
68    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS

iVoyeur
Using NCPA: Nagios Cross-Platform Agent

D A V E J O S E P H S E N

Dave Josephsen is the some
time book-authoring developer
evangelist at Librato.com. His
continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I’ve been working at home for over a year now, and I can’t help but feel
that I’m somehow doing it incorrectly. I’m wearing pants for one thing,
and my hygiene habits have not changed whatsoever (although admit-

tedly I never was a hygiene Olympian). In fact I seem to be experiencing
very few of the great benefits one hears about, like drinking at inappropri-
ate times, playing video games, not interacting with people, and, well, not
working.

In their place I’m experiencing a whole slew of not very awesome side effects of having these
large, luxurious blocks of uninterrupted time to dig in and work on stuff. These include fail-
ing to stop working ever and starting too many side-projects because of all the “extra time” I
feel like I have (that I don’t actually have). I even have meetings. Oh crap, in fact I have meet-
ings right now; I’ll be right back.

Okay sorry, that’s another problem: meetings sneak up on me now, and nearly always coincide
with one meal or another that I’m supposed to be eating. An unlucky consequence, I sup-
pose, of the dissonance between the people in my life who make meetings and live two hours
ago, in California, and the people in my life who make lunch and dinner and who live now,
in Texas. It also has begun to seem weird that we have times for these things at all, eating,
meeting, and working, that is.

When I applied for this job, my first several interviews were undertaken by way of Google
Hangouts. This was a very real logistical concern for me at the time because I was running
a snowflake everything-compiled-from-scratch Linux laptop, and, well, you know how that
goes with cameras, soundcards, printers, and etc. I got it all sorted out in time, and experi-
enced my first few video-chats as job interviews, which, by the way, is not a very good idea. It
was extremely awkward and I kept spacing out. It felt like I was watching a job interview on
TV, so I kept forgetting to answer.

Anyway, I spend an inordinate amount of time on Hangouts, appear.in, and various other
hosted impromptu meeting services these days, and I’ve noticed that whenever Hangouts
is going, my CPU fans kick on. This is pretty noticeable on my MacBook, but downright dis-
tracting on my ThinkPads. My poor little ThinkPad x120 gasps and wheezes like it’s sprint-
ing the last 30 feet of an ultra-marathon when I try to run Hangouts on it.

Being a monitoring sort of person, I got curious about this behavior, and brought some tools
to bear to help me visualize the overhead, but I pretty quickly got myself entangled in the
question of whether I was comparing apples to apples. I mean literally. Is it the same thing to
measure CPU utilization on an Apple vs. a Linux box?

At this point I should point out that not only am I lazy by nature, but I also really don’t have
the time to put any actual effort into this, so I figured the shortest path was probably to get
my hands on a cross-platform monitoring agent. That would at least make me feel like I was
measuring both systems with the same ruler, and that’d probably help me to brute-force
ignore the screams of protest from my inner engineer.

http://www.usenix.org
mailto:dave-usenix@skeptech.org

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  69

COLUMNS
iVoyeur—Using NCPA: Nagios Cross-Platform Agent

Because I spend my time these days thinking about and working
with telemetry processing systems, I haven’t really looked at the
state of client-side data collection tools lately (especially tools
that might work on a Mac). There aren’t many cross-platform
monitoring agents that include support for OS X. The most
robust solution is probably DataDog, but that was overkill for my
purposes. I wanted something I could use for a few days and then
get rid of, and setting up DataDog would entail … artifacts like
emails, and passwords on Web sites, and well-intentioned pre-
sales, and support representatives.

Really, I just wanted something like good-old GKrellM, so I spent
a few minutes trying to get GKrellM to build on my Mac, which
was fun but fruitless. I was also a little surprised to find there
was no homebrew recipe for GKrellM; “brew install X” so rarely
fails me nowadays. Then I remembered NCPA.

NCPA, or the “Nagios Cross-Platform Agent,” is a monitoring
agent built and maintained by the folks at Nagios Enterprises.
It’s a cross-platform Python script that is distributed in binary
form (via cx_Freeze). In many ways, it’s exactly what you’d

expect if you asked Nagios Enterprises for an agent. It’s small,
easy to work with, and, out of the box, it doesn’t really know how
to monitor very much of anything. It can enumerate the run-
ning processes and measure CPU, Memory, Disk, and Network
utilization. And it does a great job of detecting all of these things
(it sees all of my vmnet network interfaces, for example), but like
its big brother it depends on plugins to do the heavy lifting, and
that’s a good thing IMO.

I’d never tried NCPA, so I thought this would be a great opportu-
nity. It, along with Nagios Core and the rest of the open source
software made by Nagios Enterprises, is on GitHub. I must be
getting old, though, because I just went and grabbed the official
binary distributions of NCPA for OS X and Debian from [1]. The
Linux install was pretty much what you’d imagine: one dpkg-i
and it was up and running.

The Mac put up a little more resistance. NCPA came packaged
in a disk-image (.dmg file), which contained an installer shell
script called install.sh. I could not chmod the script to make it
executable because .dmg’s are a read-only file system. All of my

Figure 1. NCPA’s spartan but functional built-in Web interface

http://www.usenix.org

70    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

COLUMNS
iVoyeur—Using NCPA: Nagios Cross-Platform Agent

attempts to remount it as R/W were mockingly rejected by OS X.
Giving up on that, my first few attempts to indirectly execute the
script with, for example, “sh -c” were also rebuffed, but…

/bin/sh < /Volumes/NCPA-1.8.1/install.sh

…worked for me.

Like Nagios, NCPA installs itself to /usr/local/ncpa by default.
Inside this directory is an “etc” where you will find an ncpa.cfg file
that controls NCPA’s behavior. I left most of this alone, changing
only the “community_string” attribute, which specifies the auth
token you use to interact with NCPA.

Compared to the other agents, like Check_MK, commonly used
in the Nagios solar system, NCPA is a lot easier to install and
reason about. It eschews custom protocols and provides a Web-
API that responds in JSON over HTTPS on tcp/5693 by default
(change this along with everything else in the config file). This
is pretty great. You can interact with NCPA using cURL or any-
thing else that can speak HTTPS, and you can parse its output
with jq, or anything else that groks JSON.

It even comes with a Web UI that draws graphs!

Granted, it’s missing some fundamental features that I look for
in a metrics analysis tool. Its y-axis handling leaves a lot to be
desired, for example, but the UI is fine for ad hoc checking out
individual boxes, and obviously it was more than sufficient for
my current purposes. Anyway, NCPA really isn’t here to be an
analysis tool; it’s a lightweight, easy-to-run data collection agent.
One that, if I were in the market for an agent, is actually a quite
compelling choice.

I mean look at this API! There are eight top-level URIs: memory,
interface, agent, CPU, disk, agent, process, and services. I can,
for example, get a JSON dump of the running processes on my
MacBook at

https://localhost:5693/api/processes/

I can get the free memory with

https://localhost:5693/api/memory/virtual/available

I’m oversimplifying just a tad there. If you’re doing this outside
of a browser, you’ll need to pass in the token by setting it as an
attribute in the URL like so:

https://localhost:5693/api/memory/virtual

/available?token=zomgsecret

There are a slew of other attributes we can set: for example, get
Nagios-style output by setting threshold attributes like so:

https://localhost:5693/api/memory/virtual/available?token

=zomgsecret&warning=1&critical=2&check=true

If you copy or symlink some standard Nagios plugins into /usr/
local/ncpa, you can even run them from the API from the agent
tree like so:

https://localhost:5693/api/agent/plugin/check_thing

/”First Arg”/”Second Arg”/?token=zomgsecret

You’ll get back a JSON blob of the plugin’s output that looks like
this:

{ “value”: { “returncode”: 0, “stdout”: “Thingy looks ok! First

Arg, Second Arg\n” } }

If you aren’t already using check_mk and especially if you’re
running NRPE/NRDP, then you might want to consider running
NCPA as a replacement for your current remote plugin-execu-
tion framework. In my admittedly teensy experience, it’s been
simple and painless, and has a slew of features built in for emit-
ting to preexisting NRDP daemons and otherwise cohabitating
with your existing Nagios toolchain.

It certainly scratched my itch for comparing the utilization char-
acteristics of the various video conferencing tools I use every
day (for the moment, it looks like appear.in on my MacBook is the
best option). The next time I’m helping someone design and/or
build out their Nagios infrastructure, NCPA will definitely play
a role.

Take it easy.

Resources
[1] NCPA agent: https://assets.nagios.com/downloads/ncpa
/download.php.

http://www.usenix.org
https://localhost:5693/api/processes/
https://localhost:5693/api/memory/virtual/available
https://localhost:5693/api/memory/virtual
https://assets.nagios.com/downloads/ncpa/download.php

