
www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  61

COLUMNS

Practical Perl Tools
Blog, Can We Talk?

D A V I D N . B L A N K - E D E L M A N

A ccording to some figures (those at http://w3techs.com/technologies
/details/cm-wordpress/all/all to be precise), WordPress powers
24.2% of the sites on the Internet. I don’t have any reason to doubt

that number. WordPress (WP) has lots of great things going for it when you
are looking to bring up a Web site containing dynamic content. Beginners
can grasp it fairly quickly, it has a huge and vibrant ecosystem, a strong
development effort, oh, and it’s free. It’s my “goto” tool when someone comes
to me and needs my help building a Web site for their aardvark repair com-
pany or whatnot. It may have started as blogging software, but it has evolved
far beyond that over the years into a reasonable Web development platform.

So why am I giving you a sales pitch for WP in a Perl column? In addition to making my bias
clear, I figure if it powers close to a third of the Web sites on the planet, it could be a good
idea to learn to interact with it via Perl. Why would you want to do this? For me, the best
reasons center around being able to easily extract information posted on a WordPress site or,
even better, the ability to post external sources of information right to a WordPress site. For
example, let’s say you had a process for generating sales reports that took hours of heavy-duty
computation on a massive data warehouse. It might be very handy to post the results to an
internal WordPress site every day for people to be able to easily access.

The good news is we are going to be able to draw strongly on past columns and knowledge for
this effort. One quick prerequisite: I’m going to make the assumption that you have at least a
passing familiarity with WordPress (you know it has posts, pages, and users, and you know
how to install plugins) and administrative access to a working up-to-date WP site.

Here’s What We Are Not Going to Do
There are lots of inelegant ways we could interact with WP (some of which we’ve explored in
this column). For example, we could use something like WWW::Mechanize or Selenium to pre-
tend to be Web browsers to screenscrape the pants off the site or fake like we are typing/click-
ing. I could make you more nauseous by noting that WordPress has a MySQL backend (plus
access to a file system) so we could just whip out DBI and go to town. Nope, not going to do it.

A much more reasonable approach might be to use the closest thing WordPress has had to
an external API: the XML-RPC interface it provides via the xmlrpc.php file. And, indeed,
there have been modules written in days of yore like WordPress::XMLRPC that use this API.
Even though XML-RPC has been around for quite a while, it doesn’t seem to get much love
or respect from the WordPress community these days. Part of this could be because XML-
RPC isn’t the simplest of protocols: at the very least you need to understand and know how
to manipulate XML. But another large part is likely how incomplete the API support is. It
exposes certain WordPress operations, but it omits whole classes of things you might want to
do remotely over an API. So what’s a better option if we want to stick with the magical three
letters “API”?

David Blank-Edelman is
the Technical Evangelist at
Apcera (the comments/
views here are David’s alone
and do not represent Apcera/

Ericsson). He has spent close to 30 years
in the system administration/DevOps/SRE
field in large multiplatform environments,
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard “g.”
dnblankedelman@gmail.com

http://www.usenix.org
http://w3techs.com/technologies/details/cm-wordpress/all/all
mailto:dnblankedelman@gmail.com
http://w3techs.com/technologies/details/cm-wordpress/all/all

62    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

There are two choices. Once upon a time, Automattic, the com-
mercial entity that runs the WordPress hosting at wordpress.
com, made available a JSON-based REST service their custom-
ers could use. This was available for wordpress.com, but self-
hosted WordPress sites couldn’t use it. Later this functionality
was added to their kitchen-sink plugin Jetpack (http://jetpack
.me), which “supercharges your self-hosted WordPress site with
cool functionality from WordPress.com.” I’ve not used Jetpack
on any site I’ve set up, largely because it always seemed a bit
heavyweight to me even if it does do a ton of cool stuff simulta-
neously out of the box. Plus it introduces some dependencies on
the wordpress.com backend infrastructure I didn’t really want.
That takes this option out of the running for me.

The second choice, better in some ways (worse in others, more
on that in a moment), is a plugin that provides a similar JSON-
based REST API. The later version of the plugin (v2, in beta) is
meant to be a reference implementation merged into WordPress
core in short order. This means the functionality will eventually
be available out of the box without having to install a plugin. I’m
not entirely sure if this is still the plan for WordPress roadmap,
but the intent to add this to core is a pretty strong indicator
of support. That’s the good part of this option. There are two
aspects that I am less enamored of: v2 of this plugin’s imple-
mentation is relatively new, so information about installing and
using it is much less mature than what is available for v1 (e.g., the
API documentation at http://v2.wp-api.org is more a collection
of section headings than actual documentation). This leads to
lots of peeking back and forth between v1 and v2 docs and more
hunting down of arcana/reading of the source than I would
prefer. In this column, I will largely try to cut through all of that
and provide some more direct instruction. There is, however, one
place I’m going to punt on how to do things (my second negative);
we’ll come to that a little later on.

WP-API Install
Assuming again that you have a functioning and up-to-date
WordPress install to work with, let’s see how to get the WP-API
stuff functional. There are 3–4 steps; let’s start with the first
two and bring the others in when we need them.

First off, you will want to install and activate the “WordPress
REST API (Version 2)” plugin. You can either do this by entering
that phrase into the search box in Plugins -> Add New (be sure
to get the Version 2 one), or if you want to flex your dev chops,
you can change to the wp-content/plugins directory of your WP
installation and clone the plugin from its GitHub repo right into
place:

git clone git://github.com/WP-API/WP-API.git

(Be sure to activate the plugin once you’ve installed it.)

The second step is to confirm you have a compatible permalinks
scheme selected (Settings -> Permalinks in the dashboard). Any
scheme except for the one listed as “Default” will work. Switch it
away from Default to something else and save the change if this
is not the case.

To confirm that the installation works, the v1 Getting Started
guide (http://wp-api.org/guides/getting-started.html) suggests
you can type the following:

curl -I {URL of your WP site}

The -I tells cURL to make a HEAD request because all we really
need to see is the headers this returns. If everything is hunky-
dory, you should see something like this:

$ curl -I http://local.wordpress.dev

HTTP/1.1 200 OK

Server: nginx

Date: Thu, 30 Jul 2015 03:17:23 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Powered-By: PHP/5.5.9-1ubuntu4.11

X-Pingback: http://local.wordpress.dev/xmlrpc.php

Link: <http://local.wordpress.dev/>; rel=shortlink

Link: <http://local.wordpress.dev/wp-json>; rel=”https://

github.com/WP-API/WP-API”

The second Link: header we get back above is the key: it shows
that WP-API is installed and ready to take requests at the wp-
json endpoint. As a quick aside, the examples in this column will
all be using a local WordPress install I have on my laptop pro-
vided by the Varying Vagrant Vagrants package (https://github
.com/Varying-Vagrant-Vagrants/VVV). If you use Vagrant, be
sure to check VVV out because it is quite well done.

Now That It’s Installed, What Can We Do?
Now that we know it is working, what can we do with it? Let’s
actually ask it:

$ curl http://local.wordpress.dev/wp-json/

{“name”:”Local WordPress Dev”,”description”:”Just

another WordPress site”,”url”:”http:\/\/local.wordpress

.dev”,”namespaces”:[“wp\/v2”],”authentication”:[],”routes”:{“

\/”:{“namespace”:””,”methods”:[“GET”],”_links”:{“self”:”http:

\/\/local.wordpress.dev\/wp-json\/”}},”\/wp\/v2”:{“namespace”:

”wp\/v2”,”methods”:[“GET”],”_links”:{“self”:”http:\/\/local

.wordpress.dev\/wp-json\/wp\/v2”}},”\/wp\/v2\/posts”:

{“namespace”:”wp\/v2”,”methods”:[“GET”,”POST”],”_links”:

{“self”:”http:\/\/local.wordpress.dev\/wp-json\/wp\/v2\/

posts”}},”\/wp\/v2\/posts\/{id}”:{“namespace”:”wp\/v2”

,”methods”:[“GET”,”POST”,”PUT”,”PATCH”,”DELETE”]},”\/wp\/v2\/

posts\/schema”:{“namespace”:”wp\/v2”,”methods”:[“GET”],”

_links”:{“self”:”http:\/\/local.wordpress.dev\/wp-json\/

http://v2.wp-api.org
http://www.usenix.org
http://jetpack.me
http://jetpack.me
git://github.com/WP-API/WP-API.git
http://wp-api.org/guides/getting-started.html
http://local.wordpress.dev
http://local.wordpress.dev/xmlrpc.php
http://local.wordpress.dev/
http://local.wordpress.dev/wp-json
https://github.com/WP-API/WP-API%E2%80%9D
https://github.com/WP-API/WP-API%E2%80%9D
https://github.com/Varying-Vagrant-Vagrants/VVV
https://github.com/Varying-Vagrant-Vagrants/VVV
http://local.wordpress.dev/wp-json/

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  63

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

wp\/v2\/posts\/schema”}},”\/wp\/v2\/posts\/{parent_id}\/

meta”:{“namespace”:”wp\/v2”,”methods”:[“GET”,”POST”]},”\/

wp\/v2\/posts\/{parent_id}\/meta\/{id}”:{“namespace”:”wp\/

v2”,”methods”:[“GET”,”POST”,”PUT”,”PATCH”,”DELETE”]},”\/

wp\/v2\/posts\/meta\/schema”:{“namespace”:”wp\/

v2”,”methods”:[“GET”],”_links”:{“self”:”http:\/\/local

.wordpress.dev\/wp-json\/wp\/v2\/posts\/meta\/schema”}},

...

Note: I could have made this request via Perl (perhaps used GET
from the LWP::Simple package, HTTP::Tiny, or any of the mod-
ules we’ve discussed in the past for this sort of thing) but cURL
was already in my shell history.

Egads, that’s one big blob of JSON we get back (I cut it off at an
arbitrary point; the whole thing is 6443 characters total). It is
kind of hard to read, so let’s run it through a JSON pretty-printer
to make it more legible. Again, we could write some Perl code
to parse and pretty print, but in command-line cases like this, I
tend to use one of two really great JSON tools: underscore-
cli (https://github.com/ddopson/underscore-cli) or jq (http://
stedolan.github.io/jq/). Both are excellent, so if you haven’t
encountered them before, I highly recommend you go check them
out. Let’s run that last request through jq (and show an excerpt
from the reply):

$ curl -s http://local.wordpress.dev/wp-json/|jq .

{

 “name”: “Local WordPress Dev”,

 “description”: “Just another WordPress site”,

 “url”: “http://local.wordpress.dev”,

 “namespaces”: [

 “wp/v2”

],

 “authentication”: [],

 “routes”: {

 “/”: {

 “namespace”: “”,

 “methods”: [

 “GET”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/”

 }

 },

 “/wp/v2”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2”

 }

 },

 “/wp/v2/posts”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2/posts”

 }

 },

 “/wp/v2/posts/{id}”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”,

 “PUT”,

 “PATCH”,

 “DELETE”

]

 },

...

 “/wp/v2/users”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2/users”

 }

 },

 “/wp/v2/users/{id}”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”,

 “PUT”,

 “PATCH”,

 “DELETE”

]

 },

...

http://www.usenix.org
https://github.com/ddopson/underscore-cli
http://stedolan.github.io/jq/
http://stedolan.github.io/jq/
http://local.wordpress.dev/wp-json/|jq
http://local.wordpress.dev%E2%80%9D
http://local.wordpress.dev/wp-json/%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2/posts%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2/users%E2%80%9D

64    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

Let’s take a closer look at some of this output. Specifically, I want
to draw your attention first to the info it printed regarding the
route available to query post info:

 “/wp/v2/posts”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”

],

 “_links”: {

 “self”: “http://local.wordpress.dev/wp-json/wp/v2/posts”

 }

 },

 “/wp/v2/posts/{id}”: {

 “namespace”: “wp/v2”,

 “methods”: [

 “GET”,

 “POST”,

 “PUT”,

 “PATCH”,

 “DELETE”

]

 },

This says I can either make a GET or a POST request for
http://local.wordpress.dev/wp-json/wp/v2/posts to read or
change the list of posts on the site. If I want to address an indi-
vidual post (to GET, submit a new one with POST, DELETE it,
and so on), I can do so at the same URL with the ID for that post
tacked on to the path. This pattern repeats itself in the previ-
ous output for users, so we now know how to with users of the
system. Let’s try to get the list of users on the site:

$ curl -s http://local.wordpress.dev/wp-json/wp/v2/users|jq .

[

 {

 “code”: “rest_forbidden”,

 “message”: “You don’t have permission to do this.”,

 “data”: {

 “status”: 403

 }

 }

]

Whoops, that didn’t work—and good thing too! We really don’t
want anyone with cURL to be able to pull a list of users. That
leads to the second part of the WP-API install/setup and a bit of
a screed.

WP-API Authentication
In order for authentication of any type to work, there has to be
an existing user defined on your site that you will authenticate
to do the work. If you plan to query information that only an
admin-level user should have access to (e.g., a list of site users),
this user will have to be created as an admin. If you don’t need
that level of access from the API, I encourage you to create a user
at a lower role or just send unauthenticated requests for publicly
viewable information. New users for WP-API are created using
the normal WordPress process (Users -> Add New). For this col-
umn, I created an admin user with the user name “api” and the
password “api” (yup, security by alliteration, yay!) on my local
test site.

WP-API has two contexts it operates in, one I’ll call “internal,”
where code running on the site (e.g., a PHP-based WordPress
theme), the other “external” (some outside code calls the API
remotely). We’re going to totally ignore the former and only look
at the external context. In this context, there are two, maybe
three mechanisms for authentication.

The first is the least secure one and is only recommended for
development and testing. This is using the HTTP Basic Authen-
tication found in RFC 2617. To use this, you need to git clone the
Basic Authentication plugin into place as we did earlier:

$ cd wp-content/plugins

$ git clone git://github.com/WP-API/Basic-Auth.git

and then activate the plugin in the dashboard.

The second and third options are to use OAuth. OAuth is a mildly
complicated protocol that comes in two incompatible versions
(1.0a and 2.0) and that is designed to allow a third-party client
to be given permissions to act on the behalf of a user. So, for
example, if you install a new Twitter or Gmail client, it is likely
that the first thing it will do is ask you to authenticate to those
services and then permit that client to act on your behalf to
perform certain operations (post tweets, manipulate your mail,
etc.). This is OAuth in action.

Here’s where it starts to get tricky and we quickly descend down
a rabbit hole. The WP-API docs suggest that you install an
OAuth 1.0a plugin from GitHub (“git clone git@github.com
:WP-API/OAuth1.git content/plugins/oauth-server”; see https://
github.com/WP-API/OAuth1) and use that for authentication. It
is suggested that this plugin will also eventually be incorporated
into WP core. Ordinarily at this point in the column, we’d go off
and talk about how OAuth works and how to work with it in Perl.
I won’t be doing that here for two reasons:

http://www.usenix.org
http://local.wordpress.dev/wp-json/wp/v2/posts%E2%80%9D
http://local.wordpress.dev/wp-json/wp/v2/posts
http://local.wordpress.dev/wp-json/wp/v2/users|jq
git://github.com/WP-API/Basic-Auth.git
git@github.com:WP-API/OAuth1.git content/plugins/oauth-server
https://github.com/WP-API/OAuth1
https://github.com/WP-API/OAuth1
git@github.com:WP-API/OAuth1.git content/plugins/oauth-server

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  65

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

1.	 The protocol/framework is a wee bit complicated and needs a
little bit of explanation before you can dive into using it, and I
don’t have the space.

2.	 I’m annoyed that WP-API’s suggested plugin implements 1.0a
of OAuth and not 2.0. As far as I can tell, there isn’t a major
service provider using 1.0a instead of 2.0, so the value of going
deeper into a barely used protocol is unclear to me. Some say
that the older version was a stronger protocol, but I’m not sure
that pragmatically justifies the column space.

Now let me make things even more interesting. There exists
a commercial plugin (or at least one that would like to charge
licensing fees) that implements OAuth2. It can be found at
https://wp-oauth.com. It claims to support WP-API (at least in
part of the doc, while in another part it claims it doesn’t, sigh).
I’m also not clear whether it supports the 2.0 WP-API beta ver-
sion either. Because OAuth2 leans on SSL/TLS for some of its
security, you would want that set up on your site before truly
using it. I have yet to test it.

Given these complications, I’m going to punt on the more secure
methods (even though I know it means that somewhere an angel
isn’t going to get its wings) and just go with Basic Authentication
in our examples. Just so you don’t feel I’m hanging you out to dry,
I will mention that the Net::OAuth and Net::OAuth2 modules
(plus a couple others like OAuth::Lite) do exist, so you can defi-
nitely perform OAuth operations (from both protocol versions)
from Perl. If you’d like to see another column about just OAuth,
please drop me a line and I will see about writing one.

To review as we leave the rabbit hole: to use WP-API operations
of a certain level, you need a suitably empowered WordPress
user and a way to authenticate as that user installed. We’ll be
using the Basic Authentication plugin for the latter (boo hiss).

Perl Time
In a previous column about using REST interfaces from Perl, we
tiptoed up to using Perl modules that provided lots of “do what I
mean” syntactical sugar. In this column, I’m just going to put the
pedal to the metal and go right for using that kind of module.

Let’s start off with getting the list of pages on a site. Our first
attempt to write code to this would probably look a bit like this:

use WebService::CRUST;

my $w = new WebService::CRUST(

 base 	=> ‘http://local.wordpress.dev/wp-json/wp/v2/’,

 format 	=> [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’],

);

this is the equivalent of

$w->get(‘pages’);

we could also write $w->pages;

yummy syntactic sugar!

my $result = $w->get_pages;

print “Total items: “ .

 $result->crust->{response}->{_headers}->{‘x-wp-total’},

 “\n”;

foreach my $page (@{ $result->result }) {

 print 	$page->{‘id’} . ‘:’ .

 	 $page->{‘title’}->{‘rendered’} .

 	 “ (“ . $page->{‘link’} . “)\n”;

}

The code creates a WebService::CRUST object and tells it that
all of our requests are going to start with that URL. It also speci-
fies that we will want to use JSON::XS (the faster JSON parser)
to decode the responses we get back. The next step is to query for
all of the pages on the system. As you can see in the comments,
WebService::CRUST allows us to write code that makes it look
like pages() or get_pages() is a real method call. This is one of
the things I like about this module: it makes for very readable
code, even if it is doing a bit of autoload magic behind the scenes.

For fun (or actually, for foreshadowing), we reach deep into
the WebService::CRUST::Response object using the crust
method to pull out one of the headers WordPress sends us in
response to our query (X-WordPress-Total, which gets down-
cased when stored in the object). This header provides the
number of items we should expect back from our query. Then
we proceed to iterate over the response we got back in that
WebService::CRUST::Response object (via the result method) to
print out the ID, title, and the URL for each page on the system.
Here are the results on my local test instance (which I’ve pre-
loaded with a bunch of example pages):

Total items: 248

2:Sample Page (http://local.wordpress.dev/sample-page/)

5434:2008 Festival (http://local.wordpress.dev/archive

/2008-festival/)

5433:2007 Festival (http://local.wordpress.dev/archive

/2007-festival/)

5432:2006 Festival (http://local.wordpress.dev/archive

/2006-festival/)

5409:2012 Festival (http://local.wordpress.dev/archive

/2012-festival/)

5407:2011 Festival (http://local.wordpress.dev/archive

/2011-festival/)

5405:2010 Festival (http://local.wordpress.dev/archive

/2010-festival/)

5403:2009 Festival (http://local.wordpress.dev/archive

/2009-festival/)

http://www.usenix.org
https://wp-oauth.com
http://local.wordpress.dev/wp-json/wp/v2/%E2%80%99
http://local.wordpress.dev/sample-page/
http://local.wordpress.dev/archive/2008-festival/
http://local.wordpress.dev/archive/2008-festival/
http://local.wordpress.dev/archive/2007-festival/
http://local.wordpress.dev/archive/2007-festival/
http://local.wordpress.dev/archive/2006-festival/
http://local.wordpress.dev/archive/2006-festival/
http://local.wordpress.dev/archive/2012-festival/
http://local.wordpress.dev/archive/2012-festival/
http://local.wordpress.dev/archive/2011-festival/
http://local.wordpress.dev/archive/2011-festival/
http://local.wordpress.dev/archive/2010-festival/
http://local.wordpress.dev/archive/2010-festival/
http://local.wordpress.dev/archive/2009-festival/
http://local.wordpress.dev/archive/2009-festival/

66    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

5305:Pick-Up Band 2014 (http://local.wordpress.dev/archive

/2014-festival/pick-up-band-2014/)

5280:Saturday Schedule by Location (2014) (http://local

.wordpress.dev/archive/2014-festival/saturday-in-davis-square

/saturday-schedule-by-location-2014/)

Hey, wait a second, something is wrong. WordPress says there
are 248 pages on the system, but it has only returned 10. Wel-
come to the world of pagination. Perhaps showing its blogging
roots, WordPress wants to hand back the reply one “page” at a
time. This isn’t entirely out of the ordinary because other servers
(e.g., LDAP servers) often have a max size for data returned that
you can only deal with by requesting a chunk at a time. We could
try to get around this pagination by asking WordPress to create
pages that are big enough to hold all of the items or even turn off
pagination, but I think it is better to work within the system than
try to hack around it.

So how do we get more pages past the first one? If we were
to peek more closely at what was returned from our request,
we would notice that WordPress has sent us a “link” header
(remember that from the beginning of the column?). Here’s what
it looks like from the request above (it is all one long line):

‘http://local.wordpress.dev/wp-json/wp/v2/pages?page=

2>; rel=”next”’

That is the URL we will have to request to get the next set of
results (i.e., the next page). We’ll need to write code that parses
this header and extracts the next page number, then repeats the
request. Here’s what that code looks like:

use WebService::CRUST;

my $w = new WebService::CRUST(

 base 	=> ‘http://local.wordpress.dev/wp-json/wp/v2/’,

 format 	=> [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’],

);

my $nextpage = 1;

my $result = $w->get_pages(‘page’ => $nextpage,);

print “Total items: “ .

 $result->crust->{response}->{_headers}->{‘x-wp-total’},

 “\n”;

print	“Total pages of content: “ .

 	 $result->crust->{response}->{_headers}->{‘x-wp-totalpages’},

 	 “\n”;

while (defined $result and $nextpage) {

 foreach my $page (@{ $result->result }) {

 print $page->{‘id’} . ‘:’ .

 $page->{‘title’}->{‘rendered’} .

 “ (“ . $page->{‘link’} . “)\n”;

 }

 ($nextpage) =

 $result->crust->{response}->{_headers}->{‘link’} =~

 /\?page=(\d+)>; rel=”next”/;

 last unless (defined $nextpage);

 $result = $w->get_pages(‘page’ => $nextpage,);

}

Let’s focus for a moment on how this differs from the previous
code. WordPress is willing to tell us how many pages it will take
to provide the entire result set, so I print that for informational
purposes. For the real work, our get_pages requests now take an
argument that is the parameter and the value to be sent with that
request. Adding this argument means we’ll be requesting:

http://local.wordpress.dev/wp-json/wp/v2/pages?page=N

where N is the value of $nextpage. We print the information
returned for that page, determine if there are more pages (as
specified in the link header), and if so, we perform another
request for the next page. As a quick aside, we could have taken
the number of pages returned in the X-WP-TotalPages header
and iterate from page 1 to that value, but I believe it is less likely
to cause a race condition if we work from the “here’s the next
page” info we get back on each query instead.

This is the basic pattern for most things we can pull back from
the API. For example, if we wanted a list of users:

use WebService::CRUST;

my $w = new WebService::CRUST(

 base => ‘http://local.wordpress.dev/wp-json/wp/v2/’,

 basic_username => ‘api’,

 basic_password => ‘api’,

 format => [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’],

);

my $nextpage = 1;

my $result = $w->get_users(‘page’ => $nextpage,);

while (defined $result and $nextpage) {

 foreach my $user (@{ $result->result }) {

 print $user->{‘id’} . ‘:’ . $user->{‘name’} . “\n”;

 }

 ($nextpage) =

 $result->crust->{response}->{_headers}->{‘link’} =~

 /\?page=(\d+)>; rel=”next”/;

 last unless (defined $nextpage);

 $result = $w->get_users(‘page’ => $nextpage,);

}

http://www.usenix.org
http://local.wordpress.dev/archive/2014-festival/pick-up-band-2014/
http://local.wordpress.dev/archive/2014-festival/pick-up-band-2014/
http://local.wordpress.dev/archive/2014-festival/saturday-in-davis-square/saturday-schedule-by-location-2014/
http://local.wordpress.dev/archive/2014-festival/saturday-in-davis-square/saturday-schedule-by-location-2014/
http://local.wordpress.dev/archive/2014-festival/saturday-in-davis-square/saturday-schedule-by-location-2014/
http://local.wordpress.dev/wp-json/wp/v2/pages?page=
http://local.wordpress.dev/wp-json/wp/v2/%E2%80%99
http://local.wordpress.dev/wp-json/wp/v2/pages?page=N
http://local.wordpress.dev/wp-json/wp/v2/%E2%80%99

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  67

COLUMNS
Practical Perl Tools: Blog, Can We Talk?

Almost identical, yes? The only differences are that we add
some initial parameters to send along authentication with every
request (in an insecure manner, don’t rub it in) and later on pull
out different fields from the returned information.

Where Do We Go from Here?
We’re almost out of room, but there are a few important things
to mention. First off, the examples we’ve seen here all pull a col-
lection of items (pages, users, etc.). If we want to retrieve a single
item, we can reference that item as a part of the path we request
by appending the ID we need—for example:

$result = $w->get(“pages/$id”);

Second, we’ve only seen examples that retrieve content. If we
want to create or modify content on the site, we use the REST
idea of using other HTTP operations as verbs. Want to create a
new page or edit a page? Perform a PUT request (details found
in the v1 documentation) with the right parameters specified as
arguments to the put() method.

And lastly, one more advanced topic we didn’t discuss is how to
use more of the power of WordPress in our interactions. v1 of
the API had a working “filter” parameter which allowed you to
pass in a specification the WordPress WP_Query class could
work with. This means that you could say to WordPress “return
all of the posts by this author” or “only return a list of publicly
published posts.” I had difficulty using this facility with the v2
API because I believe it is still very much a work in progress as
of this writing. Hopefully, this facility will be up to snuff by the
time you read this.

In the meantime, enjoy, and I’ll see you next time.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes sponsorship and offers custom packages to help you promote your
 organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience,
we offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well
as our multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation in
neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholarships for
students, equal representation of women and minorities in the computing research community, open access
to our online library, and the development of open source technology.

Learn more at:
www.usenix.org/supporter

http://www.usenix.org
mailto:sponsorship@usenix.org
http://www.usenix.org/supporter

