
6    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGEFilebench
A Flexible Framework for File System Benchmarking

V A S I L Y T A R A S O V , E R E Z Z A D O K , A N D S P E N C E R S H E P L E R

Vasily Tarasov is a Researcher
at IBM Almaden Research
Center. He started to use
and contribute to Filebench
extensively while working on

his PhD at Stony Brook University. Vasily’s
interests include system performance analysis,
design and implementation of distributed
systems, and efficient I/O stacks for ultra-fast
storage devices. vtarasov@us.ibm.com

Erez Zadok received a PhD
in computer science from
Columbia University in 2001.
He directs the File systems
and Storage Lab (FSL) at the

Computer Science Department at Stony
Brook University, where he joined as faculty
in 2001. His current research interests
include file systems and storage, operating
systems, energy efficiency, performance and
benchmarking, security, and networking.
He received the SUNY Chancellor’s Award
for Excellence in Teaching, the US National
Science Foundation (NSF) CAREER Award, two
NetApp Faculty awards, and two IBM Faculty
awards. ezk@cs.stonybrook.edu

Spencer Shepler is a Private
Cloud Architect at Microsoft.
Prior to Microsoft, Spencer
worked at a failed startup and
before that at Sun Micro

systems. While at Sun, Spencer worked
on Filebench along with many others and
at his full-time job of bringing NFSv4 to
market. sshepler@microsoft.com

File system benchmarks constitute a crucial part of a storage evalu-
ator’s toolbox. Due to the wide variety of modern workloads and
ever-growing list of storage stack features, modern benchmarks have

become fairly complex tools. This article describes Filebench, one of the most
popular modern file system benchmark tool suites. Using several practi-
cal examples, we demonstrate Filebench’s versatility, expressiveness, and
ease of use. It is our hope that this article will encourage people to use File-
bench to describe their real-life workloads as well as publicly contribute new
workloads.

Filebench is a highly flexible framework for file system and storage benchmarking. The
project started around 2002 inside Sun Microsystems and was open-sourced around 2005. It
is now hosted at sourceforge.net [2] and maintained by the community, centered around the
File systems and Storage Lab (FSL) at Stony Brook University. According to Google Scholar,
Filebench was used in over 500 publications and remains one of the most popular file system
benchmarks both in academia and industry. The popularity of the Filebench framework
comes mainly from the fact that it is shipped with several predefined macro workloads, e.g.,
Web-server, Mail-server, and File-server. This allows users to easily benchmark their file
systems against several sufficiently different workloads with a single tool.

The intrinsic power of Filebench originates, however, not from the included workloads but
rather from its expressive Workload Model Language (WML), which allows users to encode
a wide variety of workloads. We therefore find ourselves disappointed that most users do
not go beyond the predefined workloads and consequently do not utilize the full power of
Filebench. The goal of this article is to educate the community on Filebench’s WML and
demonstrate both its long-standing and recently added features. In addition, we describe best
practices for using Filebench to avoid common beginners’ mistakes.

Basic Functionality
Many existing storage benchmarks (e.g., fio, mdtest, and SPECsfs) hard code the workloads
they generate quite rigidly. A user can specify some basic workload parameters (e.g., I/O
size, number of threads, read/write ratio) but cannot really control the execution flow in
detail. Expressing a workload with a general-purpose programming language (e.g., C/C++
or Python) is another extreme that offers the utmost flexibility but is time-consuming. The
Filebench framework provides a much needed middle ground: high flexibility combined with
the ease of describing a workload.

In Filebench, users define workloads using a Workload Model Language (WML). There are
four main entities in WML: fileset, process, thread, and flowop. Every defined entity must
have a user-assigned name that is mainly used to print per-process and per-thread statis-
tics. A fileset is a named collection of files. To define a fileset, a user specifies its name, path,
number of files, and a few other optional attributes. Listing 1 shows two filesets with 1,000
files of 128 KB size that will be located in the /tmp directory.

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  7

FILE SYSTEMS AND STORAGE
define fileset name=”test1”,path=”/tmp”,

	 entries=1000,filesize=128k

define fileset name=”test2”,path=”/tmp”,

	 entries=1000,filesize=128k,prealloc=80

Listing 1: Examples of fileset definitions

A Filebench run proceeds in two stages: fileset preallocation and
an actual workload execution. By default, Filebench does not cre-
ate any files in the file system and only allocates enough internal
file entries to accommodate all defined files. To actually create
files, one should specify the percentage of files to precreate with
the prealloc attribute. Listing 1 shows how Filebench precreates
800 files in the fileset test2—80% of 1,000.

The reason for Filebench not to precreate all (or any) files is
that certain workloads include file creates. When a workload-
defined file create operation should be executed, Filebench picks
a non-existent file entry in a fileset and creates the file. The total
number of simultaneously existing files in a fileset can never
exceed the fileset size at any point during a Filebench run. If a
workload tries to create a file but there are no more non-existent
file entries, then an internal Out-of-Resources event is triggered,
which can be interpreted either as an end of the run or an error,
depending on the user’s objective. Consider a WML snippet in
Listing 2 that can be used to measure peak file create rate. At
first, the fileset is empty and the workload starts to create files
in a loop. When the workload tries to create the 10,001st file,
Filebench graciously exits and reports the measurements. This
happens because quit mode is set to firstdone; more informa-
tion on this and other quit modes is described later in this article.
Note that delete operations reduce the number of existing files
and can balance out the file create operations.

set mode quit firstdone

define fileset name=”fcrset”,path=”/tmp”,

	 entries=10000,filesize=16k

define process name=”filecreate”,instances=1 {

 thread name=”filecreatethread”,instances=2 {

 flowop createfile name=”crfile”,filesetname=”fcrset”

 flowop closefile name=”clfile”

 }

}

run

Listing 2: WML snippet to measure file create performance

WML processes represent real UNIX processes that are created
by Filebench during the run. Every process consists of one or
more threads representing actual POSIX threads. The attribute
instances=N instructs Filebench to replicate the corresponding
processes and threads N times. Listing 2 defines one process
named filecreate with two identical threads. WML allows
users to define any number of identical or different processes
containing any number of identical or different threads. Listing
3 demonstrates a more complex workload description with five
processes in total. Three processes contain one reader thread
and two writer threads; two other processes contain four identi-
cal threads that create and delete files. All processes and threads
run simultaneously.

define process name=”testprocA”,instances=3 {

 thread name=”reader”,instances=1 {

 flowop openfile name=”readop”,filesetname=”testset”

 flowop readwholefile name=”readop”,iosize=4k

 flowop closefile name=”closeop1”

 }

 thread name=”writer”,instances=2 {

 flowop openfile name=”readop”,filesetname=”testset”

 flowop writewholefile name=”writeop”,iosize=4k

 flowop closefile name=”closeop2”

 }

}

define process name=”testprocB”,instances=2 {

 thread name=”crdelthread”,instances=4 {

 flowop createfile name=”createop”,filesetname=”testset”

 flowop closefile name=”closeop3”

 flowop deletefile name=”deleteop”,filesetname=”testset”

 }

}

Listing 3: Example of defining multiple different processes and threads

Every thread executes a loop of flowops. Flowop is a represen-
tation of a file system operation and is translated to a system
call by Filebench: e.g., the createfile flowop creates a file and
the write flowop writes to a file. Table 1 lists the most common
WML flowops, which cover the majority of operations that real
applications execute against a file system. When Filebench
reaches the last flowop defined in a thread, it jumps to the begin-
ning of the thread definition and executes flowops repeatedly
until a quit condition is met (e.g., requested runtime elapsed).

8    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

Flowop Description

openfile
Opens a file. One can specify
a virtual file descriptor to use
in the following flowops.

closefile
Closes a file referenced by a
virtual file descriptor

createfile
Creates a file. One can specify
a virtual file descriptor to use
in the following flowops.

deletefile Deletes a file

read Reads from a file

readwholefile
Reads whole file even if it
requires multiple system calls

write Writes to a file

writewholefile
Writes whole file even if it
requires multiple system calls

appendfile Appends to the end of a file

statfile Invokes stat() on a file

fsync Calls fsync() on a file

Table 1: List of most frequently used flowops. In addition, Filebench sup-
ports a number of directory, asynchronous I/O, synchronization, operation
limiting, and CPU consuming and idling operations.

Filebench uses Virtual File Descriptors (VFDs) to refer to files in
flowops. VFDs are not actual file descriptors returned by open();
instead, users assign VFDs explicitly in openfile and createfile
flowops. Later, these VFDs can be used in flowops that require
a file to operate on. Listing 4 provides an example where the
attribute fd is used to specify two different VFDs. First, the
thread opens one file, assigning it VFD 1 and creates another file
with VFD 2. Then the thread reads from one file and writes to
another, keeping both files open and referring to them by their
VFDs. Finally, both files are closed. This represents a simple
copy workload in WML. Note that VFDs are per-thread entities
in Filebench: a VFD in one thread does not impact an identically
numbered VFD in another thread.

VFDs specified in openfile and createfile must not be opened
prior to the flowops execution. Therefore, in most of the cases
it is necessary to explicitly close VFDs with a closefile flowop.
Other flowops that require a VFD (e.g., read) will open a file
automatically if the corresponding VFD is not opened yet. If the
fd attribute is not specified in a flowop then Filebench assumes
that it is equal to zero. This is a useful convention for a large
class of workloads that keep only one file open at a time (see
Listings 2 and 3). Describing such workloads in WML does not
require specifying the fd attribute, which streamlines the work-
load description further.

When opening a file, Filebench first needs to pick a file from a
fileset. By default this is done by iterating over all file entries in
a fileset. To change this behavior one can use the index attri-
bute that allows one to refer to a specific file in a fileset using
a unique index. In most real cases, instead of using a constant
number for the index, one should use custom variables described
in the following section.

Filebench supports a number of attributes to describe access
patterns. First, one can specify an I/O size with the iosize attri-
bute. Second, one can pick between sequential (default) and ran-
dom accesses. Sequential patterns usually make sense only if a
file is kept open between the flowop executions so that the oper-
ating system can maintain the current position in a file. When
the end of a file is reached, sequential flowops start accessing
the file from the beginning. Third, for random workloads, one
can specify the working set size in a file using the wss attribute.
Finally, direct and synchronous I/Os are supported as well.

The very last line of a WML file usually contains a run or psrun
command. These commands tell Filebench to allocate the
defined filesets, spawn the required number of UNIX processes
and threads, and, finally, start a cycled flowops execution. Both
commands take the duration of the run in seconds as an argu-
ment; the psrun command in addition takes a period with which
to print performance numbers.

To generate a workload described, e.g., in a workload.f WML file
(.f is a traditional extension used by Filebench), one executes
the filebench -f workload.f command. A non-abortive run
terminates under two conditions. First, the run can be time-

set mode quite firstdone

define fileset name=”testfset”,path=”/tmp”,

 entries=10000,filesize=4k,prealloc=50

define process name=”filecopy”,instances=2 {

 thread name=”filecopythread”,instances=2 {

 flowop openfile name=opfile”,

 filesetname=”testfset”,fd=1

 flowop createfile name=”crfile”,

 filesetname=”testfset”,fd=2

 flowop readwholefile name=”rdfile”,

 filesetname=”testfset”,fd=1

 flowop writewholefile name=”wrfile”,

 filesetname=”testfset”,fd=2

 flowop closefile name=”clfile1”,

 filesetname=”testfset”,fd=2

 flowop closefile name=”clfile2”,

 filesetname=”testfset”,fd=1

 }

}

Listing 4: Simple file copying expressed in WML

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  9

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

based; this is the default mode and if the run command does not
have any arguments, then the workload will run for one minute
only. Second, a Filebench run might finish if one or all threads
completed their job. To specify Filebench’s quit mode, a set

mode quit command can be used. In Listing 2, we change the
quit mode to firstdone, which means that whenever one of the
threads runs out of resources (e.g., there are no more non-exis-
tent files to create), Filebench stops. Another scenario is when
a thread explicitly declares that it completed its job using the
finishoncount or finishonbytes flowops. These flowops allow
one to terminate a thread after a specific number of operations
completed (e.g., writes or reads) or a specific number of bytes
were read or written by a thread.

In the end of the run, Filebench prints a number of different met-
rics. The most important one is operations per second. This is
the total number of executed flowop instances (in all processes
and threads) divided by the runtime. For flowops that read and
write data, Filebench also prints the throughput in bytes per
second. Finally, one can measure the average and distribution of
latencies of individual flowops. In addition, Filebench can main-
tain and print statistics per process, per thread, or per flowop.

Long-time Filebench framework users might be surprised that
we described Filebench’s run as a non-interactive experience. In
fact, before version 1.5, Filebench supported interactive runs: a
console in which one could type workloads and execute vari-
ous commands. However, one of the big changes in v1.5 is the
elimination of interactive mode. The majority of experienced
users did not use non-interactive runs. Beginners, on the other
hand, made a lot of systematic mistakes in interactive mode (e.g.,
did not drop caches or remove existing filesets between runs).
In v1.5, therefore, we made a strategic decision not to support
interactive mode. This further helped reduce the total amount of
code to maintain.

Advanced Features
In this section, we highlight some advanced Filebench features.
They were either less known before or were just recently added
in version 1.5. Listing 5 demonstrates most of these features.

Variables
Filebench supports two types of variables: regular and custom.
Variable names, irrespective of their type, are prefixed with a
dollar sign. With a few exceptions, variables can be used instead
of constants in any process, thread, or flowop attribute. Regular
variables hold constant values, are defined with the set keyword,
and are mainly used for convenience. It is considered a good style
to define all parameters of the workload (e.g., I/O sizes or file
numbers) in the beginning of a WML file and then use vari-
ables in the actual workload definition; it also facilitates easier
changes to the workload. Listing 5 demonstrates how the $iosize
regular variable is used to set I/O size.

set $iosize=4k

set $findex=cvar(type=cvar-normal,min=0,max=999,

	 parameters=mean:500;sigma:100)

set $off=cvar(type=cvar-triangular,min=0,max=28k,

	 parameters=lower:0;upper:28k;mode:16k)

enable lathist

define fileset name=”test”,path=”/tmp”,entries=1000,

	 filesize=32k,prealloc=100

eventgen rate=100

define process name=”testproc1” {

 thread name=”reader”,memsize=10m {

 flowop read name=”rdfile”,filesetname=”test”,

	 indexed=$findex,offset=$off,iosize=$iosize

 flowop closefile name=”clsfile1”

 flowop block name=”blk”

 }

 thread name=”writer”,memsize=20m {

 flowop write name=”wrfile”,

	 filesetname=”test”,iosize=$iosize

 flowop closefile name=”clsfile2”

 flowop opslimit name=”limit”

 }

 thread name=”noio”,memsize=40m {

 flowop hog name=”eatcpu”,value=1000

 flowop delay name=”idle”,value=1

 flowop wakeup name=”wk”,target=”blk”

 }

}

Listing 5: Demonstration of some advanced Filebench features

The use of custom variables (cvar) powerfully enables any File-
bench attribute to follow some statistical distribution. Distribu-
tions are implemented through dynamically loadable libraries
with a simple and well-defined interface that allows users to add
new distributions easily. When Filebench starts, it looks for the
libraries in a certain directory and loads all supported distribu-
tions. We ported the Mtwist package [4] to the custom variables
subsystem; this immediately made Filebench support eight
distributions, and this number is growing.

In Listing 5 the indexed attribute of the rdfile flowop follows
the distribution described by the $findex custom variable. The
$findex variable uses a normal distribution with values bounded
to the 0–999 range. The minimum and maximum bounds are in
sync with the number of files in the fileset here—1,000. Distribu-
tion-specific parameters—mean and standard deviation (sigma)
in case of a normal distribution—are specified with the param-

eters keyword. As we mentioned in the Basic Functionality sec-
tion, Filebench by default picks files from a fileset in a rotating

10    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

manner and the indexed attribute can pick specific files. Assign-
ing findex makes Filebench access some files more frequently
than others using a normal distribution from a custom variable.
This simulates a real-world scenario in which some files are
more popular than others.

Earlier Filebench versions actively used the so-called random
variables, which are essentially similar to custom variables.
But we found random variables limiting because the number of
supported distributions was small, and adding more distribu-
tions required significant knowledge of Filebench’s code base. In
version 1.5 we replaced random variables with custom variables
(random variables are still supported for backward compatibility
but will be phased out in the future).

Synchronization Primitives
When a workload is multithreaded, it sometimes makes sense to
emulate the process by which requests from one thread depend
on requests from other threads. For this, Filebench provides
the block, wakeup, semblock, and sempost flowops. They allow
Filebench to block certain threads until other threads complete
the required steps. Listing 5 shows how a reader thread blocks in
every loop until the noio thread wakes it up.

The ability to quickly define multiple processes and synchroni-
zation between them was one of the main requirements during
Filebench framework conception. The task for Sun Microsys-
tems engineers at the time was to improve file system perfor-
mance for a big commercial database. Setting up TPC-C [7],
database, and all of the required hardware was expensive and
time-consuming for an uninvolved file system engineer. The key
for simulating database load on a file system was how log writes
cause generic table updates to block. With this use case in mind,
Filebench’s WML was designed, and a corresponding oltp.f
workload personality was created and then validated against the
real database. Having the Filebench framework and a workload
description in WML gave engineers the time to focus just on the
file system tuning task.

CPU and Memory Consumption
Filebench provides a hog flowop that consumes CPU cycles and
memory bandwidth. Conversely, the flowop delay simulates
idle time between requests. Also, when defining a thread, one
must specify its memory usage with the memsize attribute. Every
thread consumes this amount of memory and performs reads and
writes from it. In Listing 5 the noio thread burns CPU by copying
memory 1,000 times and then sleeps for one second per loop.

Speed Limiting
In many cases one wants to evaluate system behavior under
moderate or low loads (which are quite common in real systems)
instead of measuring peak performance. Filebench supports this

with the flowops iopslimit (limits the rate of data operations
only) and bwlimit (limits the bandwidth). In Listing 5, the reader
thread issues only 100 reads per second (or fewer if the system
cannot fulfill this rate). The command eventgen sets the rate,
which is global for all processes and threads.

Complex Access Patterns
Originally Filebench supported only simple access patterns:
uniformly random and sequential. We added the offset attri-
bute which, in combination with custom variables, allows one to
emulate any distribution of accesses within a file. For example,
for virtualized workloads with big VMDK files, we observed
that some offsets are more popular than others [6]. In Listing 5,
the writer thread accesses file’s offsets following a triangular
distribution.

Latency Distribution
Measuring only the average latency often does not provide
enough information to understand a system’s behavior in detail.
We added latency distribution profiling with the enable lathist

command to Filebench [3].

Composite Flowops
In WML one can define a flowop that is a combination of other
flowops. This is especially useful in cases when one wants to
execute certain group of flowops more frequently than other flo-
wops. The attribute iters can be used to repeat regular or com-
posite flowops. In addition, Filebench’s internal design allows
users to easily implement new flowops in C. We do not provide
examples of composite or user-defined flowops in this article but
offer documentation online [2].

File System Importing
Another upcoming feature in Filebench v1.5 is importing exist-
ing file system trees. Older versions of Filebench could only work
with trees that it generated itself. This new feature allows one to
generate a file system with a third-party tool (e.g., Impressions
[1]), or use a real file system image and run a Filebench workload
against this file system.

Data Generation
Earlier, Filebench versions generated all zeros or some arbi-
trary content for writes. In v1.5, we are introducing the notion
of a datasource, which can be attached to any flowop. Different
datasources can generate different types of data: one controlled
by some entropy, duplicates distribution, file types, etc. This new
feature is especially important for benchmarking modern stor-
age systems that integrate sophisticated data reduction tech-
niques (e.g., deduplication, compression).

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  11

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

Predefined Workloads
It is important to understand that Filebench is merely a frame-
work, and only its combination with a workload description
defines a specific benchmark. The framework comes with a
set of predefined useful workloads that are especially popular
among users. We are often asked about the details of those work-
loads. In this section, we describe the three most frequently used
Filebench workloads: Web-server, File-server, and Mail-server.

What does a simple real Web-server do from the perspective
of a file system? For every HTTP request, it opens one or more
HTML files, reads them completely, and returns their content to
the client. At times it also flushes client-access records to a log
file. Filebench’s Web-server workload description was created
with exactly these assumptions. Every thread opens a file, reads
it in one call, then closes the file. Every 10th read, Filebench’s
Web-server appends a small amount of data to a log file. File
sizes follow a gamma distribution, with an average file size of
16 KB. By default, the Web-server workload is configured with
100 threads and only 1,000 files. As described later in the sec-
tion, it is almost always necessary to increase the number of
files to a more appropriate number.

Filebench’s File-server workload was also designed by envi-
sioning a workload that a simple but real File-server produces
on a file system. Fifty processes represent 50 users. Every user
creates and writes to a file; opens an existing file and appends
to it; then opens another file and reads it completely. Finally, the
user also deletes a file and invokes a stat operation on a file. Such
operation mix represents the most common operations that one
expects from a real File-server. There are 10,000 files of 128 KB
size defined in this workload by default.

The Mail-server workload (called varmail.f) represents a work-
load experienced by a /var/mail directory in a traditional UNIX
system that uses Maildir format (one message per file). When
a user receives an email, a file is created, written, and fsynced.
When the user reads an email, another file is opened, read
completely, marked as read, and fsynced. Sometimes, users also
reread previously read emails. Average email size is defined as
16 KB, and only 16 threads are operating by default.

In addition to the workloads described above, Filebench comes
with OLTP, Video-server, Web-proxy, and NFS-server macro-
workloads and over 40 micro-workloads. It is important to
recognize that workloads observed in specific environments can
be significantly different from what is defined in the included
WML files. This is an intrinsic problem of any benchmark.
The aforementioned workloads are merely an attempt to define
workloads that are logically close to reality and provide common
ground for evaluating different storage systems. We encour-
age the community to analyze their specific workloads, define

them in Filebench’s WML [5], validate the resulting synthetic
workloads against the original workloads, and contribute WML
descriptions to Filebench.

Best Practices
In this section, we share several important considerations when
using the Filebench framework. These considerations originated
from many conversations that we had with Filebench users over
the past seven years.

File system behavior depends heavily on the data-set size. Using
Filebench terminology, performance results depend on the
number and size of files in defined filesets. It is almost always
necessary to adjust fileset size in accordance with the system’s
cache size. For example, the default data-set size for Filebench’s
Web-server workload is set to only 16 MB (1,000 files of 16 KB
size). Such a data set often fits entirely in the memory of the
majority of modern servers; therefore, without adjustments, the
Web-server workload measures the file system’s in-memory per-
formance. If in-memory performance is not the real goal, then
the number of files should be increased so that the total fileset
size is several times larger than the available file system cache.
Specific data set-to-cache ratio varies a lot from one environ-
ment to another.

Similarly, it is important to pick an appropriate duration of an
experiment. By default, timed Filebench workloads run for only
60 seconds, which is not enough time to warm the cache up and
cover multiple cyclic events in the system (e.g., bdflush runs
every 30 seconds in Linux). Our recommendation is to monitor
file system performance and other system metrics (e.g., block
I/O and memory usage) during the run and ensure that the
readings remain stationary for at least ten minutes. We added
a psrun command to Filebench 1.5 that prints performance
numbers periodically. Using these readings, one can plot how
performance depends on time and identify when the system
reaches stable state. Anecdotally, we found that such plots often
allow one to detect and fix mistakes in experimental methodol-
ogy early in the evaluation cycle.

As with any empirical tool, every Filebench-based experiment
should be conducted several times, and some measure of the
results’ stability needs to be calculated (e.g., confidence interval,
standard deviations). To get reproducible results it is impor-
tant to bring the system to an identical state before every run.
Specifically, in a majority of the cases, one needs to warm the
cache up to the same state as it would be after a long run of the
workload. In other words, the frequently accessed part of the
data set (as identified by the storage system) should reside in the
cache. Therefore it is preferable to start the workload’s execu-
tion with a cold cache, wait until the cache warms up under the
workload, and then, if appropriate, report performance for warm

12    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Filebench: A Flexible Framework for File System Benchmarking

cache only. Note, however, that regardless of whether the cache
is cold or warm, in order to ensure sufficient I/O activity for a file
system benchmark, the workload size should exceed the size of
the system memory (historically it was considered at least 2).

Furthermore, before executing an actual workload, Filebench
first creates filesets, so parts of the filesets might be in memory
before the actual workload runs. This might either benefit or
hurt further workload operations. We recommend to drop caches
between the fileset preallocation and the workload run stages.
To achieve that for standard Linux file systems add

create fileset

system “sync”

system “echo 3 > /proc/sys/vm/drop_caches”

before the run or psrun commands. The system command allows
one to execute arbitrary shell commands from WML.

Users often want to measure file system performance while
varying some workload parameter. A typical example is bench-
marking write or read throughput for different I/O sizes. We
found it convenient to write shell scripts that generate WML
files for different values of the same parameter (I/O size, in this
example). It is also helpful to save any generated .f files along
with the results so that later on one can correlate the results to
the exact workload that was executed.

Future
Filebench is a powerful and very flexible tool for generating file
system workloads. We encourage storage scientists, engineers,
and evaluators to explore the functionalities that Filebench
offers to their fullest. We plan to improve Filebench further to
accommodate changing realities and user requests. Here, in con-
clusion, we only mention major directions of future work.

First, Filebench provides a unique platform for both quick devel-
opment of new workloads and (formal or informal) standard-
ization of workloads that are universally accepted as reflecting
reality. Standardization only makes sense if a broad storage com-
munity is adequately involved. Moreover, we believe the involve-
ment should be continuous rather than one-time because the set of
widespread workloads changes over time. To that end, we plan to
make further efforts to build stronger community and conduct
BoF and similar meetings at storage conferences. We invite
everyone interested in this direction to communicate with us [2].

Second, from the technical side, Filebench currently translates
flowops to POSIX system calls only. However, the internal
design of Filebench is based on flowop engines that map flowops
to specific low-level interfaces. Specifically, we consider add-
ing NFS and Object interfaces to Filebench. With the advent of
very fast storage devices, overheads caused by the benchmark
itself become more visible. In fact, we fixed several performance

issues in Filebench over the last few years. More generally, we
plan to work on the overhead control system that is integrated
into Filebench itself.

Although Filebench already has rudimentary support for distrib-
uted storage systems benchmarking, it is not enough from both
functionality and convenience points of view. We plan to design
and implement features that will make Filebench practical for
distributed system users.

Acknowledgments
We would like to acknowledge several people from the Filebench
community who contributed and continue to contribute to
Filebench: George Amvrosiadis is a devoted Filebench user and
developer who added multiple improvements, with importing the
external file system tree feature being just one of them; Sonam
Mandal and Bill Jannen contributed to duplicated and entropy-
based data generation; Santhosh Kumar is the individual behind
custom variables; and, finally, we borrowed both expertise and
code on statistical distributions from Geoff Kuenning.

References
[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“Generating Realistic Impressions for File-System Bench-
marking,” in Proceedings of the Seventh USENIX Conference on
File and Storage Technologies (FAST ’09), 2009.

[2] Filebench: http://filebench.sf.net.

[3] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok,
“Operating System Profiling via Latency Analysis,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), 2006.

[4] G. Kuenning, Mersenne Twist Pseudorandom Number
Generator Package, 2010: http://lasr.cs.ucla.edu/geoff/mtwist
.html.

[5] V. Tarasov, K. S. Kumar, J. Ma, D. Hildebrand, A. Povzner,
G. Kuenning, and E. Zadok, “Extracting Flexible, Replayable
Models from Large Block Traces,” in Proceedings of the Tenth
USENIX Conference on File and Storage Technologies (FAST
’12), 2012.

[6] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok,
“Virtual Machine Workloads: The Case for New Benchmarks
for NAS,” in Proceedings of the USENIX Conference on File and
Storage Technologies (FAST ’13), 2013.

[7] Transaction Processing Performance Council, TPC Bench-
mark C, Standard Specification: www.tpc.org/tpcc, 2004.

Calling SREs and Sysadmins

April 7–8, 2016 | Santa Clara, CA, USA
www.usenix.org/srecon16

Register Today!

July 11–13, 2016 | Dublin, Ireland
www.usenix.org/srecon16europe

Call for Participation Now Open!

Dec. 4–9, 2016 | Boston, MA, USA
www.usenix.org/lisa16

Call for Participation Now Open!

