work. We then give the motivation
behind these design choices and illustrate how these choices affect the asymptotic analysis.

API and basic structure. A B"-tree is a B-tree-like search tree for organizing on-disk data,
as illustrated in Figure 1. Both B-trees and B"-trees export a key-value store API:

◆◆ insert(k, v)

◆◆ delete(k)

◆◆ v = query(k)

◆◆ [v1, v2,…] = range-query(k1, k2)

Like a B-tree, the node size in a B"-tree is chosen to be a multiple of the underlying storage
device’s block size. Typical B"-tree node sizes range from a few hundred kilobytes to a few
megabytes. In both B-trees and B"-trees, internal nodes store pivot keys and child pointers,
and leaves store key-value pairs, sorted by key. For simplicity, one can think of each key-value
or pivot-pointer pair as being unit size; both B-trees and B"-trees can store keys and values
of different sizes in practice. Thus, a leaf of size B holds B key-value pairs, which we call
items below.

The distinguishing feature of a B"-tree is that internal nodes also allocate some space
for a buffer, as shown in Figure 1. The buffer in each internal node is used to store messages,
which encode updates that will eventually be applied to items in leaves under this node. This

Michael A. Bender is a
Professor of Computer Science
at Stony Brook University in
Stony Brook, New York. His
research focuses on algorithms,

particularly on out-of-core algorithms. Bender
co-founded the database company Tokutek,
which was recently acquired by Percona. He
has won several awards, including an R&D 100
award, a Test of Time award, a Best Paper
award, a Best Newcomer award, and five
teaching awards. bender@cs.stonybrook.edu

Martin Farach-Colton is a
Professor of Computer Science
at Rutgers University, New
Brunswick, New Jersey. His
research focuses on both the

theory and practice of external memory and
storage systems. He was a pioneer in the
theory of cache oblivious analysis. His current
research focuses on the use of write opti
mization to improve performance in both
read- and write-intensive big data systems.
He has also worked on the algorithmics of
strings and metric spaces, with applications to
bioinformatics. In addition to his academic
work, Professor Farach-Colton has extensive
industrial experience. He is CTO and co-
founder of Tokutek, a database company that
was founded to commercialize his research.
During 2000–2002, he was a Senior Research
Scientist at Google. farach@cs.rutgers.edu

William Jannen is a PhD
student at Stony Brook
University, where he attempts
to design systems that
accommodate the physical

characteristics of their underlying media.
He is also an artist and a player of games.
wjannen@cs.stonybrook.edu

http://www.usenix.org
https://github.com/oscarlab/Be-Tree
mailto:bender@cs.stonybrook.edu
mailto:farach@cs.rutgers.edu
mailto:wjannen@cs.stonybrook.edu
https://github.com/oscarlab/Be-Tree

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  23

SYSTEMS
An Introduction to B-trees and Write-Optimization

buffer is not an in-memory data structure; it is part of the node and is written to disk, evicted
from memory, etc., whenever the node is. The value of ", which must be between 0 and 1, is a
tuning parameter that selects how much space internal nodes use for pivots (≈ B") and how
much space is used as a buffer (≈ B − B").

Inserts and deletes. Insertions are encoded as “insert messages,” addressed to a particular
key and added to the buffer of the root node of the tree. When enough messages have been
added to a node to fill the node’s buffer, a batch of messages are flushed to one of the node’s
children. Generally, the child with the most pending messages is selected. Over the course of
flushing, each message is ultimately delivered to the appropriate leaf node, and the new key
and value are added to the leaf. When a leaf node becomes too full, it splits, just as in a B-tree.
Similar to a B-tree, when an interior node gets too many children, it splits and the messages
in its buffer are distributed between the two new nodes.

Moving messages down the tree in batches is the key to the B"-tree’s insert performance.
By storing newly inserted messages in a buffer near the root, a B"-tree can avoid seeking all
over the disk to put elements in their target locations. The B"-tree only moves messages to a
subtree when enough messages have accumulated for that subtree to amortize the I/O cost.
Although this involves rewriting the same data multiple times, this can improve performance
for smaller, random inserts, as our analysis in the next section shows.

B"-trees delete items by inserting “tombstone messages” into the tree. These tombstone
messages are flushed down the tree until they reach a leaf. When a tombstone message is
f lushed to a leaf, the B"-tree discards both the deleted item and the tombstone message.
Thus, a deleted item, or even entire leaf node, can continue to exist until a tombstone mes-
sage reaches the leaf. Because deletes are encoded as messages, deletions are algorithmically
very similar to insertions.

A high-performance B"-tree should detect and optimize the case where a large series of mes-
sages all go to one leaf. Suppose a series of keys are inserted that will completely fill one leaf.
Rather than write these messages to an internal node only to immediately rewrite them to
each node on the path from root to leaf, these messages should flush directly to the leaf, along
with any other pending messages for that leaf. The B"-tree implementation in TokuDB and
BetrFS includes some heuristics to avoid writing to intermediate nodes when a batch of mes-
sages are all going to a single child.

Point and range queries. Messages addressed to a key k are guaranteed to be applied to k’s
leaf or in some buffer along the root-to-leaf path towards key k. This invariant ensures that

Rob Johnson is a Research
Professor at Stony Brook
University and conducts
research on security, big data
algorithms, and cryptography.

He does theoretical work with an impact on
the real world. rob@cs.stonybrook.edu

Bradley C. Kuszmaul is a
Research Scientist in the
Computer Science and Artificial
Intelligence Laboratory at the
Massachusetts Institute of

Technology (MIT CSAIL). His research focuses
on performance engineering of multicore
software as well as on data structures and
algorithms that optimize cache and disk I/O.
bradley@mit.edu

Donald E. Porter is an Assistant
Professor of Computer Science
at Stony Brook University in
Stony Brook, New York. His
research aims to improve

computer system efficiency and security. In
addition to recent work on write optimization
in file systems, recent projects have developed
lightweight guest operating systems for virtual
environments, system security abstractions,
and efficient data structures for caching.
porter@cs.stonybrook.edu

Jun Yuan is a PhD student
in computer science at Stony
Brook University in Stony
Brook, New York. Her research
interest primarily lies in

compiler and system security. In addition to
write-optimized file systems, she has recently
studied access control on the Android OS.
junyuan@cs.stonybrook.edu

Yang Zhan is a PhD student
in the Department of Computer
Science at Stony Brook
University. His research
interests include file system

and system performance.
yazhan@cs.stonybrook.edu

Figure 1: A B"-tree. Each node is roughly of size B, and  controls how much of an internal node’s space
is used for pivots (B") and how much is used for buffering pending updates (B − B"). As in a B-tree, items
are stored in leaves, and the height of the tree is logarithmic in the total number of items (N), based on the
branching factor (here B").

http://www.usenix.org
mailto:rob@cs.stonybrook.edu
mailto:bradley@mit.edu
mailto:porter@cs.stonybrook.edu
mailto:junyuan@cs.stonybrook.edu
mailto:yazhan@cs.stonybrook.edu

24    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
An Introduction to B-trees and Write-Optimization

point and range queries in a B"-tree have a similar I/O cost to a
B-tree.

In both a B-tree and a B"-tree, a point query visits each node
from the root to the correct leaf. However, in a B"-tree, answer-
ing a query also means checking the buffers in nodes on this path
for messages, and applying relevant messages before returning
the results of the query. For example, if a query for key k finds an
entry (k,v) in a leaf and a tombstone message for k in the buffer
of an internal node, then the query will return “NOT FOUND”,
since the entry for key k has been logically deleted from the tree.
Note that the query need not update the leaf in this case—it will
eventually be updated when the tombstone message is flushed
to the leaf. A range query is similar to a point query, except
that messages for the entire range of keys must be checked and
applied as the appropriate subtree is traversed.

In order to make searching and inserting into buffers efficient,
the message buffers within each node are typically organized
into a balanced binary search tree, such as a red-black tree.
Messages in the buffer are sorted by their target key, followed by
timestamp. The timestamp ensures that messages are applied
in the correct order. Thus, inserting a message into a buffer,
searching within a buffer, and f lushing from one buffer to
another are all fast.

Performance Analysis
We analyze the behavior of B-trees, B"-trees, and LSM-trees in
this article in terms of I/Os. Our primary interest is in data sets
too large to fit into RAM. Thus, the first-order performance
impact is how many I/O requests must be issued to complete
each operation. In the algorithms literature, this is known as
the disk-access-machine (DAM) model, the external-memory
model, or the I/O model [6].

Performance model. In order to compare B-trees and B"-trees in
a single framework, we make a few simplifying assumptions. We
assume that all key-value pairs are the same size and that each
node in the tree can hold B key-value pairs. The entire tree
stores N key-value pairs. We also assume that each node
can be accessed with a single I/O transaction—i.e., on a rotat-
ing disk, the node is stored contiguously and requires only one
random seek.

This model focuses on the principal performance characteris-
tics of a block storage device, such as a hard drive or SSD. For
instance, on a hard drive, this model captures the latency of a
random seek to read a node. In the case of an SSD, the model
captures the I/O bandwidth costs, i.e., the number of blocks that
must be read or written from the device per operation. Regard-
less of whether the device is bandwidth or latency bound, for a
given node size B, minimizing the number of nodes accessed
minimizes both bandwidth and latency costs.

B"-tree I/O performance. Table 1 lists the asymptotic
complexities of each operation in a B-tree and B"-tree. We will
explain upserts and epsilon ("), as well as how they affect per-
formance, later in the article. For this discussion, note that " is
a tuning parameter between 0 and 1; " is generally set at design
time and becomes a constant in the analysis.

The point-query complexities of a B-tree and a B"-tree are both
logarithmic in the number of items (O(logB N)); a B"-tree adds
a constant overhead of 1/". Compared to a B-tree with the same
node size, a B"-tree reduces the fanout from B to B", making the
tree taller by a factor of 1/". Thus, for example, querying a B"-tree
where " = 1/2 will require, at most, twice as many I/Os.

Range queries incur a logarithmic search cost for the first key, as
well as a cost that is proportional to the size of the range and how
many disk blocks the range is distributed across. The scan cost is
roughly the number of keys read (k) divided by the block size (B).
The total cost of a range query is O(k/B + logB N) I/Os.

Compared to a B-tree, batching messages divides the insertion
cost by the batch size (B1−"). For example, if B = 1024 and " = 1/2, a
B"-tree can perform inserts = 16 times faster
than a B-tree.

Write optimization. Batching small, random inserts is an
essential feature of write-optimized data structures (WODS),
such as a B"-tree or LSM-tree. Although a WODS may issue a
small write multiple times as a message moves down the tree,
once the I/O cost is divided among a large batch, the cost per
insert or delete is much smaller than one I/O per operation. In
contrast, a workload of random inserts to a B-tree requires a
minimum of one I/O per insert—to write the new element to its
target leaf.

The B"-tree flushing strategy is designed to ensure that it can
always move elements in large batches. Messages are only
flushed to a child when the buffer of a node is full, containing
B − B" ≈ B messages. When a buffer is flushed, not all messages
are necessarily flushed—messages are only flushed to children
with enough pending messages to offset the cost of rewriting the
parent and child nodes. Specifically, at least (B − B")/B" ≈ B1−"
messages are moved from the parent’s buffer to the child’s on
each flush. Consequently, any node in a B"-tree is only rewritten
if a sufficiently large portion of the node will change.

Caching. Most systems cache a subset of the tree in RAM. With
an LRU replacement policy, accesses to the top of the tree are
likely to hit in the cache, whereas accesses to leaves and “lower
nodes” will more commonly miss. Thus, when the cache is warm,
the actual cost of a search may be much less than O(logB N) I/Os.
For both B-trees and B"-trees, if only the leaves are out-of-cache,
point queries and updates require a single I/O, whereas a range
query has an I/O cost that is linear in the number of leaves read.

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  25

SYSTEMS
An Introduction to B-trees and Write-Optimization

The Impact of Node Size (B) on Performance
B-trees have small nodes to balance the cost of insertions
and range queries. B-tree implementations face a tradeoff
between update and range-query performance. A larger node size
B favors range queries, and a smaller node size favors inserts and
deletes. Larger nodes help range-query performance because
the I/O costs, such as seeks, can be amortized over more data.
However, larger nodes make updates more expensive because a
leaf node and possibly internal nodes must be completely rewrit-
ten each time a new item is added to the index, and larger nodes
mean more to rewrite.

Thus, many B-tree implementations use small nodes (tens to
hundreds of KB), resulting in sub-optimal range-query perfor-
mance. As free space on disk becomes fragmented, B-tree nodes
may also become scattered on disk; this is sometimes called
aging. Now a range query must seek for each leaf in the scan,
resulting in poor bandwidth utilization.

For example, with 4 KB nodes stored on a disk with a 5 ms seek
time and 100 MB/s bandwidth, updating a single key only
rewrites 4 KB. Range queries, however, must perform a seek for
each 4 KB leaf node, resulting in a net bandwidth of 800 KB/s,
less than 1% of the disk’s potential bandwidth.

B"-trees have efficient updates and range queries even
when nodes are large. In contrast, batching in a B"-tree allows
B to be much larger in a B"-tree than in a B-tree. In a B"-tree the
bandwidth cost per insert is , which grows much more
slowly as B increases. As a result, B"-trees use node sizes of a few
hundred kilobytes to a few megabytes.

By using large B, B"-trees can perform range queries at near
disk bandwidth. For example, a B"-tree using 4 MB nodes need
perform only one seek for every 4 MB of data it returns, yielding
a net bandwidth of over 88 MB/s on the same disk as above.

In the comparison of insert complexities above, we stated that a
B"-tree with " = 1/2 would be twice as deep as a B-tree, as some

fanout is sacrificed for buffer space. This is only true when the
node size is the same. Because a B"-tree can use larger nodes in
practice, a B"-tree can still have close to the same fanout and
height as a B-tree.

The Role of "
The parameter " in a B"-tree was originally designed to show
that there is an optimal tradeoff curve between insert and point
query performance. Parameter " ranges between 0 and 1. As
we explain in the rest of this section, making " an exponent
simplifies the asymptotic analysis and creates an interesting
tradeoff curve.

Intuitively, the tradeoff with parameter " is how much space
in the node is used for storing pivots and child pointers (≈ B")
and how much space is used for message buffers (≈ B − B"). As "
increases, so does the branching factor (B"), causing the depth of
the tree to decrease and searches to run faster. As " decreases,
the buffers get larger, batching more inserts for every flush and
improving overall insert performance.

At one extreme, when " = 1, a B"-tree is just a B-tree, since interior
nodes contain only pivot keys and child pointers. At the other
extreme, when " = 0, a B"-tree is a binary search tree with a large
buffer at each node, called a buffered repository tree [3].

The most interesting configurations place " strictly between
0 and 1, such as " = 1/2. For such configurations, a B"-tree has
the same asymptotic point query performance as a B-tree, but
asymptotically better insert performance.

For inserts, setting " = 1/2 divides the cost by the square root of
node size. Formally, the cost then becomes:
Since the insert cost is divided by selecting larger nodes
(increasing B) can dramatically improve insert performance.

Assuming all other parameters are the same, decreasing " slows
down point queries by a constant 1/". To see the query per-
formance for " = 1/2, evaluate the point query cost in Table 1:

 doubling the
number of I/Os. Changing " from 1/2 to 1/4 would
make this a factor of 4. This cost can be offset by
increasing B, which, as pointed out above, also
improves insert performance.

The above analysis assumes all keys have unit size
and that nodes can hold B keys; real systems must
deal with variable-sized keys, so B, and hence ",
are not fixed or known a priori. Nonetheless, the
main insight of B"-trees—that we can speed up
insertions by buffering items in internal nodes
and flushing them down the tree in batches—still
applies in this setting.

Table 1: Asymptotic I/O costs of important operations. B"-trees simultaneously support
efficient inserts, point queries (even in the presence of upserts), and range queries. These
complexities apply for 0  "  1. Note that " is a design-time constant. We show the com-
plexity for general " and evaluate the complexity when " is set to a typical value of 1/2. The
1/" factor evaluates to a constant that disappears in the asymptotic analysis.

http://www.usenix.org

26    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
An Introduction to B-trees and Write-Optimization

In practice, B"-tree implementations select a fixed physical node
size and fanout (B"). For the implementation in TokuDB and
BetrFS, nodes are approximately 4 MB, and the branching factor
ranges from 4 to 16. As a result, the B"-tree can always flush data
in batches of at least 256 KB.

How to Speed up Applications by Using a B"-tree
A practical consequence of the analysis above is that a B"-tree
can perform updates orders of magnitude faster than point
queries. This search-insert asymmetry has two implications for
designing applications on B"-trees.

Performance rule. Avoid query-before-update whenever
possible.

Because of the search-insert asymmetry, the common read-mod-
ify-write (or query-modify-insert) pattern will be bound to the
speed of a query, which is no faster in a B"-tree than in a B-tree.

Upserts. B"-trees support a new upsert operation, to help
applications bridge this performance asymmetry. An upsert is a
type of message that encodes an update with a callback function
which does not require first knowing the value of the key.

Upserts can encode any modification that is asynchronous and
depends only on the key, the old value, and some auxiliary data
that can be stored with the upsert message. Tombstones are a
special case of upserts. Upserts can also be used to increment a
counter, update the access time on a file, update a user’s account
balance after a withdrawal, and many other operations.

With upserts, an application can update the value associated
with key k in the B"-tree by inserting an “upsert message”
(k, (f, ∆)) into the tree, where f is a call-back function and ∆
is auxiliary data specifying the update to be performed. This
upsert message is semantically equivalent to performing a
query followed by an insert:

v ! query(k); insert(k, f (v, ∆)).

However, the upsert does not perform these operations. Rather,
the message (k, (f, ∆)) is inserted into the tree like an insert or
tombstone message.

When an upsert message (k, (f, ∆)) is flushed to a leaf, the value v
associated with k in the leaf is replaced by f (v, ∆) and the upsert
message is discarded. If the application queries k before the
upsert message reaches a leaf, then the upsert message is applied
to v before the query returns.

As with any insert or delete message, multiple upserts can be
buffered for the same key between the root and leaf. If a key is
queried with multiple upserts pending, each upsert must be col-
lected on the path from root to leaf and applied to the key in the
order they were inserted into the tree.

The upsert mechanism does not interfere with I/O performance
of searches, because the upsert messages for a key k always lie on
the search path from the root of the B"-tree to the leaf containing
k. Thus, the upsert mechanism can accelerate updates by one to
two orders of magnitude without slowing down queries.

Performance rule. Use insert performance to improve query
performance by maintaining appropriate indices.

Secondary indices. In a database, secondary indices can
greatly speed up queries. For example, consider a database
table with three columns, k1, k2, and k3, and an application that
sometimes performs queries using k1 and sometimes using k2.
If the table is implemented as a B-tree sorted on k1, then queries
using k1 are fast, but queries using k2 are extremely slow—they
may have to scan essentially the entire database. To solve this
problem, the table can be configured to maintain two indices—
one sorted by k1 and one sorted by k2. Queries can then use the
appropriate index based on the type of the query.

When multiple indices are maintained with B-trees, each index
update requires an additional insert. Because inserts are as
expensive as a point query, maintaining an index on each column
is often impractical. Thus, the table designer must carefully ana-
lyze factors such as the expected type of queries and distribution
of keys in deciding which columns to index, in order to ensure
good overall performance.

B"-trees turn these issues upside down. Indices are cheap to
maintain. Point queries are fundamentally expensive—B"-tree
point queries are no faster than in a B-tree. Thus, B"-tree appli-
cations should maintain whatever indices are needed to perform
queries efficiently.

There are three rules for designing good B"-tree indices.

First, maintain indices sorted by the keys used to query the data-
base. For example, in the above example, the database should
maintain two B"-trees—one sorted by k1 and one sorted by k2.

Second, ensure that each index has all the information required
to answer the intended queries. For example, if the application
looks up the k3 value using key k2, then the index sorted by k2
should store the corresponding k3 value for each entry. In many
databases, the secondary index contains only keys into the
primary index. Thus, for example, a query on k2 would return
the primary key value, k1. To obtain k3, the application has to
perform another query in the primary index using the k1 value
obtained from the secondary index. An index that contains all
the information relevant to a query is called a covering index for
that query.

Finally, design indices to enable applications to perform range
queries whenever possible. For example, if the application wants
to look up all entries (k1, k2, k3) for which a  k1  b, and k2 satisfies

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  27

SYSTEMS
An Introduction to B-trees and Write-Optimization

some predicate, then the application should maintain a second-
ary index sorted by k1 that only contains entries for which k2
matches the predicate.

Log-Structured Merge-Trees
Log-structured merge trees (LSM-trees) [7] are a WODS with
many variants [8, 9]. An LSM-tree typically consists of a loga-
rithmic number of B-trees of exponentially increasing size. Once
an index at one level fills up, it is emptied by merging it into the
index at the next level. The factor by which each level grows is a
tunable parameter comparable to the branching factor (B") in a
B"-tree. For ease of comparison, Table 1 gives the I/O complexi-
ties of operations in an LSM-tree with growth factor B".

LSM-trees can be tuned to have the same insertion complexity
as a B"-tree, but queries in a naïvely implemented LSM-tree can
require I/Os because the query must be repeated in
O(logB N) B-trees. Most LSM-tree implementations use Bloom
filters to avoid queries in all but one of the B-trees, improving
point query performance to I/Os.

One problem for LSM-trees is that the benefits of Bloom filters
do not extend to range queries. Bloom filters are only designed to
improve point queries and do not support range queries. Thus, a
range query must be done on every level of the LSM-tree—squar-
ing the search overhead in Table 1 and yielding strictly worse
asymptotic performance than a B"-tree or a B-tree.

A second advantage of a B"-tree over an LSM-tree is that B"-
trees can effectively use upserts, whereas upserts in an LSM-
tree will ruin the performance advantage of adding Bloom
filters. As discussed above, upserts address a search-insert
asymmetry common to any WODS, including LSM-trees. When
an application uses upserts, it is possible for a message for that
key to be present in every level of the tree containing a pending
message for the key. Thus, a subsequent point query will still
have to query every level of the tree, defeating the purpose of
adding Bloom filters. Note that querying every level of an LSM-
tree also squares the overhead compared to a B"-tree or B-tree,
and is more expensive than walking the path from root-to-leaf
in a B"-tree.

In summary, Bloom-filter-enhanced LSM-trees can match the
performance of B"-trees for some but not all workloads. B"-trees
asymptotically dominate LSM-tree performance. In particular,
B"-trees are asymptotically faster than LSM-trees for small
range queries and point queries in upsert-intensive workloads.

Performance Comparison
To give a sense of how B"-trees perform in practice, we present
some data from BetrFS, an in-kernel, research file system based
on B"-trees. We compare BetrFS to other file systems, including

Btrfs, which is built with B-trees. A more thorough evaluation
appears in our recent FAST paper [5].

All experimental results were collected on a Dell Optiplex 790
with a four-core 3.40 GHz Intel Core i7 CPU, 4 GB RAM, and a
250 GB, 7200 RPM ATA disk. Each file system used a 4096-byte
block size. The system ran Ubuntu 13.10, 64-bit, with Linux ker-
nel version 3.11.10. Each experiment compared several general-
purpose file systems, including Btrfs, ext4, XFS, and ZFS. Error
bars and ± ranges denote 95% confidence intervals. Unless
otherwise noted, benchmarks are cold-cache tests.

Small writes. We used the TokuBench benchmark [10] to
create 3 million 200-byte files in a balanced directory tree
with fanout of 128, using four threads (one per CPU). In BetrFS,
file creations are implemented as B"-tree inserts, and small
file writes are implemented using upserts, so this benchmark
demonstrates the B"-tree’s performance on these two operations.
Figure 2 shows the sustained rate of file creation in each file sys-
tem (note the log scale). In the case of ZFS, the file system crashed
before completing the benchmark, so we reran the experiment
five times and used data from the longest-running iteration.
BetrFS is initially among the fastest file systems, and continues
to perform well for the duration of the experiment. The steady-
state performance of BetrFS is an order of magnitude faster than
the other file systems.

This performance distinction is attributable to both fewer total
writes and fewer seeks per byte written—i.e., better aggregation
of small writes. Based on profiling from blktrace, one major
distinction is total bytes written: BetrFS writes 4–10x fewer
total MB to disk, with an order of magnitude fewer total write
requests. Among the other file systems, ext4, XFS, and ZFS
wrote roughly the same amount of data, but realized widely
varying underlying write throughput.

Figure 2: Sustained rate of file creation for 3 million 200-byte files, using
four threads. Higher is better.

http://www.usenix.org

28    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSTEMS
An Introduction to B-trees and Write-Optimization

Locality and directory operations. In BetrFS, fast range
queries translate to fast large directory scans. Table 2 reports
the time taken to run “find” and “grep -r” on the Linux 3.11.10
source tree, starting from a cold cache. The grep test recursively
searches the file contents for the string “cpu_to_be64”, and the
find test searches for files named “wait.c”.

Both the find and grep benchmarks do well because file system
data and metadata are stored in large nodes and sorted lexi-
cographically by full path. Thus, related files are stored near
each other on disk. BetrFS also maintains a second index that
contains only metadata, so that metadata scans can be imple-
mented as range queries. As a result, BetrFS can search direc-
tory metadata and file data one or two orders of magnitude
faster than the other file systems.

Limitations. It is important to note that BetrFS is a still a
research prototype and currently has three primary cases where it
performs considerably worse than other file systems: large direc-
tory renames, large deletes, and large sequential writes (more

details in [5]). Renames and deletes are slow because BetrFS
does not map them directly onto B"-tree operations. Sequential
writes are slow largely because the underlying B"-tree appends
all data to a log before inserting it into the tree, so everything
is written to disk at least twice. We believe these issues can be
addressed in ongoing research and development efforts; our goal,
supported by the asymptotic analysis, is for BetrFS to match or
exceed the performance of other file systems on all workloads.

Conclusion
B"-tree implementations can match the search performance of
B-trees, perform inserts and delete orders of magnitude faster,
and execute range queries at near disk bandwidth. The design
and implementation of B"-trees converts a tradeoff between
update and range query costs into a mutually beneficial synergy
between batching small updates and large nodes. Our results
with BetrFS demonstrate that the asymptotic improvements
of B"-trees can yield practical performance improvements
for applications that are designed for B"-tree’s performance
characteristics.

Acknowledgments
This work was supported in part by NSF grants CNS-1409238,
CNS-1408782, CNS-1408695, CNS-1405641, CNS-1149229,
CNS-1161541, CNS-1228839, CNS-1408782, IIS-1247750, CCF-
1314547, Sandia National Laboratories, and the Office of the
Vice President for Research at Stony Brook University.

References
[1] G. S. Brodal and R. Fagerberg, “Lower Bounds for External
Memory Dictionaries,” in Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (ACM), 2003, pp.
546–554.

[2] D. Comer, “The Ubiquitous B-tree,” ACM Computing
Surveys, vol. 11, June 1979, pp. 121–137.

[3] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. R. Westbrook, “On External Memory Graph Traversal,”
in Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2000, pp. 859–860.

[4] Tokutek, Inc., TokuDB: MySQL Performance, MariaDB
Performance, 2013: http://www.tokutek.com/products/
tokudb-for-mysql/.

[5] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao,
A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “BetrFS:
A Right-Optimized Write-Optimized File System,” in Proceed-
ings of the USENIX Conference on File and Storage Technologies
(FAST), 2015, pp. 301–315.

[6] A. Aggarwal and J. S. Vitter, “The Input/Output Complexity
of Sorting and Related Problems,” Communications of the ACM,
vol. 31, Sept. 1988, pp. 1116–1127.

[7] P. O’Neil, E. Cheng, D. Gawlic, and E. O’Neil, “The Log-
Structured Merge-Tree (LSM-tree),” Acta Informatica, vol. 33,
no. 4, 1996, pp. 351–385.

[8] R. Sears and R. Ramakrishnan, “bLSM: A General Purpose
Log Structured Merge Tree,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data,
ACM, 2012, pp. 217–228.

[9] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. Seyster,
and E. Zadok, “Building Workload-Independent Storage with
VT-trees,” in Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), 2013, pp. 17–30.

[10] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C.
Kuszmaul, “The TokuFS Streaming File System,” in Proceed-
ings of the 4th USENIX Workshop on Hot Topics in Storage
(HotStorage), June 2012.

FS find grep
BetrFS 0.36 ± 0.06 3.95 ± 0.28
Btrfs 3.87 ± 0.94 14.91 ± 1.18
ext4 2.47 ± 0.07 46.73 ± 3.86
XFS 19.07 ± 3.38 66.20 ± 15.99
ZFS 11.60 ± 0.81 41.74 ± 0.64

Table 2: Directory operation benchmarks, measured in seconds. Lower is
better.

http://www.usenix.org
http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokudb-for-mysql/

