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FILE SYSTEMS AND STORAGE

Streaming Systems and Architectures
J A Y A N T  S H E K H A R  A N D  A M A N D E E P  K H U R A N A

Over the last few years, we have seen a disruption in the data manage-
ment space. It started with innovation in the data warehousing and 
large-scale computing platform world. Now we are seeing a similar 

trend in real-time streaming systems. In this article, we survey a few open 
source stream processing systems and cover a sample architecture that con-
sists of one or more of these systems, depending on the access patterns.

Data Management Systems
Data management systems have existed for decades and form a very mature industry that we 
all know about. Notable vendors playing in this market include Oracle, Microsoft, Tera-
data, IBM—some of the most valuable companies on the planet. Data is at the core of a lot of 
businesses, and they spend millions of dollars for systems that make it possible to ingest, 
store, analyze, and use data relevant to their customers, channels, and the market. Although 
mature, the data management industry is going through a disruption right now. This is being 
caused by the explosion of data being created by humans and machines owing to cheaper 
and more widespread connectivity. This has given rise to the entire big data movement and a 
plethora of open source data management frameworks that allow companies to manage data 
more cheaply and in a more scalable and flexible manner.

Data management systems can be broken down into different categories, depending on the 
criteria you pick. Databases, file systems, message queues, business intelligence tools are all 
part of this ecosystem and serve different purposes inside of a larger architecture that solves 
the business problem. One way to categorize these systems is based on whether they handle 
data at rest or in motion.

Data at Rest
Systems for data at rest include databases, file systems, processing engines, and grid com-
puting systems. Most architectures for data at rest have a separate storage tier to store raw 
data, a compute tier to process or clean up data, and a separate database tier to store and ana-
lyze structured data sets. In some cases a single system might be performing multiple such 
functions. That’s not necessarily an ideal architecture from a cost, scale, and performance 
perspective, but they do exist out there in the wild. 

Data in Motion
Systems for managing data in motion include things like message queues and stream pro-
cessing systems. Architectures for data in motion consist of multiple such systems wired and 
working together toward a desired end state. Some solutions are simply to ingest data from 
sources that are creating events. Others have a stream processing aspect that writes back 
into the same ingestion layer, creating multiple data sets that get ingested into the system 
managing data at rest. Others have the stream processing system as part of the ingestion 
pipeline so that output is written straight to the system managing data at rest. The stream 
processing systems could also have different characteristics and design principles.
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In this article, we’ll survey a few open source systems that deal 
with streaming data and conclude with a section on architec-
tures that consist of one or more of these systems, depending on 
the access patterns that the solution is trying to address.

Streaming Systems
There are two types of streaming systems: stream ingestion 
systems and stream analytics systems. Stream ingestion sys-
tems are meant to capture and ingest streaming data as it gets 
produced, or shortly thereafter, from sources that spew out data. 
Stream ingestion systems capture individual or small batches 
of payloads at the source and transport them to the destination. 
Stream analytics systems, on the other hand, process data as it 
streams into the system. Work is done on the payloads as they 
become available. It does not necessarily wait for entire batches, 
files, or databases to get populated before processing starts. 
Stream ingestion systems are typically the source for the stream 
analytics systems. After the stream is analyzed, the output could 
either be put back into the ingestion system or written to a sys-
tem that handles data at rest. We’ll dive deeper into the following 
systems:

1.	 Kafka, a messaging system that falls under the category of 
stream ingestion systems per the criteria above [1].

2.	 Spark Streaming, a stream processing system that works with 
small batches of data as they come in [2].

3.	 Storm, a stream processing system that works with individual 
events as they come in [3].

4.	 Flink, a distributed stream processing system that builds batch 
processing on top of the streaming engine [4].

Kafka
Apache Kafka [1] is a publish-subscribe messaging system; it 
is also a distributed, partitioned, replicated commit log ser-
vice. It has been designed to handle high-throughput for writes 
and reads of events, handle low-latency delivery of events, and 
handle machine failures.

Kafka is usually deployed in a cluster. Each node in the cluster 
is called a broker. A single Kafka broker can handle hundreds of 
megabytes of reads and writes per second from thousands of cli-
ents. The cluster can be elastically expanded without downtime.

Kafka has a core abstraction called topics, and each message 
coming in belongs to a topic. Clients sending messages to Kafka 
topics are called producers. Clients that consume data from the 
Kafka topics are called consumers. Clients can be implemented 
in a programming language of your choice.

Communication between the clients and the Kafka brokers is 
done in a language-agnostic binary TCP protocol. There are six 
core client request APIs.

The topics are split into pre-defined partitions. Each partition is 
an ordered sequence of events that is continuously appended to a 
commit log. Each message in a partition is assigned a sequential 
event ID. In Figure 1, we have four partitions for the topic. Parti-
tions can reside on different servers, and hence a topic can scale 
horizontally. Each partition can be replicated across the brokers 
for high availability. Messages are assigned to specific partitions 
by the clients and not the Kafka brokers. 

Producers can round-robin between the partitions of the topic 
when writing to them. If there are too many producers, each pro-
ducer can just write to one randomly chosen partition, resulting 
in far fewer connections to each broker.

Partitioning also allows different consumers to process different 
parts of data from the topic. For simple load balancing, the client 
can round-robin between the different brokers. Consumers can 
belong to a consumer group as shown in Figure 1, and each mes-
sage is delivered to one subscribing consumer in the group.

You can batch events when writing to Kafka. This helps to 
increase the overall throughput of the system. Batching can also 
take place across topics and partitions. 

Kafka stores the messages it receives to disk and also replicates 
them for fault-tolerance. 

Apache Kafka includes Java clients and Scala clients for com-
municating with a Kafka cluster. It ships with a library that can 
be used to implement custom consumers and producers.

There are many tools that integrate with Kafka, including Spark 
Streaming, Storm, Flume, and Samza.

Spark Streaming
Spark Streaming [2] runs on top of the Spark [5] cluster com-
puting framework. Spark is a batch processing system that 
can run in standalone mode or on top of resource management 
frameworks like YARN [7] or Mesos [8]. Spark Streaming is 

Figure 1: Kafka producers, cluster, partitions, and consumer groups
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a subcomponent of the Spark project that supports process-
ing microbatches of streams of events as they come in. Spark 
Streaming also supports windowing, joining streams with 
historical data.

Spark Streaming can ingest data from many sources, including 
Kafka, Flume, Kinesis, Twitter, and TCP sockets. It has inher-
ent parallelism built in for ingesting data. The core abstraction 
of Spark Streaming is Discretized Streams (DStreams), which 
represents a continuous stream of events, created either from 
the incoming source or as a result of processing a source stream. 
Internally, DStreams consists of multiple Resilient Distributed 
Datasets (RDDs) [9], which are a core abstraction of the Spark 
project. These RDDs are created based on the time interval 
configured in the Spark Streaming application that defines the 
frequency with which the data from DStreams will be consumed 
by the application. A visual representation of this is shown in 
Figure 2.

Spark Streaming processes the data with high-level functions 
like map, reduce, join, and window. After processing, the result-
ing data can be saved on stores like HDFS, HBase, Solr, and be 
pushed out to be displayed in a dashboard or written back into a 
new Kafka topic for consumption later.

When it receives streaming data, Spark Streaming divides the 
data into small batches (mini batches). Each batch is stored in an 
RDD, and the RDDs are then processed by Spark to generate new 
RDDs.

Spark Streaming supports Window Operations, and it allows 
us to perform transformations over a sliding window of data. It 
takes in the window duration and the sliding interval in which 
the window operations are performed.

For Complex Event Processing (CEP), Spark Streaming supports 
stream-stream joins. Apart from inner-joins, left, right, and full 
outer-joins are supported. Joins over windows of streams are 
also supported as are stream-data set joins.

Storm
Apache Storm [3] is an open source project designed for distrib-
uted processing of streaming data at an individual event level. 
A Storm deployment consists of primarily two roles: a master 
node, called Nimbus, and the worker nodes, called Supervisors. 
Nimbus is the orchestrator of the work that happens in a Storm 
deployment. Supervisors spin up workers that execute the tasks 
on the nodes they are running on. Storm uses Zookeeper under 
the hood for the purpose of coordination and storing operational 

state. Storing state in Zookeeper allows the Storm processes to 
be stateless and also have the ability to restart failed processes 
without affecting the health of the cluster.

Streaming applications in Storm are defined by topologies. 
These are a logical layout of the computation that the applica-
tion is going to perform for the stream of data coming in. Nodes 
in the topology define the processing logic on the data, and links 
between the nodes define the movement of data. The fundamental 
abstraction in Storm topologies is of a Stream. Streams consist 
of tuples of data. Fields in a tuple could be of any type. Storm 
processes streams in a distributed manner. The output of this pro-
cessing can be one or more streams or be put back into Kafka or 
a storage system or database. Storm provides two primitives to 
do the work on these streams—bolts and spouts. You implement 
bolts and spouts to create your stream processing application.

A spout is a source of the stream in the Storm topology. It 
consumes tuples from a stream, which could be a Kafka topic, 
tweets coming from the Twitter API or any other system that is 
emitting a stream of events.

A bolt consumes one or more streams from one or more spouts 
and does work on it based on the logic you’ve implemented. The 
output of a bolt could be another stream that goes into another 
bolt for further processing or could be persisted somewhere. 
Bolts can do anything from run functions, filter tuples, do 
streaming aggregations, do streaming joins, talk to databases, 
and more. A network of bolts and spouts make up a Storm topol-
ogy (graphically shown in Figure 4) that is deployed on a cluster 
where it gets executed.

A topology keeps running until you terminate it. For each node, 
you can set the parallelism and Storm will spawn the required 
number of threads. When tasks fail, Storm automatically 
restarts them.

Figure 2: DStreams consists of multiple RDDs based on the time interval.

Figure 3: Diagram of Spark Streaming showing Input Data Sources, Spark 
DStreams, and Output Stores
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Storm provides three levels of guarantees for tuples in a stream.

◆◆ At-most-once processing: this mode is the simplest one and 
is appropriate in cases where it is required that a tuple be 
processed not more than once. Zero processing for a tuple is 
possible, which means message loss is acceptable in this case. 
If failures happen in this mode, Storm might discard tuples and 
not process them at all.

◆◆ At-least-once processing: this mode is where the application 
needs tuples to be processed at least one time. This means that 
more than once is acceptable. If the operations are idempotent 
or a slight inaccuracy in the results of the processing is accept-
able, this mode would work fine.

◆◆ Exactly-once processing: this is a more complex and expensive 
level. Typically, an external system like Trident [6] is used for 
this guarantee level.

Storm provides users with a simple way to define stream process-
ing topologies with different kinds of configurations. These make 
for a compelling way to implement a streaming application. Twit-
ter recently announced a new project (Heron [10]) that learns les-
sons from Storm and is built to be the next generation of Storm.

Apache Flink
Apache Flink, like Spark, is a distributed stream and batch 
processing platform. Flink’s core is a streaming dataflow engine 
that provides data distribution, communication, and fault toler-
ance for distributed computations over data streams. 

Flink uses streams for all workloads—streaming, micro-batch, 
and batch. Batch is treated as a finite set of streamed data.

Spark is a batch processing framework that can approximate 
stream processing; Flink is primarily a stream processing frame-
work that can look like a batch processor.

At its core, Flink has an abstraction of DataStreams for stream-
ing applications. These represent a stream of events of the 
same type created by consuming data from sources like Kafka, 
Flume, Twitter, and ZeroMQ. DataStream programs in Flink are 

regular programs that implement transformations on streams. 
Results may be written out to files, standard output, or sockets. 
The execution can happen in a local JVM or on clusters of many 
machines. Transformation operations on DataStreams include 
Map, FlatMap, Filter, Reduce, Fold, Aggregations, Window, 
WindowAll, Window Reduce, Window Fold, Window Join, Win-
dow CoGroup, Split, and some more.

Data streaming applications are executed with continuous, 
long-lived operators. Flink provides fault-tolerance via Light-
weight Distributed Snapshots. It is based on Chandy-Lamport 
distributed snapshots. Streaming applications can maintain 
custom state during their computation. Flink’s checkpointing 

mechanism ensures exactly-once semantics for the state in the 
presence of failures. 

The DataStream API supports functional transformations on 
data streams with flexible windows. The user can define the 
size of the window and the frequency of reduction or aggregation 
calls. Windows can be based on various policies—count, time, and 
delta. They can also be mixed in their use. When multiple policies 
are used, the strictest one controls the elements in the window.

As an optimization, Flink chains two subsequent transforma-
tions and executes them within the same thread for better 
performance. This is done by default if it is possible, and the user 
doesn’t have to do anything extra. Flink takes care of finding 
the best way of executing a program depending on the input and 
operations. For example, for join operations, it chooses between 
partitioning and broadcasting the data, between running a sort 
merge join and a hybrid hash join.

As you can see, Apache Flink has similar objectives as Apache 
Spark but different design principles. Flink is more powerful 
based on the design and capabilities since it can handle batch, 
micro-batch, and individual event-based processing, all in a 
single system. As it stands today, Flink is not as mature a plat-
form as Spark and doesn’t have the same momentum and user 
community.

Architectural Patterns
Streaming architectures often consist of multiple systems inte-
grated with each other depending on the desired access patterns. 
Custom integrations happen at the following stages of a stream-
ing pipeline.

1.	 Ingestion points

2.	 Stream processing output points

There are typically two ingestion point integrations in a typical 
architecture: integration of the message queue (Kafka for the 
context of this article) with the source system, and integration 
of the message queue with the stream processing system (Storm, 
Spark Streaming, or Flink for the context of this article).

Figure 4: A Storm topology consisting of bolts and spouts
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As shown in Figure 5, the first level of integration is between 
the streaming event source and Kafka. This is done by writing 
Kafka producers that send events to Kafka. The second level 
of integration is between Kafka and the downstream stream 
processing systems. The stream processing systems consume 
events from Kafka, using Kafka consumers, that are written 
by the user. The processing systems can also write data back 
into Kafka by implementing Kafka producers. They write data 
back into Kafka if the output of the stream processing system 
needs to be put back into the message queue for asynchronous 
consumption by more than one system thereafter. This approach 

offers more flexibility and scalability than a tight wiring 
between the stream processing system and the downstream 
persistence layer.

In Figure 5, a possible access pattern is that Storm consumes 
events from Kafka first, does event-level filtering, enrichment, 
and alerting, with latencies below 100 ms, and writes the pro-
cessed events back to Kafka in a separate Kafka topic. Thereaf-
ter, a windowing function is implemented in Spark Streaming 
that consumes the output of the Storm topology from Kafka. 
Kafka becomes the central piece of this architecture where 
raw data, intermediate data as well as processed data sets land. 
Kafka makes for a good hub for streaming data. In this case, the 
output of the windowing function in Spark Streaming is charted 
onto graphs and not necessarily persisted anywhere. The filtered 
events (that were output by Storm into Kafka) are what go into a 
downstream persistence layer like the Hadoop Distributed File 
System, Apache HBase, etc. That system would look as shown in 
Figure 6.

Flink can handle both access patterns, and the above architec-
ture could look like Figure 7 with Flink, eliminating the need to 
have two downstream stream processing engines.

Let’s apply this to a specific (hypothetical) use case—detecting 
and flagging fraudulent credit card transactions. The source 
streams for this use case would be the following:

◆◆ Transaction information coming in from point-of-sale devices 
of the merchant

◆◆ Mobile device location of the customer

For the sake of the discussion, we’ll use the following definition 
of a fraudulent transaction. These make up the rules for our 
stream processing application.

1.	 Two or more transactions performed in a span of 10 seconds

2.	 Transaction amount greater than the previous max done by 
the given customer

3.	 If the mobile device location of the customer is different from 
the location of the transaction

Figure 5: Streaming architecture consisting of Kafka, Storm, Spark 
Streaming, and Flink

Figure 6: Streaming access pattern showing Storm processing events first, 
with results then processed by Spark Streaming and also persisted

Figure 7: Streaming access pattern showing Flink doing the job of both 
Storm and Spark Streaming in the use case

Figure 8: Streaming architecture for detecting fraudulent transactions



www.usenix.org	   S P R I N G 20 16   VO L .  41 ,  N O.  1  19

FILE SYSTEMS AND STORAGE
Streaming Systems and Architectures

To solve this use case, we need two kinds of access patterns:

1.	 Transaction-level processing to detect breach of rules 2 and 3

2.	 Detection of breach of rule 1 over a period of time, potentially 
across multiple transactions 

You could implement this architecture as shown in Figure 8.

Note that this is a hypothetical case to show how the different 
systems would be used together to solve the complete problem.

Conclusion
More organizations are incorporating streaming in their data 
pipelines. We discussed Kafka for stream ingestion and Spark, 
Storm, and Flink for stream analytics. Using the right mix of 
streaming systems and architectures based on the use case leads 
to scalable and successful implementations. We hope this article 
provides enough information for you to select, architect, and 
start implementing your streaming systems.
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