
www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  57

COLUMNS
A s you read this, Python 3.5 should be hitting the streets with a wide

assortment of new features and even some new syntax. “New syn-
tax?” you ask. Why yes. Even though Python has been around for

more than 25 years now, it continues to evolve and sprout surprising new
features from time to time. In this month’s installment, I’m going to look at a
seemingly minor part of Python that turns out to be fairly useful—the use of *

and ** in function arguments, function argument passing, and data handling.

You Want an Argument?
Traditionally, * and ** have been used to write functions that accept any number of posi-
tional or keyword arguments. For example, this function accepts any number of positional
arguments, which are passed as a tuple to args:

>>> def f(*args):

... print(args)

...

>>> f(1,2,3)

(1, 2, 3)

>>> f(1)

(1,)

>>> f(4,5)

(4, 5)

>>>

This function accepts any number of keyword arguments, which are passed to kwargs as a
dictionary:

>>> def g(**kwargs):

... print(kwargs)

...

>>> g(color=’red’, size=’huge’)

{‘color’: ‘red’, ‘size’: ‘huge’}

>>> g(xmin=0, xmax=-10, title=’Plot’)

{‘xmin’: 0, ‘xmax’: -10, ‘title’: ‘Plot’}

>>>

The *args and **kwargs can be combined with other arguments and even used together as
long as they go at the end of the argument list and the keyword arguments appear last. For
example:

def h(x, y, *args, **kwargs):

 ...

A common use of *args and **kwargs is in writing code that’s meant to be very general
purpose. For example, consider this class definition that makes it easy for someone to define
simple data structures:

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Seeing Stars
D A V I D B E A Z L E Y

http://www.usenix.org
http://www.swig.org
http://www.dabeaz.com/ply.html
http://www.dabeaz.com/ply.html
mailto:dave@dabeaz.com

58    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Seeing Stars

class Structure(object):

 _fields = ()

 def __init__(self, *args):

 if len(args) != len(self._fields):

 raise TypeError(‘Expected %d arguments’ % len(self._

fields))

 for name, val in zip(self._fields, args):

 setattr(self, name, val)

Examples

class Date(Structure):

 _fields = (‘year’, ‘month’, ‘day’)

class Address(Structure):

 _fields = (‘hostname’, ‘port’)

Sometimes **kwargs is used to write functions that take a large
number of options that you want specified by keyword only. For
example:

def config(**options):

 outfile = options[‘outfile’] # Required argument

 level = options.get(‘level’, 0) # Optional argument

 ...

config(outfile=’output.txt’, level=20) # Ok

config(‘output.txt’, 20) # Error.

Passing Argument
The * and ** syntax are also used to pass data as arguments to
functions. For example, suppose you have this function:

def f(x, y, z):

 ...

If you already have a sequence of arguments or a dictionary of
keywords, you can pass them as follows:

a = (1, 2, 3)

b = { ‘x’: 1, ‘y’: 2, ‘z’: 3}

f(*a) # Same as f(1, 2, 3)

f(**b) # Same as f(x=1, y=2, y=3)

Both of these conventions can be especially useful when working
with data that you have already obtained somehow but that you
want transformed into another form. For example, suppose you
have a list of tuples and a class definition like this:

stocks = [

 (‘IBM’, 50, 91.25),

 (‘HPQ’, 75, 37.23),

 (‘MSFT’, 100, 47.80)

]

class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

You can easily convert the list into instances using a statement
like this:

stocks = [Stock(*s) for s in stocks]

The use of * also enables some unusual tricks. For example,
consider this example of “unzipping” data:

>>> a = [‘name’, ‘shares’, ‘price’]

>>> b = [‘IBM’, 50, 91.25]

>>> # Zip the two sequences into a list of tuples

>>> c = list(zip(a,b))

>>> c = [(‘name’, ‘IBM’), (‘shares’,50), (‘price’, 91.25)]

>>> # Unzip a list of tuples into separate sequences

>>> d, e = zip(*c)

>>> d

(‘name’, ‘shares’, ‘price’)

>>> e

(‘IBM’, 50, 91.25)

>>>

Needless to say, that last step with zip(*c) might require a bit
more study (left as an exercise).

Keyword-Only Arguments
Python 3 introduced an extension to the * syntax that makes
it easier to have keyword-only arguments. Specifically, named
arguments are allowed to appear after an argument with *. For
example:

def receive(maxsize, *, block=True):

 ...

msg = receive(1024) 	 # OK

msg = receive(1024, block=False) 	 # OK

msg = receive(1024, False) 	 # Error

def total(*items, initial=0):

 total = initial

 for it in items:

 total += it

 return total

a = total(1,2,3, initial=100) # a <- 106

http://www.usenix.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  59

COLUMNS
Seeing Stars

This ability to have named keyword-only arguments can be a
useful way to clean up library code that might otherwise depend
on **kwargs. For example, the config() function from earlier
could be rewritten as follows:

def config(*, outfile, level=0):

 ...

This version will produce better error messages, have a more
useful help screen, and involve much less code related to han-
dling the arguments. Keyword-only arguments are good.

Wildcard Unpacking
If you have a tuple, it is easy to unpack into separate variables.
For example:

address = (‘www.python.org’, 80)

hostname, port = address # Unpack

This all works well as long as the number of items in the tuple
exactly matches the number of variables specified—if not, you
get an error. Python 3 allows you to use the * as a wildcard in
unpacking. For example:

>>> row = (‘Elwood’, ‘Blues’, ‘1060 W Addison’, ‘Chicago’, ‘IL’,

‘60613’)

>>> first, last, *rest = row

>>> first

‘Elwood’

>>> last

‘Blues’

>>> rest

[‘1060 W Addison’, ‘Chicago’, ‘IL’, ‘60613’]

>>> first, last, *rest, zipcode = row

>>> first

‘Elwood’

>>> last

‘Blues’

>>> zipcode

‘60613’

>>> rest

[‘1060 W Addison’, ‘Chicago’, ‘IL’]

>>>

Notice how all of the extra values are simply placed in a list.
Wildcard unpacking can be particularly useful if you’re work-
ing with rows of data of varying length but are only interested in
some of the values. For example:

rows = [

 (1, 2),

 (3, 4),

 (5, 6, ‘x’),

 (7, 8, ‘x’, ‘y’),

 (9, 10)

]

for x, y, *extra in rows:

 ...

Unpacking and Argument-Passing Extensions
Python 3.5 extends the capabilities of * and ** in some new and
interesting directions. First, you can use both operations more
than once when making function calls. For example:

def f(a, b, c, d):

 ...

x = (1, 2)

y = (3, 4)

f(*x, *y) # Same as f(1, 2, 3, 4)

x = { ‘a’: 1, ‘b’: 2}

y = { ‘c’: 3, ‘d’: 4}

f(**x, **y) # Same as f(a=1, b=2, c=3, d=4)

These extensions simplify code that previously had to assemble
the arguments by hand. For example, in previous versions of
Python, you would have had to write the following:

f(*(x+y))

f(*(tuple(x)+tuple(y))) 	� # Safer version to make sure types

match in +

kwargs = dict(x) 	 # Make a copy of x

kwargs.update(y) 	 # Merge in values from y

f(**kwargs)

You can also perform unpacking when creating list, tuple, set,
and dictionary literals. For example:

a = [1, 2]

b = [*a, 3, 4] 	 # b = [1, 2, 3, 4]

c = [3, *a, 4] 	 # c = [3, 1, 2, 4]

d = [3, *a, *a, 4] 	 # d = [3, 1, 2, 1, 2, 4]

m = { ‘x’: 1, ‘y’: 2 }

n = { **m, ‘z’: 3 } 	 # n = {‘x’:1, ‘y’:2, ‘z’:3 }

In such unpacking, later elements will silently replace earlier
elements if there happen to be any duplicates. For example:

a = { ‘x’: 1, ‘y’: 2 }

b = { ‘x’: 3, ‘z’: 4 }

c = { **a, **b } # c = { ‘x’:3, ‘y’:2, ‘z’:4 }

http://www.usenix.org
http://www.python.org%E2%80%99

60    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Seeing Stars

Although these enhancements look minor, they do enable certain
kinds of new operations. It is now easy to merge dictionaries as a
single expression as shown above. This can extend naturally into
operations involving lists of dictionaries and other structures.
For example:

s1 = [

 {‘x’: 1, ‘y’: 2},

 {‘x’: 3, ‘y’: 4},

 {‘x’: 5, ‘y’: 6}

]

s2 = [

 {‘z’: 10, ‘w’: 11 },

 {‘z’: 12, ‘w’: 13 },

 {‘z’: 14, ‘w’: 15 }

]

merged = [{ **i1, **i2 } for i1, i2 in zip(s1, s2)]

merged = [

{ ‘x’: 1, ‘y’: 2, ‘z’: 10, ‘w’: 11},

{ ‘x’: 3, ‘y’: 4, ‘z’: 12, ‘w’: 13},

{ ‘x’: 5, ‘y’: 6, ‘z’: 14, ‘w’: 15}

]

This change also enables a common dictionary type transfor-
mation that I find myself performing with some regularity. For
example, suppose you have some raw dictionary data read from a
file such as this:

rows = [

 {‘name’: ‘AA’, ‘price’: ‘32.20’, ‘shares’: ‘100’},

 {‘name’: ‘IBM’, ‘price’: ‘91.10’, ‘shares’: ‘50’},

 {‘name’: ‘CAT’, ‘price’: ‘83.44’, ‘shares’: ‘150’},

 {‘name’: ‘MSFT’, ‘price’: ‘51.23’, ‘shares’: ‘200’},

 {‘name’: ‘GE’, ‘price’: ‘40.37’, ‘shares’: ‘95’},

 {‘name’: ‘MSFT’, ‘price’: ‘65.10’, ‘shares’: ‘50’},

 {‘name’: ‘IBM’, ‘price’: ‘70.44’, ‘shares’: ‘100’}

}

Now suppose you wanted to apply a conversion to some of the
values (e.g., convert shares to an integer and price to a float). You
can do this:

conversions = [(‘shares’, int), (‘price’, float)]

converted = [{**row, **{name:func(row[name]) for name, func

in conversions}}

 for row in rows]

This does exactly what you want, although I’m willing to con-
cede that it might be too clever for its own good. The alternative
is to unwind it to this:

converted = []

for row in rows:

 newrow = dict(row)

 for name, func in conversions:

 newrow[name] = func(row[name])

 converted.append(newrow)

Needless to say, that’s not nearly as clever nor preserving of one’s
future job security.

More Information
If you’re intrigued by some of the new uses of * and **kwargs,
more information can be found in various PEPs. For example,
PEP 448 describes the generalized unpacking features added to
Python 3.5 [1]; PEP 3102 describes keyword-only arguments [2];
and PEP 3132 describes the wildcard unpacking of sequences [3].

These are not the only syntax changes to Python 3.5. In future
installments, we’ll look at some of the new features added to the
language. In the meantime, you might take a look at the “What’s
New in Python 3.5” document [4].

References
[1] PEP 448: https://www.python.org/dev/peps/pep-0448/.

[2] PEP 3102: https://www.python.org/dev/peps/pep-3102/.

[3] PEP 3132: https://www.python.org/dev/peps/pep-3132/.

[4] https://docs.python.org/dev/whatsnew/3.5.html.

http://www.usenix.org
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-3102/
https://www.python.org/dev/peps/pep-3132/
https://docs.python.org/dev/whatsnew/3.5.html

