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File system benchmarks constitute a crucial part of a storage evalu-
ator’s toolbox. Due to the wide variety of modern workloads and 
ever-growing list of storage stack features, modern benchmarks have 

become fairly complex tools. This article describes Filebench, one of the most 
popular modern file system benchmark tool suites. Using several practi-
cal examples, we demonstrate Filebench’s versatility, expressiveness, and 
ease of use. It is our hope that this article will encourage people to use File-
bench to describe their real-life workloads as well as publicly contribute new 
workloads.

Filebench is a highly flexible framework for file system and storage benchmarking. The 
project started around 2002 inside Sun Microsystems and was open-sourced around 2005. It 
is now hosted at sourceforge.net [2] and maintained by the community, centered around the 
File systems and Storage Lab (FSL) at Stony Brook University. According to Google Scholar, 
Filebench was used in over 500 publications and remains one of the most popular file system 
benchmarks both in academia and industry. The popularity of the Filebench framework 
comes mainly from the fact that it is shipped with several predefined macro workloads, e.g., 
Web-server, Mail-server, and File-server. This allows users to easily benchmark their file 
systems against several sufficiently different workloads with a single tool.

The intrinsic power of Filebench originates, however, not from the included workloads but 
rather from its expressive Workload Model Language (WML), which allows users to encode 
a wide variety of workloads. We therefore find ourselves disappointed that most users do 
not go beyond the predefined workloads and consequently do not utilize the full power of 
Filebench. The goal of this article is to educate the community on Filebench’s WML and 
demonstrate both its long-standing and recently added features. In addition, we describe best 
practices for using Filebench to avoid common beginners’ mistakes. 

Basic Functionality
Many existing storage benchmarks (e.g., fio, mdtest, and SPECsfs) hard code the workloads 
they generate quite rigidly. A user can specify some basic workload parameters (e.g., I/O 
size, number of threads, read/write ratio) but cannot really control the execution flow in 
detail. Expressing a workload with a general-purpose programming language (e.g., C/C++ 
or Python) is another extreme that offers the utmost flexibility but is time-consuming. The 
Filebench framework provides a much needed middle ground: high flexibility combined with 
the ease of describing a workload.

In Filebench, users define workloads using a Workload Model Language (WML). There are 
four main entities in WML: fileset, process, thread, and flowop. Every defined entity must 
have a user-assigned name that is mainly used to print per-process and per-thread statis-
tics. A fileset is a named collection of files. To define a fileset, a user specifies its name, path, 
number of files, and a few other optional attributes. Listing 1 shows two filesets with 1,000 
files of 128 KB size that will be located in the /tmp directory.
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define fileset name=”test1”,path=”/tmp”,

	 entries=1000,filesize=128k

define fileset name=”test2”,path=”/tmp”,

	 entries=1000,filesize=128k,prealloc=80

Listing 1: Examples of fileset definitions

A Filebench run proceeds in two stages: fileset preallocation and 
an actual workload execution. By default, Filebench does not cre-
ate any files in the file system and only allocates enough internal 
file entries to accommodate all defined files. To actually create 
files, one should specify the percentage of files to precreate with 
the prealloc attribute. Listing 1 shows how Filebench precreates 
800 files in the fileset test2—80% of 1,000.

The reason for Filebench not to precreate all (or any) files is 
that certain workloads include file creates. When a workload-
defined file create operation should be executed, Filebench picks 
a non-existent file entry in a fileset and creates the file. The total 
number of simultaneously existing files in a fileset can never 
exceed the fileset size at any point during a Filebench run. If a 
workload tries to create a file but there are no more non-existent 
file entries, then an internal Out-of-Resources event is triggered, 
which can be interpreted either as an end of the run or an error, 
depending on the user’s objective. Consider a WML snippet in 
Listing 2 that can be used to measure peak file create rate. At 
first, the fileset is empty and the workload starts to create files 
in a loop. When the workload tries to create the 10,001st file, 
Filebench graciously exits and reports the measurements. This 
happens because quit mode is set to firstdone; more informa-
tion on this and other quit modes is described later in this article. 
Note that delete operations reduce the number of existing files 
and can balance out the file create operations.

set mode quit firstdone

define fileset name=”fcrset”,path=”/tmp”,

	 entries=10000,filesize=16k

define process name=”filecreate”,instances=1 {

 thread name=”filecreatethread”,instances=2 {

  flowop createfile name=”crfile”,filesetname=”fcrset”

  flowop closefile name=”clfile”

 }

}

run

Listing 2: WML snippet to measure file create performance

WML processes represent real UNIX processes that are created 
by Filebench during the run. Every process consists of one or 
more threads representing actual POSIX threads. The attribute 
instances=N instructs Filebench to replicate the corresponding 
processes and threads N times. Listing 2 defines one process 
named filecreate with two identical threads. WML allows 
users to define any number of identical or different processes 
containing any number of identical or different threads. Listing 
3 demonstrates a more complex workload description with five 
processes in total. Three processes contain one reader thread 
and two writer threads; two other processes contain four identi-
cal threads that create and delete files. All processes and threads 
run simultaneously.

define process name=”testprocA”,instances=3 {

  thread name=”reader”,instances=1 {

    flowop openfile name=”readop”,filesetname=”testset”

    flowop readwholefile name=”readop”,iosize=4k

    flowop closefile name=”closeop1”

  }

  thread name=”writer”,instances=2 {

    flowop openfile name=”readop”,filesetname=”testset”

    flowop writewholefile name=”writeop”,iosize=4k

    flowop closefile name=”closeop2”

  }

}

define process name=”testprocB”,instances=2 {

  thread name=”crdelthread”,instances=4 {

    flowop createfile name=”createop”,filesetname=”testset”

    flowop closefile name=”closeop3”

    flowop deletefile name=”deleteop”,filesetname=”testset”

  }

}

Listing 3: Example of defining multiple different processes and threads

Every thread executes a loop of flowops. Flowop is a represen-
tation of a file system operation and is translated to a system 
call by Filebench: e.g., the createfile flowop creates a file and 
the write flowop writes to a file. Table 1 lists the most common 
WML flowops, which cover the majority of operations that real 
applications execute against a file system. When Filebench 
reaches the last flowop defined in a thread, it jumps to the begin-
ning of the thread definition and executes flowops repeatedly 
until a quit condition is met (e.g., requested runtime elapsed).
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Flowop Description

openfile 
Opens a file. One can specify 
a virtual file descriptor to use 
in the following flowops.

closefile 
Closes a file referenced by a 
virtual file descriptor 

createfile 
Creates a file. One can specify 
a virtual file descriptor to use 
in the following flowops.

deletefile Deletes a file

read Reads from a file

readwholefile 
Reads whole file even if it 
requires multiple system calls

write Writes to a file

writewholefile 
Writes whole file even if it 
requires multiple system calls

appendfile Appends to the end of a file

statfile Invokes stat() on a file

fsync Calls fsync() on a file

Table 1: List of most frequently used flowops. In addition, Filebench sup-
ports a number of directory, asynchronous I/O, synchronization, operation 
limiting, and CPU consuming and idling operations.

Filebench uses Virtual File Descriptors (VFDs) to refer to files in 
flowops. VFDs are not actual file descriptors returned by open(); 
instead, users assign VFDs explicitly in openfile and createfile 
flowops. Later, these VFDs can be used in flowops that require 
a file to operate on. Listing 4 provides an example where the 
attribute fd is used to specify two different VFDs. First, the 
thread opens one file, assigning it VFD 1 and creates another file 
with VFD 2. Then the thread reads from one file and writes to 
another, keeping both files open and referring to them by their 
VFDs. Finally, both files are closed. This represents a simple 
copy workload in WML. Note that VFDs are per-thread entities 
in Filebench: a VFD in one thread does not impact an identically 
numbered VFD in another thread.

VFDs specified in openfile and createfile must not be opened 
prior to the flowops execution. Therefore, in most of the cases 
it is necessary to explicitly close VFDs with a closefile flowop. 
Other flowops that require a VFD (e.g., read) will open a file 
automatically if the corresponding VFD is not opened yet. If the 
fd attribute is not specified in a flowop then Filebench assumes 
that it is equal to zero. This is a useful convention for a large 
class of workloads that keep only one file open at a time (see 
Listings 2 and 3). Describing such workloads in WML does not 
require specifying the fd attribute, which streamlines the work-
load description further.

When opening a file, Filebench first needs to pick a file from a 
fileset. By default this is done by iterating over all file entries in 
a fileset. To change this behavior one can use the index attri-
bute that allows one to refer to a specific file in a fileset using 
a unique index. In most real cases, instead of using a constant 
number for the index, one should use custom variables described 
in the following section.

Filebench supports a number of attributes to describe access 
patterns. First, one can specify an I/O size with the iosize attri-
bute. Second, one can pick between sequential (default) and ran-
dom accesses. Sequential patterns usually make sense only if a 
file is kept open between the flowop executions so that the oper-
ating system can maintain the current position in a file. When 
the end of a file is reached, sequential flowops start accessing 
the file from the beginning. Third, for random workloads, one 
can specify the working set size in a file using the wss attribute. 
Finally, direct and synchronous I/Os are supported as well.

The very last line of a WML file usually contains a run or psrun 
command. These commands tell Filebench to allocate the 
defined filesets, spawn the required number of UNIX processes 
and threads, and, finally, start a cycled flowops execution. Both 
commands take the duration of the run in seconds as an argu-
ment; the psrun command in addition takes a period with which 
to print performance numbers.

To generate a workload described, e.g., in a workload.f WML file 
(.f is a traditional extension used by Filebench), one executes 
the filebench -f workload.f command. A non-abortive run 
terminates under two conditions. First, the run can be time-

set mode quite firstdone

define fileset name=”testfset”,path=”/tmp”,

               entries=10000,filesize=4k,prealloc=50

define process name=”filecopy”,instances=2 {

  thread name=”filecopythread”,instances=2 {

    flowop openfile name=opfile”,

                    filesetname=”testfset”,fd=1

    flowop createfile name=”crfile”,

                    filesetname=”testfset”,fd=2

    flowop readwholefile name=”rdfile”,

                    filesetname=”testfset”,fd=1

    flowop writewholefile name=”wrfile”,

                    filesetname=”testfset”,fd=2

    flowop closefile name=”clfile1”,

                    filesetname=”testfset”,fd=2

    flowop closefile name=”clfile2”,

                    filesetname=”testfset”,fd=1

  }

}

Listing 4: Simple file copying expressed in WML
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based; this is the default mode and if the run command does not 
have any arguments, then the workload will run for one minute 
only. Second, a Filebench run might finish if one or all threads 
completed their job. To specify Filebench’s quit mode, a set 

mode quit command can be used. In Listing 2, we change the 
quit mode to firstdone, which means that whenever one of the 
threads runs out of resources (e.g., there are no more non-exis-
tent files to create), Filebench stops. Another scenario is when 
a thread explicitly declares that it completed its job using the 
finishoncount or finishonbytes flowops. These flowops allow 
one to terminate a thread after a specific number of operations 
completed (e.g., writes or reads) or a specific number of bytes 
were read or written by a thread.

In the end of the run, Filebench prints a number of different met-
rics. The most important one is operations per second. This is 
the total number of executed flowop instances (in all processes 
and threads) divided by the runtime. For flowops that read and 
write data, Filebench also prints the throughput in bytes per 
second. Finally, one can measure the average and distribution of 
latencies of individual flowops. In addition, Filebench can main-
tain and print statistics per process, per thread, or per flowop.

Long-time Filebench framework users might be surprised that 
we described Filebench’s run as a non-interactive experience. In 
fact, before version 1.5, Filebench supported interactive runs: a 
console in which one could type workloads and execute vari-
ous commands. However, one of the big changes in v1.5 is the 
elimination of interactive mode. The majority of experienced 
users did not use non-interactive runs. Beginners, on the other 
hand, made a lot of systematic mistakes in interactive mode (e.g., 
did not drop caches or remove existing filesets between runs). 
In v1.5, therefore, we made a strategic decision not to support 
interactive mode. This further helped reduce the total amount of 
code to maintain.

Advanced Features
In this section, we highlight some advanced Filebench features. 
They were either less known before or were just recently added 
in version 1.5. Listing 5 demonstrates most of these features. 

Variables
Filebench supports two types of variables: regular and custom. 
Variable names, irrespective of their type, are prefixed with a 
dollar sign. With a few exceptions, variables can be used instead 
of constants in any process, thread, or flowop attribute. Regular 
variables hold constant values, are defined with the set keyword, 
and are mainly used for convenience. It is considered a good style 
to define all parameters of the workload (e.g., I/O sizes or file 
numbers) in the beginning of a WML file and then use vari-
ables in the actual workload definition; it also facilitates easier 
changes to the workload. Listing 5 demonstrates how the $iosize 
regular variable is used to set I/O size.

set $iosize=4k

set $findex=cvar(type=cvar-normal,min=0,max=999,

	 parameters=mean:500;sigma:100)

set $off=cvar(type=cvar-triangular,min=0,max=28k,

	 parameters=lower:0;upper:28k;mode:16k)

enable lathist

define fileset name=”test”,path=”/tmp”,entries=1000,

	 filesize=32k,prealloc=100

eventgen rate=100

define process name=”testproc1” {

  thread name=”reader”,memsize=10m {

    flowop read name=”rdfile”,filesetname=”test”,

	 indexed=$findex,offset=$off,iosize=$iosize

    flowop closefile name=”clsfile1”

    flowop block name=”blk”

  }

  thread name=”writer”,memsize=20m {

    flowop write name=”wrfile”,

	 filesetname=”test”,iosize=$iosize

    flowop closefile name=”clsfile2”

    flowop opslimit name=”limit”

  }

  thread name=”noio”,memsize=40m {

    flowop hog name=”eatcpu”,value=1000

    flowop delay name=”idle”,value=1

    flowop wakeup name=”wk”,target=”blk”

  }

}

Listing 5: Demonstration of some advanced Filebench features

The use of custom variables (cvar) powerfully enables any File-
bench attribute to follow some statistical distribution. Distribu-
tions are implemented through dynamically loadable libraries 
with a simple and well-defined interface that allows users to add 
new distributions easily. When Filebench starts, it looks for the 
libraries in a certain directory and loads all supported distribu-
tions. We ported the Mtwist package [4] to the custom variables 
subsystem; this immediately made Filebench support eight 
distributions, and this number is growing.

In Listing 5 the indexed attribute of the rdfile flowop follows 
the distribution described by the $findex custom variable. The 
$findex variable uses a normal distribution with values bounded 
to the 0–999 range. The minimum and maximum bounds are in 
sync with the number of files in the fileset here—1,000. Distribu-
tion-specific parameters—mean and standard deviation (sigma) 
in case of a normal distribution—are specified with the param-

eters keyword. As we mentioned in the Basic Functionality sec-
tion, Filebench by default picks files from a fileset in a rotating 
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manner and the indexed attribute can pick specific files. Assign-
ing findex makes Filebench access some files more frequently 
than others using a normal distribution from a custom variable. 
This simulates a real-world scenario in which some files are 
more popular than others.

Earlier Filebench versions actively used the so-called random 
variables, which are essentially similar to custom variables. 
But we found random variables limiting because the number of 
supported distributions was small, and adding more distribu-
tions required significant knowledge of Filebench’s code base. In 
version 1.5 we replaced random variables with custom variables 
(random variables are still supported for backward compatibility 
but will be phased out in the future).

Synchronization Primitives
When a workload is multithreaded, it sometimes makes sense to 
emulate the process by which requests from one thread depend 
on requests from other threads. For this, Filebench provides 
the block, wakeup, semblock, and sempost flowops. They allow 
Filebench to block certain threads until other threads complete 
the required steps. Listing 5 shows how a reader thread blocks in 
every loop until the noio thread wakes it up.

The ability to quickly define multiple processes and synchroni-
zation between them was one of the main requirements during 
Filebench framework conception. The task for Sun Microsys-
tems engineers at the time was to improve file system perfor-
mance for a big commercial database. Setting up TPC-C [7], 
database, and all of the required hardware was expensive and 
time-consuming for an uninvolved file system engineer. The key 
for simulating database load on a file system was how log writes 
cause generic table updates to block. With this use case in mind, 
Filebench’s WML was designed, and a corresponding oltp.f 
workload personality was created and then validated against the 
real database. Having the Filebench framework and a workload 
description in WML gave engineers the time to focus just on the 
file system tuning task. 

CPU and Memory Consumption
Filebench provides a hog flowop that consumes CPU cycles and 
memory bandwidth. Conversely, the flowop delay simulates 
idle time between requests. Also, when defining a thread, one 
must specify its memory usage with the memsize attribute. Every 
thread consumes this amount of memory and performs reads and 
writes from it. In Listing 5 the noio thread burns CPU by copying 
memory 1,000 times and then sleeps for one second per loop.

Speed Limiting
In many cases one wants to evaluate system behavior under 
moderate or low loads (which are quite common in real systems) 
instead of measuring peak performance. Filebench supports this 

with the flowops iopslimit (limits the rate of data operations 
only) and bwlimit (limits the bandwidth). In Listing 5, the reader 
thread issues only 100 reads per second (or fewer if the system 
cannot fulfill this rate). The command eventgen sets the rate, 
which is global for all processes and threads.

Complex Access Patterns
Originally Filebench supported only simple access patterns: 
uniformly random and sequential. We added the offset attri-
bute which, in combination with custom variables, allows one to 
emulate any distribution of accesses within a file. For example, 
for virtualized workloads with big VMDK files, we observed 
that some offsets are more popular than others [6]. In Listing 5, 
the writer thread accesses file’s offsets following a triangular 
distribution.

Latency Distribution
Measuring only the average latency often does not provide 
enough information to understand a system’s behavior in detail. 
We added latency distribution profiling with the enable lathist 

command to Filebench [3].

Composite Flowops
In WML one can define a flowop that is a combination of other 
flowops. This is especially useful in cases when one wants to 
execute certain group of flowops more frequently than other flo-
wops. The attribute iters can be used to repeat regular or com-
posite flowops. In addition, Filebench’s internal design allows 
users to easily implement new flowops in C. We do not provide 
examples of composite or user-defined flowops in this article but 
offer documentation online [2]. 

File System Importing
Another upcoming feature in Filebench v1.5 is importing exist-
ing file system trees. Older versions of Filebench could only work 
with trees that it generated itself. This new feature allows one to 
generate a file system with a third-party tool (e.g., Impressions 
[1]), or use a real file system image and run a Filebench workload 
against this file system. 

Data Generation
Earlier, Filebench versions generated all zeros or some arbi-
trary content for writes. In v1.5, we are introducing the notion 
of a datasource, which can be attached to any flowop. Different 
datasources can generate different types of data: one controlled 
by some entropy, duplicates distribution, file types, etc. This new 
feature is especially important for benchmarking modern stor-
age systems that integrate sophisticated data reduction tech-
niques (e.g., deduplication, compression).
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Predefined Workloads
It is important to understand that Filebench is merely a frame-
work, and only its combination with a workload description 
defines a specific benchmark. The framework comes with a 
set of predefined useful workloads that are especially popular 
among users. We are often asked about the details of those work-
loads. In this section, we describe the three most frequently used 
Filebench workloads: Web-server, File-server, and Mail-server.

What does a simple real Web-server do from the perspective 
of a file system? For every HTTP request, it opens one or more 
HTML files, reads them completely, and returns their content to 
the client. At times it also flushes client-access records to a log 
file. Filebench’s Web-server workload description was created 
with exactly these assumptions. Every thread opens a file, reads 
it in one call, then closes the file. Every 10th read, Filebench’s 
Web-server appends a small amount of data to a log file. File 
sizes follow a gamma distribution, with an average file size of  
16 KB. By default, the Web-server workload is configured with 
100 threads and only 1,000 files. As described later in the sec-
tion, it is almost always necessary to increase the number of  
files to a more appropriate number.

Filebench’s File-server workload was also designed by envi-
sioning a workload that a simple but real File-server produces 
on a file system. Fifty processes represent 50 users. Every user 
creates and writes to a file; opens an existing file and appends 
to it; then opens another file and reads it completely. Finally, the 
user also deletes a file and invokes a stat operation on a file. Such 
operation mix represents the most common operations that one 
expects from a real File-server. There are 10,000 files of 128 KB 
size defined in this workload by default.

The Mail-server workload (called varmail.f) represents a work-
load experienced by a /var/mail directory in a traditional UNIX 
system that uses Maildir format (one message per file). When 
a user receives an email, a file is created, written, and fsynced. 
When the user reads an email, another file is opened, read 
completely, marked as read, and fsynced. Sometimes, users also 
reread previously read emails. Average email size is defined as  
16 KB, and only 16 threads are operating by default.

In addition to the workloads described above, Filebench comes 
with OLTP, Video-server, Web-proxy, and NFS-server macro-
workloads and over 40 micro-workloads. It is important to 
recognize that workloads observed in specific environments can 
be significantly different from what is defined in the included 
WML files. This is an intrinsic problem of any benchmark. 
The aforementioned workloads are merely an attempt to define 
workloads that are logically close to reality and provide common 
ground for evaluating different storage systems. We encour-
age the community to analyze their specific workloads, define 

them in Filebench’s WML [5], validate the resulting synthetic 
workloads against the original workloads, and contribute WML 
descriptions to Filebench. 

Best Practices
In this section, we share several important considerations when 
using the Filebench framework. These considerations originated 
from many conversations that we had with Filebench users over 
the past seven years.

File system behavior depends heavily on the data-set size. Using 
Filebench terminology, performance results depend on the 
number and size of files in defined filesets. It is almost always 
necessary to adjust fileset size in accordance with the system’s 
cache size. For example, the default data-set size for Filebench’s 
Web-server workload is set to only 16 MB (1,000 files of 16 KB 
size). Such a data set often fits entirely in the memory of the 
majority of modern servers; therefore, without adjustments, the 
Web-server workload measures the file system’s in-memory per-
formance. If in-memory performance is not the real goal, then 
the number of files should be increased so that the total fileset 
size is several times larger than the available file system cache. 
Specific data set-to-cache ratio varies a lot from one environ-
ment to another.

Similarly, it is important to pick an appropriate duration of an 
experiment. By default, timed Filebench workloads run for only 
60 seconds, which is not enough time to warm the cache up and 
cover multiple cyclic events in the system (e.g., bdflush runs 
every 30 seconds in Linux). Our recommendation is to monitor 
file system performance and other system metrics (e.g., block 
I/O and memory usage) during the run and ensure that the 
readings remain stationary for at least ten minutes. We added 
a psrun command to Filebench 1.5 that prints performance 
numbers periodically. Using these readings, one can plot how 
performance depends on time and identify when the system 
reaches stable state. Anecdotally, we found that such plots often 
allow one to detect and fix mistakes in experimental methodol-
ogy early in the evaluation cycle.

As with any empirical tool, every Filebench-based experiment 
should be conducted several times, and some measure of the 
results’ stability needs to be calculated (e.g., confidence interval, 
standard deviations). To get reproducible results it is impor-
tant to bring the system to an identical state before every run. 
Specifically, in a majority of the cases, one needs to warm the 
cache up to the same state as it would be after a long run of the 
workload. In other words, the frequently accessed part of the 
data set (as identified by the storage system) should reside in the 
cache. Therefore it is preferable to start the workload’s execu-
tion with a cold cache, wait until the cache warms up under the 
workload, and then, if appropriate, report performance for warm 
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cache only. Note, however, that regardless of whether the cache 
is cold or warm, in order to ensure sufficient I/O activity for a file 
system benchmark, the workload size should exceed the size of 
the system memory (historically it was considered at least 2).

Furthermore, before executing an actual workload, Filebench 
first creates filesets, so parts of the filesets might be in memory 
before the actual workload runs. This might either benefit or 
hurt further workload operations. We recommend to drop caches 
between the fileset preallocation and the workload run stages. 
To achieve that for standard Linux file systems add

create fileset

system “sync”

system “echo 3 > /proc/sys/vm/drop_caches”

before the run or psrun commands. The system command allows 
one to execute arbitrary shell commands from WML.

Users often want to measure file system performance while 
varying some workload parameter. A typical example is bench-
marking write or read throughput for different I/O sizes. We 
found it convenient to write shell scripts that generate WML 
files for different values of the same parameter (I/O size, in this 
example). It is also helpful to save any generated .f files along 
with the results so that later on one can correlate the results to 
the exact workload that was executed.

Future
Filebench is a powerful and very flexible tool for generating file 
system workloads. We encourage storage scientists, engineers, 
and evaluators to explore the functionalities that Filebench 
offers to their fullest. We plan to improve Filebench further to 
accommodate changing realities and user requests. Here, in con-
clusion, we only mention major directions of future work.

First, Filebench provides a unique platform for both quick devel-
opment of new workloads and (formal or informal) standard-
ization of workloads that are universally accepted as reflecting 
reality. Standardization only makes sense if a broad storage com-
munity is adequately involved. Moreover, we believe the involve-
ment should be continuous rather than one-time because the set of 
widespread workloads changes over time. To that end, we plan to 
make further efforts to build stronger community and conduct 
BoF and similar meetings at storage conferences. We invite 
everyone interested in this direction to communicate with us [2].

Second, from the technical side, Filebench currently translates 
flowops to POSIX system calls only. However, the internal 
design of Filebench is based on flowop engines that map flowops 
to specific low-level interfaces. Specifically, we consider add-
ing NFS and Object interfaces to Filebench. With the advent of 
very fast storage devices, overheads caused by the benchmark 
itself become more visible. In fact, we fixed several performance 

issues in Filebench over the last few years. More generally, we 
plan to work on the overhead control system that is integrated 
into Filebench itself.

Although Filebench already has rudimentary support for distrib-
uted storage systems benchmarking, it is not enough from both 
functionality and convenience points of view. We plan to design 
and implement features that will make Filebench practical for 
distributed system users.
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