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Container cluster managers are used by many Web-scale Internet  
companies, including Google’s Borg and Omega, Facebook’s Tupper-
ware, Twitter’s Aurora, and many others. At their core, these 

container orchestration systems schedule and manage (“orchestrate”) 
collections of Linux application containers. In this article, I will explain the 
Kubernetes project.

Recently, interest in the Docker open source project has caused a significant growth in inter-
est in Linux application containers in the general developer and operations community. Due 
to this growth in interest, Google launched the Kubernetes project, which makes Google’s 
years of experience in running container clusters available to the larger world in a commu-
nity-driven, open source project. The development of these internal container cluster manag-
ers was driven by real operational needs of operating software at “Google scale,” but we have 
seen recently that their benefits apply even at a more modest scope and scale.

I illustrate how container orchestration systems change the operations tasks associated 
with running, maintaining, and upgrading highly scalable and reliable applications. At the 
heart of this change are two fundamental shifts. First, container orchestration systems 
provide and enforce significant decoupling between the layers of the serving stack: machine, 
operating system, application manager, and application code. This decoupling enables the 
development of specialized teams with agility and freedom to operate on their parts of the 
stack, thanks to separation of concerns. Second, container cluster APIs are inherently more 
application-oriented than traditional IaaS machine-centric APIs. This shift towards appli-
cation-oriented primitives makes it easy to perform operation and maintenance tasks that 
were previously complicated, brittle, or both. In this article, I show how the formal boundar-
ies introduced by containers and container cluster management enable the segmentation of 
traditional operations into multiple discrete roles.

In addition to a general discussion of container orchestration and operations, I also describe 
the Google Kubernetes container orchestrator, including the core resources in the Kuber-
netes system, and how they produce an inherently more stable, agile, and reliable foundation 
for application deployment.

Decoupling Operations Roles
Anyone who has tried to back up a trailer on a car knows that coupled, multi-component 
systems are hard to predict and control. Actions taken in one part of the system often cause 
unpredictable, user-visible problems in some other component of the system. A classic 
example might be upgrading a Web server, which includes updating the libc library, caus-
ing a database on the same machine to fail because the libc change introduces a bug that the 
database triggers.

Coupling increases the knowledge and skill set required to be a high-performing applica-
tion administrator and requires operators to fully understand their entire application stack, 
including all dependencies, in comprehensive detail. In turn, this reduces the ability of 
operations teams to specialize, prevents the acquisition of true expertise, and reduces oppor-
tunities to introduce economies of scale.
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As an example of this, in companies where every development 
team is responsible for their choice of operating system distribu-
tion (e.g., Debian or Red Hat), the operating systems in the fleet 
will inevitably be heterogeneous. Another example involves 
choosing to use SysV init vs. the systemd daemon. The result-
ing heterogeneity makes it difficult (if not impossible) to have a 
single team of administrators manage all of the machines in the 
fleet. It is also difficult to build a common set of tools and/or pro-
cesses for performing maintenance and monitoring across all of 
the operating systems in the fleet. Being unable to share tooling 
and expertise means that fleet maintenance is more expensive 
and less reliable than if a single team and set of tools could man-
age the entire fleet of machines. 

Container cluster management software makes it easier to avoid 
tight coupling, and the corresponding problems of heterogeneous 
environments, by introducing crisp boundaries and manage-
ment APIs that decouple operations into discrete roles: hard-
ware operations, kernel/OS operations, cluster operations, and 
application operations. The decoupling of these roles means that 
it is possible for each of the first three roles (hardware, kernel/
OS, and cluster) to have a single team handle operations and 
administration, which enables lower costs and higher reliability. 
For application operations, it also enables the building of special-
ized, application-specific operations teams that can be deeply 
involved in the specifics of their application. The net result is a 
complete system that makes highly reliable applications cheaper 
to build and maintain.

Hardware Operations
The hardware operations role is responsible for racking and 
stacking machines, connecting network cables between racks 
and switches, and repairing or retiring machines. In modern 
public cloud providers, these roles have been wholly outsourced 
to the cloud provider, who can provide significantly greater 
expertise and economies of scale than the average user.

Kernel/OS Operations
The interface between a Docker container image and the under-
lying operating system is the Linux kernel syscall interface. 
Because each Docker container carries with it all of its depen-
dencies (application binary, libraries, configuration files, etc.), 
it is wholly decoupled from the files that make up the machine 
image. An application developer can rely on two things from the 
kernel and operating system:

◆◆ Stability in the syscall API and operational characteristics

◆◆ A working Docker daemon

These requirements form an explicit contract between the 
kernel/OS and the applications that run on top of it. This means 
that the operations team responsible for the machine image 
(kernel, operating system able to boot the Docker daemon) can 

focus on qualifying those two generic requirements without 
understanding the details of any particular application. This 
decoupling enables release qualification, rollout, and manage-
ment of a single, homogeneous kernel/OS across an entire 
fleet of machines. In managed container services like Google 
Container Engine, this kernel/operating system qualification 
and upgrading is outsourced to the cloud provider, enabling the 
application operations team (described below) to focus entirely 
on their application. The cluster management boundary imposes 
a discipline about the APIs available to application developers, as 
well as a single, shared implementation of this API. Because the 
implementation is shared between multiple, different applica-
tions, the discipline enforced by this API also acts as a counter-
weight to the natural tendency towards entropy and differences 
between the software stack supporting different applications.

Cluster Operations
If cluster users are allowed to deploy their container applica-
tions onto specific machines, then the resulting systems will 
be too tightly coupled because the applications will inevitably 
begin to rely on the specific characteristics of the machines 
on which they run. For example, if an application is coupled to 
the machine’s network identity (hostname and IP address), the 
decoupling between application, hardware, and kernel has been 
broken. That machine cannot just be sent to repairs when the 
hardware operator determines it is failing. Nor can it be rebooted 
for an OS installation any time the OS operator decides one is 
needed. It is the container cluster manager’s goal to decouple 
containerized applications from the specifics of any particular 
machine. For example, in Kubernetes, we give each pod an IP 
address that is independent of the IP address of the machine that 
it is running on. The pod does not have access to the machine’s 
network identity. Furthermore, Kubernetes can restrict the set 
of file systems that can be mounted into a pod from the host file 
system, restricting access to things like raw block devices and 
other machine-specific hardware.

Additionally, container cluster managers, like Kubernetes, pro-
vide a declarative, programmable API that is the primary one by 
which developers schedule and deploy users’ applications onto a 
fleet of machines. Consequently, developers are decoupled from 
the details of physical machines, because their mode of interac-
tion is container and application-centric. The particular details 
of the machine that ends up running the application developer’s 
containers become an implementation detail of the underlying 
cluster manager.

Indeed, many users forget that their applications are running on 
physical (or virtual) machines at all and, instead, deal solely with 
the logical compute substrate provided by the container cluster 
API. They ask that API for a certain set of application resource 
requirements (say, two cores and 100 GB of RAM), and it is the 
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container cluster manager’s responsibility to find sufficient 
resources somewhere in the cluster and deploy the application 
onto those resources. The job of a container cluster administra-
tor is to ensure that the services that provide the container clus-
ter management API stay available and operationally healthy at 
all times.

Application Operations
Closest to the end user in these decoupled operations roles are 
application operators. These administrators are focused on man-
aging and deploying applications: for example, the Google search 
backend or Gmail frontend. These administrators develop deep 
specialized knowledge of their applications, and rely on cluster, 
kernel, and hardware operations teams to provide them the 
infrastructure they need to do their job. Transferring work that 
is unrelated to their application (e.g., kernel and OS upgrades) 
onto specialized kernel operation teams allows the application 
operation teams to develop application-specific tooling for more 
reliable management of their application. The specialization 
of application administrators on a particular application also 
means that they can develop deep technical understanding of 
the specific application software, and form significant partner-
ships with the development teams to improve the reliability and 
performance of that software.

The Kubernetes Cluster Manager
Having described how containers and cluster management 
APIs enable the decoupling of operations roles, I will now dis-
cuss some specifics of the Kubernetes API to provide a deeper 
understanding of the functionality that Kubernetes provides. 
Beginning with a description of pods, the atomic unit of schedul-
ing in the Kubernetes system and the basic building block for 
running containers in a Kubernetes cluster, I will go on to cover 
generic software patterns for building applications with pods. 
I’ll show how Kubernetes resources are organized into dynamic 
sets with labels and how those labels are used to automatically 
manage replicated microservices using Replication Controllers 
and Services.

Pods
Pods are the most fundamental API object in Kubernetes. A 
pod is a group of containers that is scheduled together onto one 
machine. All of the containers within a pod share the same 
network namespace, so the containers within a pod can easily 
find each other on “localhost.” This eliminates the need for a 
complicated discovery service (more on that later). The contain-
ers in a pod also share the same IPC namespace, which means 
that they can use traditional UNIX IPC, such as pipes. As Kuber-
netes matures, we expect that pods will come to share all of the 
available kernel namespaces, including group ID namespaces, 
process ID namespaces, and more.

Pods also encapsulate node-level health checking and reliability 
for their constituent containers. In Kubernetes, there are two 
different types of checks: 

First, each container has a liveness check. By default, this is a 
simple process-based one (“is the process running”), but it can 
be extended to include several other application-specific health 
checks: HTTP (healthy if the container endpoint returns an 
HTTP 200), TCP (healthy if a TCP socket can be opened), or exec 
(healthy if a user-supplied binary executed in the context of the 
container returns an exit code of zero). If any liveness test fails, 
the container is automatically restarted by Kubernetes.

The second check is a readiness check, which is applied to an 
entire pod. Readiness checks indicate whether the pod is ready 
to serve end-user traffic. In many situations, a pod may take 
some time to start up, due to network downloads, migrations, or 
other long, computational initialization steps. During this time, 
the pod is alive: it should not be restarted by Kubernetes. How-
ever, it is not ready: it should not serve traffic. Readiness checks 
are used to implement service load balancers, described below.

Pod Patterns
When you start using pods, some general patterns naturally 
start to recur. The three common ones are sidecar containers, 
ambassador containers, and adapter containers.

SIDECAR CONTAINERS
Sidecar containers extend and enhance the “main” container; 
they take existing containers and make them better.

As an example, consider a container that runs the Nginx Web 
server. Add a different container that syncs a directory with a Git 
repository, share the file system between the containers, and you 
have built a non-atomic, push-to-deploy Git. But you’ve done it 
in a modular manner where the Git synchronizer can be built by 
a different team and reused across many different Web servers 
(Apache, Python, Tomcat, etc.). Because of this modularity, you 
only have to write and test your Git synchronizer once to reuse it 
across numerous apps. If someone else writes it, you don’t even 
need to do that.

Figure 1: Example of a sidecar container: a pod where an Nginx Web 
server is being augmented by a Git synchronizing container
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AMBASSADOR CONTAINERS
Ambassador containers proxy the outside world via a local con-
nection in the same pod.

As an example, consider a Redis cluster with read replicas and a 
single write master. You can create a pod that groups your Redis 
client with a Redis ambassador container. The ambassador is a 
proxy; it is responsible for splitting reads and writes to Redis and 
sending them on to the appropriate Redis servers. Because these 
two containers share a network namespace, they share an IP 
address, and your application can open a connection on “local-
host” and find the proxy without any service discovery. Note that 
this is “localhost” for the network of the pod, not “localhost” on 
the host machine. 

ADAPTER CONTAINERS
Adapter containers standardize and normalize output.

In any real-world application, the application’s software comes 
from a heterogeneous set of sources (open source, off-the-shelf 
software, home brew), and monitoring system developers cannot 
be expected to understand, build, maintain, and deploy for all 
of them. Consequently, you often need to wrap applications to 
enable communication with auditing or monitoring services.

Using a modular adapter container co-located in the same pod 
as your application gives you a simple unit of deployment that 
combines both application and adapter. Using adapters enables 
each application developer to supply a common interface. The 
modularity of using two different containers (the application 
and the adapter) means that despite making the adapter the 
application owner’s responsibility, adapters can be reused (e.g., a 
Java JMX adapter).

The adapter pattern creates pods that group the application 
containers with adapters that know how to do the transforma-
tion. Again, because these pods share namespaces and file 
systems, the coordination of these two containers is simple and 
straightforward.

Labels
Experience operating large, complicated systems has taught us 
that requiring applications and their parts to be grouped into 
fixed, disjoint sets is overly restrictive.

As an example of this, consider the canonical search stack. 
There is a set of replicas that are responsible for serving end-
user requests {frontend, middleware, backend servers}, and 
then there are the jobs that are responsible for building, push-
ing, and loading a new search index {crawler, index-builder, 
backend servers}. The presence of “backend servers” in both of 
these organizations reflects the problem with fixed sets. We 
need an organizational mechanism that can flexibly represent 
both of these organizational sets (and any other useful sets). 
If the cluster management infrastructure can’t represent the 
overlapping sets of organizations that are present in the cluster, 
then additional tooling, which is opaque to the cluster manager, 
will get built to represent these organizations. The additional 
complexity required to make these systems interact well with 
the cluster management software makes the system harder to 
maintain and extend. 

Additionally, we need a representation that is dynamic. For 
example, at different times, pods may be added or removed from 
sets; during a rolling update of a service to a new version of its 
software, pods are dynamically added and removed from the set 
of backends of a load balancer. We need a representation that can 
easily capture this dynamism without requiring constant action 
from the user to maintain these sets.

In Kubernetes, labels and label queries provide flexible, dynamic 
sets of resources. Rather than encode any specific group-
ing primitive into the Kubernetes API, every resource in the 
Kubernetes API can have labels attached to that resource. These 
labels are arbitrary, key-value pairs that help define the object. 
For example, a production Web server might have the labels 
{role=frontend, stage=production, version=v1, machine=m1, 

rack=r2}, and a production backend might have the labels 
{role=backend, stage=production, version=v1, machine=m2, 

rack=r1}.

Figure 2: Example ambassador container: a pod where a Redis proxy 
ambassador is used to proxy connections from a PHP application to a set 
of Redis shards

Figure 3: Example of an adapter container: a pod where the Redis 
key-value store is adapted to provide a consistent monitoring interface 
(e.g., https://github.com/oliver006/redis_exporter)
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A label query dynamically organizes objects into a group by con-
structing a set of objects that match its conditions. For example, 
we might query “stage=production” to see all production pods, 
“rack=r2” to see all containers on a particular rack, or even 
conjugate queries like “stage=production, machine=m1” for all 
production jobs on a particular machine. Label queries are used 
to list particular RESTful resources in the Kubernetes API. A 
label query for a resource of a particular type (e.g., pods) will only 
return the pods whose labels match the query.

Reconciliation
The third key concept in Kubernetes, after pods and labels, is 
reconciliation loops. 

The basic premise is that there are three states of the world: an 
idealized desired state, which is a declarative statement of what 
the world should be like; a current state, which approximates 
the actual state, and might be noisy, incomplete, or out of date; 
and an actual state. Unfortunately, the actual state isn’t directly 
observable, thanks to the vagaries of distributed systems, delays, 
and failures, so we must make do with the observed state.

The role of the reconciliation loop is to repeatedly compare the 
current state against the desired state, and take action to drive 
the actual state to match the desired state. This is just a control 
loop, like the one in your thermostat. It is what transforms Kuber-
netes into a self-healing, dynamic system, by automatically caus-
ing it to restore the system to the desired state without needing 
operator intervention. Only if this fails does the system need to 
invoke help from an administrator, e.g., by triggering an alert.

Replication Controllers
In any real production system, replicating the components in the 
system is the only way to achieve reliable operation. Each replica 
is an independent unit of failure, and thus, multiple replicas 
reduce the probability of a total failure. They also allow a service 
to be scaled up as traffic grows. However, the complexity of 
managing a replicated system must not be linear in the number 
of replicas, or else the system is not truly scalable.

In Kubernetes, replication controllers provide an API for manag-
ing replicated sets of pods. Replication controllers use a pod 
template, a label query, and a desired number of replicas to create 
a replicated set of pods. The operation is as follows:

Repeat forever

   1. Select pods matching Label Query.

   2. Subtract number of pods found from the desired number of 

replicas.

   3. If this difference is negative, destroy a pod.

   4. If this difference is positive, create a pod using the pod 

Template.

Note that this is a reconciliation loop. No matter why a pod 
disappears—whether due to node failure, accidental deletion, or 
network partition—the replication controller attempts to ensure 
that the correct number of replicas exists. Likewise, if a user or 
automated process resizes the number of replicas up or down, 
these adjustments to the number of replicas are also material-
ized by this simple reconciliation loop.

Services
A recent, popular trend in distributed systems is microservice 
architectures, which decouple different pieces of a distributed 
system into independently managed and scaled microservices. 
This decoupling helps microservice architectures to be reliable 
and scalable.

In Kubernetes, the Service API object represents a load balancer 
for a microservice. Like replication controllers, services are 
based on a dynamic label query that identifies the set of back-
ends that the service connects to.

To enable service discovery, a service is assigned a static virtual 
IP address (VIP). This address is constant, and has the same 
lifespan as the service. Consequently, the VIP can be popu-
lated into DNS for service discovery. Because the VIP is not the 
address of any particular pod, the VIP can be kept constant, even 
as pods are scaled up or down behind the service.

Kubernetes itself ships with a simple, default load-balancer 
implementation, but the Kubernetes API also makes Endpoint 
objects available. These endpoints are the current members of 
the service’s load balancing group—i.e., the pod IP addresses 
across which it spreads incoming requests. Advanced users can 
use these endpoints to populate a third-party load balancer (e.g., 
Nginx, HAProxy) or even to implement thick clients that do 
balancing without a proxy.

The maintenance of the service’s endpoints is another example 
of a reconciliation loop. In this case, the loop looks like:

Repeat forever

   1. Select pods matching Service Selector Label Query

   2. For each matching pod

      a. If the pod is Ready (see ‘Readiness Checks’ above)

          i. Add the pod to the Endpoint set for this Service

Figure 4. A replicated set of pods with a misbehaving replica (pod within 
rectangle). Solid boxes are pods; circles indicate labels attached to them.
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Operations in Kubernetes
It is easier to operate systems that are deployed into a Kuber-
netes cluster than systems deployed into traditional virtual 
machines. This section describes two operations scenarios that 
demonstrate this.

Quarantining a Replica
One of the common tasks that occur in operations is quarantin-
ing a misbehaving replica of an application. Oftentimes, sadly, 
this means simply killing the misbehaving replica, collecting 
logs for retrospective analysis, and restarting the process. While 
this restores the service to health quickly, it is much harder to 
debug a problem from (possibly incomplete) logs than it is with a 
running server. It would be better to remove a misbehaving rep-
lica from the service but maintain it as a running server so that it 
can be debugged. This is precisely what Kubernetes services and 
labels allow. This is illustrated in the following example.

We start with an existing Kubernetes replicated service that 
shares load across three pods. The pod in the middle is deter-
mined to be misbehaving.

The operator removes the “production” label from the misbe-
having pod. Because Kubernetes dynamically queries label 
selectors, the pod is now removed from the corresponding Repli-
cationController and the service.

The reconciliation loop in ReplicationController detects that a 
pod is missing from the replica set and creates a new pod, restor-
ing the service to full health. The misbehaving pod is retained 
for future debugging.

Rolling Update
Another common operation is rolling out new software. Kuber-
netes achieves this through manipulating replication controllers 
and labels.

At the start of the update, there is a single replication controller. 
It has three replicas, and is using version 1 (v1) of the application. 
There is also a Kubernetes Service that is defined to serve traffic 
to pods with the “frontend” and “production” labels. To perform 
a rolling update, a second replication controller is created. This 
replication controller is identical to the first replication control-
ler in all ways, except the image in its template has been updated 
to version 2 (v2). Initially, the desired replica count for this 
controller is set to zero (Figure 7).

Figure 5. After the “production” label is removed from the misbehaving 
replica, the replica is now quarantined.

Figure 6. The replication controller replaces the misbehaving pod with a 
new replica.

Figure 7. The initial state of the rolling update. A second replica controller 
has been created but has no replicas yet.

Figure 8. The first “canarying” step of a rolling update: replica count for 
the original controller is set to two, and to one for the second controller.

http://www.usenix.org


42    O C TO B ER 20 1 5   VO L .  4 0,  N O.  5 	 www.usenix.org

SYSADMIN
How Kubernetes Changes Operations

To perform the rolling update, the desired number of replicas on 
the v1 replication controller is dialed down by one (in this case, 
to two replicas), and the desired replicas for the v2 replication 
controller is increased by one (to one replica, Figure 8).

This process of one up, one down proceeds until the desired 
number of replicas for v1 is zero and the desired number of rep-
licas for v2 is three. Because the Kubernetes Service is defined 
by the label query {role=frontend, stage=production}, which 
ignores the version, the load balancer seamlessly spreads traffic 
across version 1 and version 2 as the rollout proceeds. If failures 
occur during the rollout, and a rollback is necessary, it is simple 
to reverse the roles of the replication controllers and restore the 
number of replicas for v1 to be three.

Conclusion
Containers have grown in popularity because they decouple user 
applications from the underlying operating system/kernel, and 
allow the development of kernel/OS-specific operations teams. 
Container cluster orchestration systems, like Kubernetes, 
further allow the decoupling of operations into hardware opera-
tions, kernel operations, cluster operations, and application oper-
ations. This decoupling enables specialization and focus, which 
increases the reliability and scalability of those operations 
teams. Furthermore, Kubernetes provides a set of objects that 
makes it easier for application developers to design and develop 
services that are easier to operate and scale. Container cluster 
management systems are the backbone of most large-scale Web 
service companies, and with the advent of open source solutions 
like Docker and Kubernetes, we believe there is an industry-wide 
shift underway to this new style of decoupled infrastructure.
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