
14    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE

Streaming Systems and Architectures
J A Y A N T S H E K H A R A N D A M A N D E E P K H U R A N A

Over the last few years, we have seen a disruption in the data manage-
ment space. It started with innovation in the data warehousing and
large-scale computing platform world. Now we are seeing a similar

trend in real-time streaming systems. In this article, we survey a few open
source stream processing systems and cover a sample architecture that con-
sists of one or more of these systems, depending on the access patterns.

Data Management Systems
Data management systems have existed for decades and form a very mature industry that we
all know about. Notable vendors playing in this market include Oracle, Microsoft, Tera-
data, IBM—some of the most valuable companies on the planet. Data is at the core of a lot of
businesses, and they spend millions of dollars for systems that make it possible to ingest,
store, analyze, and use data relevant to their customers, channels, and the market. Although
mature, the data management industry is going through a disruption right now. This is being
caused by the explosion of data being created by humans and machines owing to cheaper
and more widespread connectivity. This has given rise to the entire big data movement and a
plethora of open source data management frameworks that allow companies to manage data
more cheaply and in a more scalable and flexible manner.

Data management systems can be broken down into different categories, depending on the
criteria you pick. Databases, file systems, message queues, business intelligence tools are all
part of this ecosystem and serve different purposes inside of a larger architecture that solves
the business problem. One way to categorize these systems is based on whether they handle
data at rest or in motion.

Data at Rest
Systems for data at rest include databases, file systems, processing engines, and grid com-
puting systems. Most architectures for data at rest have a separate storage tier to store raw
data, a compute tier to process or clean up data, and a separate database tier to store and ana-
lyze structured data sets. In some cases a single system might be performing multiple such
functions. That’s not necessarily an ideal architecture from a cost, scale, and performance
perspective, but they do exist out there in the wild.

Data in Motion
Systems for managing data in motion include things like message queues and stream pro-
cessing systems. Architectures for data in motion consist of multiple such systems wired and
working together toward a desired end state. Some solutions are simply to ingest data from
sources that are creating events. Others have a stream processing aspect that writes back
into the same ingestion layer, creating multiple data sets that get ingested into the system
managing data at rest. Others have the stream processing system as part of the ingestion
pipeline so that output is written straight to the system managing data at rest. The stream
processing systems could also have different characteristics and design principles.

Jayant is Principal Solutions
Architect at Cloudera working
with various large and small
companies in various Verticals
on their big data and data

science use cases, architecture, algorithms,
and deployments. For the past 18 months,
his focus has been streaming systems and
predictive analytics. Prior to Cloudera, Jayant
worked at Yahoo and at eBay building big data
and search platforms. jayant@cloudera.com

Amandeep is a Principal
Solutions Architect at Cloudera,
where he works with customers
on strategizing on, architecting,
and developing solutions using

the Hadoop ecosystem. Amandeep has been
involved with several large-scale, complex
deployments and has helped customers design
applications from the ground up as well as
scale and operationalize existing solutions.
Prior to Cloudera, Amandeep worked at
Amazon Web Services. Amandeep is also
the co-author of HBase in Action, a book on
designing applications on HBase.
amansk@gmail.com

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  15

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

In this article, we’ll survey a few open source systems that deal
with streaming data and conclude with a section on architec-
tures that consist of one or more of these systems, depending on
the access patterns that the solution is trying to address.

Streaming Systems
There are two types of streaming systems: stream ingestion
systems and stream analytics systems. Stream ingestion sys-
tems are meant to capture and ingest streaming data as it gets
produced, or shortly thereafter, from sources that spew out data.
Stream ingestion systems capture individual or small batches
of payloads at the source and transport them to the destination.
Stream analytics systems, on the other hand, process data as it
streams into the system. Work is done on the payloads as they
become available. It does not necessarily wait for entire batches,
files, or databases to get populated before processing starts.
Stream ingestion systems are typically the source for the stream
analytics systems. After the stream is analyzed, the output could
either be put back into the ingestion system or written to a sys-
tem that handles data at rest. We’ll dive deeper into the following
systems:

1.	 Kafka, a messaging system that falls under the category of
stream ingestion systems per the criteria above [1].

2.	 Spark Streaming, a stream processing system that works with
small batches of data as they come in [2].

3.	 Storm, a stream processing system that works with individual
events as they come in [3].

4.	 Flink, a distributed stream processing system that builds batch
processing on top of the streaming engine [4].

Kafka
Apache Kafka [1] is a publish-subscribe messaging system; it
is also a distributed, partitioned, replicated commit log ser-
vice. It has been designed to handle high-throughput for writes
and reads of events, handle low-latency delivery of events, and
handle machine failures.

Kafka is usually deployed in a cluster. Each node in the cluster
is called a broker. A single Kafka broker can handle hundreds of
megabytes of reads and writes per second from thousands of cli-
ents. The cluster can be elastically expanded without downtime.

Kafka has a core abstraction called topics, and each message
coming in belongs to a topic. Clients sending messages to Kafka
topics are called producers. Clients that consume data from the
Kafka topics are called consumers. Clients can be implemented
in a programming language of your choice.

Communication between the clients and the Kafka brokers is
done in a language-agnostic binary TCP protocol. There are six
core client request APIs.

The topics are split into pre-defined partitions. Each partition is
an ordered sequence of events that is continuously appended to a
commit log. Each message in a partition is assigned a sequential
event ID. In Figure 1, we have four partitions for the topic. Parti-
tions can reside on different servers, and hence a topic can scale
horizontally. Each partition can be replicated across the brokers
for high availability. Messages are assigned to specific partitions
by the clients and not the Kafka brokers.

Producers can round-robin between the partitions of the topic
when writing to them. If there are too many producers, each pro-
ducer can just write to one randomly chosen partition, resulting
in far fewer connections to each broker.

Partitioning also allows different consumers to process different
parts of data from the topic. For simple load balancing, the client
can round-robin between the different brokers. Consumers can
belong to a consumer group as shown in Figure 1, and each mes-
sage is delivered to one subscribing consumer in the group.

You can batch events when writing to Kafka. This helps to
increase the overall throughput of the system. Batching can also
take place across topics and partitions.

Kafka stores the messages it receives to disk and also replicates
them for fault-tolerance.

Apache Kafka includes Java clients and Scala clients for com-
municating with a Kafka cluster. It ships with a library that can
be used to implement custom consumers and producers.

There are many tools that integrate with Kafka, including Spark
Streaming, Storm, Flume, and Samza.

Spark Streaming
Spark Streaming [2] runs on top of the Spark [5] cluster com-
puting framework. Spark is a batch processing system that
can run in standalone mode or on top of resource management
frameworks like YARN [7] or Mesos [8]. Spark Streaming is

Figure 1: Kafka producers, cluster, partitions, and consumer groups

16    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

a subcomponent of the Spark project that supports process-
ing microbatches of streams of events as they come in. Spark
Streaming also supports windowing, joining streams with
historical data.

Spark Streaming can ingest data from many sources, including
Kafka, Flume, Kinesis, Twitter, and TCP sockets. It has inher-
ent parallelism built in for ingesting data. The core abstraction
of Spark Streaming is Discretized Streams (DStreams), which
represents a continuous stream of events, created either from
the incoming source or as a result of processing a source stream.
Internally, DStreams consists of multiple Resilient Distributed
Datasets (RDDs) [9], which are a core abstraction of the Spark
project. These RDDs are created based on the time interval
configured in the Spark Streaming application that defines the
frequency with which the data from DStreams will be consumed
by the application. A visual representation of this is shown in
Figure 2.

Spark Streaming processes the data with high-level functions
like map, reduce, join, and window. After processing, the result-
ing data can be saved on stores like HDFS, HBase, Solr, and be
pushed out to be displayed in a dashboard or written back into a
new Kafka topic for consumption later.

When it receives streaming data, Spark Streaming divides the
data into small batches (mini batches). Each batch is stored in an
RDD, and the RDDs are then processed by Spark to generate new
RDDs.

Spark Streaming supports Window Operations, and it allows
us to perform transformations over a sliding window of data. It
takes in the window duration and the sliding interval in which
the window operations are performed.

For Complex Event Processing (CEP), Spark Streaming supports
stream-stream joins. Apart from inner-joins, left, right, and full
outer-joins are supported. Joins over windows of streams are
also supported as are stream-data set joins.

Storm
Apache Storm [3] is an open source project designed for distrib-
uted processing of streaming data at an individual event level.
A Storm deployment consists of primarily two roles: a master
node, called Nimbus, and the worker nodes, called Supervisors.
Nimbus is the orchestrator of the work that happens in a Storm
deployment. Supervisors spin up workers that execute the tasks
on the nodes they are running on. Storm uses Zookeeper under
the hood for the purpose of coordination and storing operational

state. Storing state in Zookeeper allows the Storm processes to
be stateless and also have the ability to restart failed processes
without affecting the health of the cluster.

Streaming applications in Storm are defined by topologies.
These are a logical layout of the computation that the applica-
tion is going to perform for the stream of data coming in. Nodes
in the topology define the processing logic on the data, and links
between the nodes define the movement of data. The fundamental
abstraction in Storm topologies is of a Stream. Streams consist
of tuples of data. Fields in a tuple could be of any type. Storm
processes streams in a distributed manner. The output of this pro-
cessing can be one or more streams or be put back into Kafka or
a storage system or database. Storm provides two primitives to
do the work on these streams—bolts and spouts. You implement
bolts and spouts to create your stream processing application.

A spout is a source of the stream in the Storm topology. It
consumes tuples from a stream, which could be a Kafka topic,
tweets coming from the Twitter API or any other system that is
emitting a stream of events.

A bolt consumes one or more streams from one or more spouts
and does work on it based on the logic you’ve implemented. The
output of a bolt could be another stream that goes into another
bolt for further processing or could be persisted somewhere.
Bolts can do anything from run functions, filter tuples, do
streaming aggregations, do streaming joins, talk to databases,
and more. A network of bolts and spouts make up a Storm topol-
ogy (graphically shown in Figure 4) that is deployed on a cluster
where it gets executed.

A topology keeps running until you terminate it. For each node,
you can set the parallelism and Storm will spawn the required
number of threads. When tasks fail, Storm automatically
restarts them.

Figure 2: DStreams consists of multiple RDDs based on the time interval.

Figure 3: Diagram of Spark Streaming showing Input Data Sources, Spark
DStreams, and Output Stores

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  17

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

Storm provides three levels of guarantees for tuples in a stream.

◆◆ At-most-once processing: this mode is the simplest one and
is appropriate in cases where it is required that a tuple be
processed not more than once. Zero processing for a tuple is
possible, which means message loss is acceptable in this case.
If failures happen in this mode, Storm might discard tuples and
not process them at all.

◆◆ At-least-once processing: this mode is where the application
needs tuples to be processed at least one time. This means that
more than once is acceptable. If the operations are idempotent
or a slight inaccuracy in the results of the processing is accept-
able, this mode would work fine.

◆◆ Exactly-once processing: this is a more complex and expensive
level. Typically, an external system like Trident [6] is used for
this guarantee level.

Storm provides users with a simple way to define stream process-
ing topologies with different kinds of configurations. These make
for a compelling way to implement a streaming application. Twit-
ter recently announced a new project (Heron [10]) that learns les-
sons from Storm and is built to be the next generation of Storm.

Apache Flink
Apache Flink, like Spark, is a distributed stream and batch
processing platform. Flink’s core is a streaming dataflow engine
that provides data distribution, communication, and fault toler-
ance for distributed computations over data streams.

Flink uses streams for all workloads—streaming, micro-batch,
and batch. Batch is treated as a finite set of streamed data.

Spark is a batch processing framework that can approximate
stream processing; Flink is primarily a stream processing frame-
work that can look like a batch processor.

At its core, Flink has an abstraction of DataStreams for stream-
ing applications. These represent a stream of events of the
same type created by consuming data from sources like Kafka,
Flume, Twitter, and ZeroMQ. DataStream programs in Flink are

regular programs that implement transformations on streams.
Results may be written out to files, standard output, or sockets.
The execution can happen in a local JVM or on clusters of many
machines. Transformation operations on DataStreams include
Map, FlatMap, Filter, Reduce, Fold, Aggregations, Window,
WindowAll, Window Reduce, Window Fold, Window Join, Win-
dow CoGroup, Split, and some more.

Data streaming applications are executed with continuous,
long-lived operators. Flink provides fault-tolerance via Light-
weight Distributed Snapshots. It is based on Chandy-Lamport
distributed snapshots. Streaming applications can maintain
custom state during their computation. Flink’s checkpointing

mechanism ensures exactly-once semantics for the state in the
presence of failures.

The DataStream API supports functional transformations on
data streams with flexible windows. The user can define the
size of the window and the frequency of reduction or aggregation
calls. Windows can be based on various policies—count, time, and
delta. They can also be mixed in their use. When multiple policies
are used, the strictest one controls the elements in the window.

As an optimization, Flink chains two subsequent transforma-
tions and executes them within the same thread for better
performance. This is done by default if it is possible, and the user
doesn’t have to do anything extra. Flink takes care of finding
the best way of executing a program depending on the input and
operations. For example, for join operations, it chooses between
partitioning and broadcasting the data, between running a sort
merge join and a hybrid hash join.

As you can see, Apache Flink has similar objectives as Apache
Spark but different design principles. Flink is more powerful
based on the design and capabilities since it can handle batch,
micro-batch, and individual event-based processing, all in a
single system. As it stands today, Flink is not as mature a plat-
form as Spark and doesn’t have the same momentum and user
community.

Architectural Patterns
Streaming architectures often consist of multiple systems inte-
grated with each other depending on the desired access patterns.
Custom integrations happen at the following stages of a stream-
ing pipeline.

1.	 Ingestion points

2.	 Stream processing output points

There are typically two ingestion point integrations in a typical
architecture: integration of the message queue (Kafka for the
context of this article) with the source system, and integration
of the message queue with the stream processing system (Storm,
Spark Streaming, or Flink for the context of this article).

Figure 4: A Storm topology consisting of bolts and spouts

18    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

As shown in Figure 5, the first level of integration is between
the streaming event source and Kafka. This is done by writing
Kafka producers that send events to Kafka. The second level
of integration is between Kafka and the downstream stream
processing systems. The stream processing systems consume
events from Kafka, using Kafka consumers, that are written
by the user. The processing systems can also write data back
into Kafka by implementing Kafka producers. They write data
back into Kafka if the output of the stream processing system
needs to be put back into the message queue for asynchronous
consumption by more than one system thereafter. This approach

offers more flexibility and scalability than a tight wiring
between the stream processing system and the downstream
persistence layer.

In Figure 5, a possible access pattern is that Storm consumes
events from Kafka first, does event-level filtering, enrichment,
and alerting, with latencies below 100 ms, and writes the pro-
cessed events back to Kafka in a separate Kafka topic. Thereaf-
ter, a windowing function is implemented in Spark Streaming
that consumes the output of the Storm topology from Kafka.
Kafka becomes the central piece of this architecture where
raw data, intermediate data as well as processed data sets land.
Kafka makes for a good hub for streaming data. In this case, the
output of the windowing function in Spark Streaming is charted
onto graphs and not necessarily persisted anywhere. The filtered
events (that were output by Storm into Kafka) are what go into a
downstream persistence layer like the Hadoop Distributed File
System, Apache HBase, etc. That system would look as shown in
Figure 6.

Flink can handle both access patterns, and the above architec-
ture could look like Figure 7 with Flink, eliminating the need to
have two downstream stream processing engines.

Let’s apply this to a specific (hypothetical) use case—detecting
and flagging fraudulent credit card transactions. The source
streams for this use case would be the following:

◆◆ Transaction information coming in from point-of-sale devices
of the merchant

◆◆ Mobile device location of the customer

For the sake of the discussion, we’ll use the following definition
of a fraudulent transaction. These make up the rules for our
stream processing application.

1.	 Two or more transactions performed in a span of 10 seconds

2.	 Transaction amount greater than the previous max done by
the given customer

3.	 If the mobile device location of the customer is different from
the location of the transaction

Figure 5: Streaming architecture consisting of Kafka, Storm, Spark
Streaming, and Flink

Figure 6: Streaming access pattern showing Storm processing events first,
with results then processed by Spark Streaming and also persisted

Figure 7: Streaming access pattern showing Flink doing the job of both
Storm and Spark Streaming in the use case

Figure 8: Streaming architecture for detecting fraudulent transactions

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  19

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

To solve this use case, we need two kinds of access patterns:

1.	 Transaction-level processing to detect breach of rules 2 and 3

2.	 Detection of breach of rule 1 over a period of time, potentially
across multiple transactions

You could implement this architecture as shown in Figure 8.

Note that this is a hypothetical case to show how the different
systems would be used together to solve the complete problem.

Conclusion
More organizations are incorporating streaming in their data
pipelines. We discussed Kafka for stream ingestion and Spark,
Storm, and Flink for stream analytics. Using the right mix of
streaming systems and architectures based on the use case leads
to scalable and successful implementations. We hope this article
provides enough information for you to select, architect, and
start implementing your streaming systems.

References
[1] Apache Kafka—http://kafka.apache.org/.

[2] Apache Spark Streaming—http://spark.apache.org
/streaming/.

[3] Apache Storm—http://storm.apache.org/.

[4] Apache Flink—https://flink.apache.org/.

[5] Apache Spark—https://spark.apache.org/.

[6] Trident—http://storm.apache.org/documentation/Trident
-tutorial.html.

[7] Apache Hadoop YARN—https://hadoop.apache.org/docs
/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[8] Apache Mesos—http://mesos.apache.org/.

[9] Spark RDDs—http://spark.apache.org/docs/latest
/programming-guide.
html#resilient-distributed-datasets-rdds.

[10] Heron stream processing system by Twitter—https://blog
.twitter.com/2015/flying-faster-with-twitter-heron.

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1705

Short. Smart. Seriously Useful.
Free open source and programming ebooks from O’Reilly.

Looking to stay current with the latest developments in
open source, programming, and software engineering?
We’ve got you covered. Get expert insights and industry
research on topics like Functional Programming in Python,
Open by Design, Software Architecture Patterns, and
Why Rust? Download a couple—or all of them—today.
Did we mention free?

Visit oreilly.com/go/usenix

