
28    S P R I N G 20 16   VO L .  41 ,  N O.  1 	 www.usenix.org

SECURITYBeyondCorp
Design to Deployment at Google

B A R C L A Y  O S B O R N ,  J U S T I N  M C W I L L I A M S ,  B E T S Y  B E Y E R ,  
A N D  M A X  S A L T O N S T A L L

Barclay Osborn is a Site 
Reliability Engineering Manager 
at Google in Los Angeles. He 
previously worked at a variety 
of software, hardware, and 

security startups in San Diego. He holds a BA 
in computer science from the University of 
California, San Diego. barclay@google.com

Justin McWilliams is a Google 
Engineering Manager based in 
NYC. Since joining Google in 
2006, he has held positions in 
IT Support and IT Ops Focused 

Software Engineering. He holds a BA from the 
University of Michigan, Ann Arbor.  
jjm@google.com 

Betsy Beyer is a Technical 
Writer for Google Site 
Reliability Engineering in NYC. 
She has previously provided 
documentation for Google 

Data Center and Hardware Operations 
teams. Before moving to New York, Betsy 
was a lecturer in technical writing at Stanford 
University. She holds degrees from Stanford 
and Tulane. bbeyer@google.com

Max Saltonstall is a Program 
Manager for Google Corporate 
Engineering in New York. 
Since joining Google in 2011 
he has worked on advertising 

products, internal change management, 
and IT externalization. He has a degree in 
computer science and psychology from Yale. 
maxsaltonstall@google.com

The goal of Google’s BeyondCorp initiative is to improve our security 
with regard to how employees and devices access internal applica-
tions. Unlike the conventional perimeter security model, BeyondCorp 

doesn’t gate access to services and tools based on a user’s physical location 
or the originating network; instead, access policies are based on information 
about a device, its state, and its associated user. BeyondCorp considers both 
internal networks and external networks to be completely untrusted, and 
gates access to applications by dynamically asserting and enforcing levels, or 
“tiers,” of access. 

We present an overview of how Google transitioned from traditional security infrastructure 
to the BeyondCorp model and the challenges we faced and the lessons we learned in the pro-
cess. For an architectural discussion of BeyondCorp, see [1].

Overview
As illustrated by Figure 1, the fundamental components of the BeyondCorp system include 
the Trust Inferer, Device Inventory Service, Access Control Engine, Access Policy, Gate-
ways, and Resources. The following list defines each term as it is used by BeyondCorp:

◆◆ Access requirements are organized into Trust Tiers representing levels of increasing 
sensitivity.

◆◆ Resources are an enumeration of all the applications, services, and infrastructure that are 
subject to access control. Resources might include anything from online knowledge bases, to 
financial databases, to link-layer connectivity, to lab networks. Each resource is associated 
with a minimum trust tier required for access.

◆◆ The Trust Inferer is a system that continuously analyzes and annotates device state. The 
system sets the maximum trust tier accessible by the device and assigns the VLAN to be 
used by the device on the corporate network. These data are recorded in the Device Inven-
tory Service. Reevaluations are triggered either by state changes or by a failure to receive 
updates from a device.

◆◆ The Access Policy is a programmatic representation of the Resources, Trust Tiers, and 
other predicates that must be satisfied for successful authorization.

◆◆ The Access Control Engine is a centralized policy enforcement service referenced by each 
gateway that provides a binary authorization decision based on the access policy, output of 
the Trust Inferer, the resources requested, and real-time credentials.

◆◆ At the heart of this system, the Device Inventory Service continuously collects, process-
es, and publishes changes about the state of known devices.

◆◆ Resources are accessed via Gateways, such as SSH servers, Web proxies, or 802.1x-enabled 
networks. Gateways perform authorization actions, such as enforcing a minimum trust tier 
or assigning a VLAN.
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Components of BeyondCorp
Using the components described below, BeyondCorp integrated 
various preexisting systems with new systems and components 
to enable flexible and granular trust decisions.

Devices and Hosts
An inventory is the primary prerequisite to any inventory-based 
access control. Depending on your environment and security 
policy, you may need to make a concerted effort to distinguish 
between devices and hosts. A device is a collection of physical 
or virtual components that act as a computer, whereas a host is 
a snapshot of the state of a device at a given point in time. For 
example, a device might be a laptop or a mobile phone, while a 
host would be the specifics of the operating system and software 
running on that device. The Device Inventory Service contains 
information on devices, their associated hosts, and trust deci-
sions for both. In the sections below, the generic term “device” 
can refer to either a physical device or a host, depending on the 
configuration of the access policy. After a basic inventory has 
been established, the remainder of the components discussed 
below can be deployed as desired in order to provide improved 
security, coverage, granularity, latency, and flexibility. 

Tiered Access
Trust levels are organized into tiers and assigned to each device 
by the Trust Inferer. Each resource is associated with a mini-
mum trust tier required for access. In order to access a given 
resource, a device’s trust tier assignment must be equal to or 
greater than the resource’s minimum trust tier requirement. To 
provide a simplified example, consider the use cases of vari-
ous employees of a catering company: a delivery crew may only 
require a low tier of access to retrieve the address of a wedding, 

so they don’t need to access more sensitive services like billing 
systems. 

Assigning the lowest tier of access required to complete a 
request has several advantages: it decreases the maintenance 
cost associated with highly secured devices (which primarily 
entails the costs associated with support and productivity) and 
also improves the usability of the device. As a device is allowed 
to access more sensitive data, we require more frequent tests of 
user presence on the device, so the more we trust a given device, 
the shorter-lived its credentials. Therefore, limiting a device’s 
trust tier to the minimum access requirement it needs means 
that its user is minimally interrupted. We may require installa-
tion of the latest operating system update within a few business 
days to retain a high trust tier, whereas devices on lower trust 
tiers may have slightly more relaxed timelines.

To provide another example, a laptop that’s centrally managed 
by the company but that hasn’t been connected to a network for 
some period of time may be out of date. If the operating system 
is missing some noncritical patches, trust can be downgraded to 
an intermediate tier, allowing access to some business applica-
tions but denying access to others. If a device is missing a critical 
security patch, or its antivirus software reports an infection, 
it may only be allowed to contact remediation services. On the 
furthest end of the spectrum, a known lost or stolen device can 
be denied access to all corporate resources.

In addition to providing tier assignments, the Trust Inferer also 
supports network segmentation efforts by annotating which 
VLANs a device may access. Network segmentation allows us to 
restrict access to special networks—lab and test environments, 
for example—based on the device state. When a device becomes 

Figure 1: Architecture of the BeyondCorp Infrastructure Components
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untrustworthy, we can assign it to a quarantine network that 
provides limited resource access until the device is rehabilitated. 

Device Inventory Service
The Device Inventory Service (shown in Figure 2) is a continu-
ously updated pipeline that imports data from a broad range of 
sources. Systems management sources might include Active 
Directory, Puppet, and Simian. Other on-device agents, configu-
ration management systems, and corporate asset management 
systems should also feed into this pipeline. Out-of-band data 
sources include vulnerability scanners, certificate authorities, 
and network infrastructure elements such as ARP tables. Each 
data source sends either full or incremental updates about devices. 

Since implementing the initial phases of the Device Inven-
tory Service, we’ve ingested billions of deltas from over 15 data 
sources, at a typical rate of about three million per day, totaling 
over 80 terabytes. Retaining historical data is essential in allow-
ing us to understand the end-to-end lifecycle of a given device, 
track and analyze fleet-wide trends, and perform security audits 
and forensic investigations.

Types of Data
Data come in two main flavors: observed and prescribed. 

Observed data are programmatically generated and include 
items such as the following: 

◆◆ The last time a security scan was performed on the device, in 
addition to the results of the scan

◆◆ The last-synced policies and timestamp from Active Directory

◆◆ OS version and patch level

◆◆ Any installed software 

Prescribed data are manually maintained by IT Operations 
and include the following: 

◆◆ The assigned owner of the device

◆◆ Users and groups allowed to access the device

◆◆ DNS and DHCP assignments

◆◆ Explicit access to particular VLANs 

Explicit assignments are required in cases of insufficient data 
or when a client platform isn’t customizable (as is the case for 
printers, for example). In contrast to the change rate that char-
acterizes observed data, prescribed data are typically static. We 
analyze data from numerous disparate sources to identify cases 
where data conflict, as opposed to blindly trusting a single or 
small number of systems as truth.

Data Processing

TRANSFORMATION INTO A COMMON DATA FORMAT
Several phases of processing are required to keep the Device 
Inventory Service up to date. First, all data must be transformed 
into a common data format. Some data sources, such as in-house 
or open source solutions, can be tooled to publish changes to the 
inventory system on commit. Other sources, particularly those 
that are third party, cannot be extended to publish changes and 
therefore require periodic polling to obtain updates.

CORRELATION
Once the incoming data are in a common format, all data must 
be correlated. During this phase, the data from distinct sources 
must be reconciled into unique device-specific records. When 
we determine that two existing records describe the same device, 
they are combined into a single record. While data correlation may 
appear straightforward, in practice it becomes quite complicated 
because many data sources don’t share overlapping identifiers. 

For example, it may be that the asset management system 
stores an asset ID and a device serial number, but disk encryp-
tion escrow stores a hard drive serial number, the certificate 

Figure 2: Device Inventory Service
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authority stores a certificate fingerprint, and an ARP database 
stores a MAC address. It may not be clear that deltas from these 
individual systems describe the same device until an inven-
tory reporting agent reports several or all of these identifiers 
together, at which point the disjoint records can be combined 
into a single record. 

The question of what, exactly, constitutes a device becomes 
even more muddled when you factor in the entire lifecycle, dur-
ing which hard drives, NICs, cases, and motherboards may be 
replaced or even swapped among devices. Even more complica-
tions arise if data are manually entered incorrectly. 

TRUST EVALUATION
Once the incoming records are merged into an aggregate form, 
the Trust Inferer is notified to trigger reevaluation. This analy-
sis references a variety of fields and aggregates the results in 
order to assign a trust tier. The Trust Inferer currently refer-
ences dozens of fields, both platform-specific and platform-
agnostic, across various data sources; millions of additional 
fields are available for analysis as the system continues to evolve. 
For example, to qualify for a high level of trust, we might require 
that a device meets all (or more) of the following requirements:

◆◆ Be encrypted

◆◆ Successfully execute all management and configuration agents

◆◆ Install the most recent OS security patches 

◆◆ Have a consistent state of data from all input sources 

This precomputation reduces the amount of data that must be 
pushed to the gateways, as well as the amount of computation 

that must be expended at access request time. This step also 
allows us to be confident that all of our enforcement gateways 
are using a consistent data set. We can make trust changes 
even for inactive devices at this stage. For example, in the past, 
we denied access for any devices that may have been subject to 
Stagefright [2] before such devices could even make an access 
request. Precomputation also provides us with an experiment 
framework in which we can write pre-commit tests to validate 
changes and canary small-percentage changes to the policy or 
Trust Inferer without impacting the company as a whole.

Of course, precomputation also has its downsides and can’t be 
relied on completely. For example, the access policy may require 
real-time two-factor authentication, or accesses originating 
from known-malicious netblocks may be restricted. Somewhat 
surprisingly, latency between a policy or device state change 
and the ability of gateways to enforce this change hasn’t proven 
problematic. Our update latency is typically less than a second. 
The fact that not all information is available to precompute is a 
more substantial concern. 

EXCEPTIONS
The Trust Inferer has final say on what trust tier to apply to a 
given device. Trust evaluation considers preexisting exceptions 
in the Device Inventory Services that allow for overrides to the 
general access policy. Exceptions are primarily a mechanism 
aimed at reducing the deployment latency of policy changes or 
new policy primitives. In these cases, the most expedient course 
of action may be to immediately block a particular device that’s 
vulnerable to a zero-day exploit before the security scanners 
have been updated to look for it, or to permit untrusted devices 
to connect to a lab network. Internet of Things devices may 
be handled by exceptions and placed in their own trust tier, as 
installing and maintaining certificates on these devices could be 
infeasible.

Deployment
Initial Rollout
The first phase of the BeyondCorp rollout integrated a sub-
set of gateways with an interim meta-inventory service. This 
service comprised a small handful of data sources containing 
predominantly prescribed data. We initially implemented an 
access policy that mirrored Google’s existing IP-based perimeter 
security model, and applied this new policy to untrusted devices, 
leaving access enforcement unchanged for devices coming from 
privileged networks. This strategy allowed us to safely deploy 
various components of the system before it was fully complete 
and polished and without disturbing users. 

In parallel with this initial rollout, we designed, developed, and 
continue to iterate a higher-scale, lower-latency meta-inventory 
solution. This Device Inventory Service aggregates data from 

Figure 3: The data processing pipeline
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over 15 sources, ingesting between 30–100 changes per second, 
depending on how many devices are actively generating data. 
It is replete with trust eligibility annotation and authorization 
enforcement for all corporate devices. As the meta-inventory 
solution progressed and we obtained more information about 
each device, we were able to gradually replace IP-based policies 
with trust tier assignments. After we verified the workflows of 
lower-tiered devices, we continued to apply fine-grained restric-
tions to higher trust tiers, proceeding to our ultimate goal of 
retroactively increasing trust tier requirements for devices and 
corporate resources over time.

Given the aforementioned complexity of correlating data from 
disparate sources, we decided to use an X.509 certificate as a 
persistent device identifier. This certificate provides us with two 
core functionalities: 

◆◆ If the certificate changes, the device is considered a different 
device, even if all other identifiers remain the same. 

◆◆ If the certificate is installed on a different device, the correla-
tion logic notices both the certificate collision and the mis-
match in auxiliary identifiers, and degrades the trust tiers in 
response. 

Thus, the certificate does not remove the necessity of correlation 
logic; nor is it sufficient to gain access in and of itself. However, it 
does provide a cryptographic GUID which enforcement gate-
ways use to both encrypt traffic and to consistently and uniquely 
refer to the device.

Mobile
Because Google seeks to make mobile a first-class platform, 
mobile must be able to accomplish the same tasks as other 
platforms and therefore requires the same levels of access. It 
turns out that deploying a tiered access model tends to be easier 
when it comes to mobile as compared to other platforms: mobile 
is typically characterized by a lack of legacy protocols and 
access methods, as almost all communications are exclusively 
HTTP-based. Android devices use cryptographically secured 
communications allowing identification of the device in the 
device inventory. Note that native applications are subject to the 
same authorization enforcement as resources accessed by a Web 
browser; this is because API endpoints also live behind proxies 
that are integrated with the Access Control Engine.

Legacy and Third-Party Platforms
We determined that legacy and third-party platforms need 
a broader set of access methods than we require for mobile 
devices. We support the tunneling of arbitrary TCP and UDP 
traffic via SSH tunnels and on-client SSL/TLS proxies. How-
ever, gateways only allow tunneled traffic that conforms with 
the policies laid out in the Access Control Engine. RADIUS [3] is 
one special case: it is also integrated with the device inventory, 

but it receives VLAN assignments rather than trust-tier eligibil-
ity semantics from the Trust Inferer. At network connection 
time, RADIUS dynamically sets the VLAN by referencing Trust 
Inferer assignments using the certificate presented for 802.1x as 
the device identifier.

Avoiding User Disruptions
One of our biggest challenges in deploying BeyondCorp was figur-
ing out how to accomplish such a massive undertaking without 
disrupting users. In order to craft a strategy, we needed to identify 
existing workflows. From the existing workflows, we identified: 

◆◆ Which workflows we could make compliant with an unprivi-
leged network

◆◆ Which workflows either permitted more access than desirable 
or allowed users to circumvent restrictions that were already 
in place 

To make these determinations, we followed a two-pronged 
approach. We developed a simulation pipeline that examined IP-
level metadata, classified the traffic into services, and applied 
our proposed network security policy in our simulated environ-
ment. In addition, we translated the security policy into each 
platform’s local firewall configuration language. While on the 
corporate network, this measurement allowed us to log traf-
fic metadata destined for Google corporate services that would 
cease to function on an unprivileged network. We found some 
surprising results, such as services that had supposedly been 
decommissioned but were still running with no clear purpose. 

After collecting this data, we worked with service owners to 
migrate their services to a BeyondCorp-enabled gateway. While 
some services were straightforward to migrate, others were 
more difficult and required policy exceptions. However, we made 
sure that all service owners were held accountable for exceptions 
by associating a programmatically enforced owner and expiration 
with each exception. As more services are updated and more users 
work for extended periods of time without exercising any excep-
tions, the users’ devices can be assigned to an unprivileged VLAN. 
With this approach, users of noncompliant applications are not 
overly inconvenienced; the pressure is on the service providers 
and application developers to configure their services correctly. 

The exceptions model has resulted in an increased level of com-
plexity in the BeyondCorp ecosystem, and over time, the answer 
to “why was my access denied?” has become less obvious. Given 
the inventory data and real-time request data, we need to be 
able to ascertain why a specific request failed or succeeded at a 
specific point in time. The first layer of our approach in answer-
ing this question has been to craft communications to end users 
(warning of potential problems, and how to proceed with self-
remediation or contact support) and to train IT Operations staff. 
We also developed a service that can analyze the Trust Inferer’s 
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decision tree and chronological history of events affecting a 
device’s trust tier assignment in order to propose steps for reme-
diation. Some problems can be resolved by users themselves, 
without engaging support staff with elevated privileges. Users 
who have preserved another chain of trust are often able to self-
remediate. For example, if a user believes his or her laptop has 
been improperly evaluated but still has a phone at a sufficient 
trust tier, we can forward the diagnosis request to the phone for 
evaluation.

Challenges and Lessons Learned
Data Quality and Correlation
Poor data quality in asset management can cause devices to 
unintentionally loose access to corporate resources. Typos, 
transposed identifiers, and missing information are all com-
mon occurrences. Such mistakes may happen when procure-
ment teams receive asset shipments and add the assets to our 
systems, or may be due to errors in a manufacturer’s workflow. 
Data quality problems also originate quite frequently during 
device repairs, when physical parts or components of a device 
are replaced or moved between devices. Such issues can corrupt 
device records in ways that are difficult to fix without manually 
inspecting the device. For example, a single device record might 
actually contain data for two unique devices, but automatically 
fixing and splitting the data may require physically reconciling 
the asset tags and motherboard serial numbers.

The most effective solutions in this arena have been to find local 
workflow improvements and automated input validation that 
can catch or mitigate human error at input time. Double-entry 
accounting helps, but doesn’t catch all cases. However, the need 
for highly accurate inventory data in order to make correct trust 
evaluations forces a renewed focus on inventory data qual-
ity. Our data are the most accurate they’ve ever been, and this 
accuracy has had secondary security benefits. For example, the 
percentage of our fleet that is updated with the latest security 
patches has increased.

Sparse Data Sets
As mentioned previously, upstream data sources don’t neces-
sarily share overlapping device identifiers. To enumerate a 
few potential scenarios: new devices might have asset tags but 
no hostnames; the hard drive serial might be associated with 
different motherboard serials at different stages in the device 
lifecycle; or MAC addresses might collide. A reasonably small set 
of heuristics can correlate the majority of deltas from a subset of 
data sources. However, in order to drive accuracy closer to 100%, 
you need an extremely complex set of heuristics to account for 
a seemingly endless number of edge cases. A tiny fraction of 
devices with mismatched data can potentially lock hundreds or 
even thousands of employees out of applications they need to be 

productive. In order to mitigate such scenarios, we monitor and 
verify that a set of synthetic records in our production pipeline, 
crafted to verify trust evaluation paths, result in the expected 
trust tier results.

Pipeline Latency
Since the Device Inventory Service ingests data from several 
disparate data sources, each source requires a unique imple-
mentation. Sources that were developed in-house or are based 
on open source tools are generally straightforward to extend in 
order to asynchronously publish deltas to our existing pipeline. 
Other sources must be periodically polled, which requires strik-
ing a balance between frequency of polling and the resulting 
server load. Even though delivery to gateways typically takes 
less than a second, when polling is required, changes might take 
several minutes to register. In addition, pipeline processing can 
add latency of its own. Therefore, data propagation needs to be 
streamlined. 

Communication
Fundamental changes to the security infrastructure can poten-
tially adversely affect the productivity of the entire company’s 
workforce. It’s important to communicate the impact, symp-
toms, and available remediation options to users, but it can 
be difficult to find the balance between over-communication 
and under-communication. Under-communication results 
in surprised and confused users, inefficient remediation, and 
untenable operational load on the IT support staff. Over-com-
munication is also problematic: change-resistant users tend to 
overestimate the impact of changes and attempt to seek unnec-
essary exemptions. Overly frequent communication can also 
inure users to potentially impactful changes. Finally, as Google’s 
corporate infrastructure is evolving in many unrelated ways, 
it’s easy for users to conflate access issues with other ongoing 
efforts, which also slows remediation efforts and increases the 
operational load on support staff.

Disaster Recovery
Since the composition of the BeyondCorp infrastructure is non-
trivial, and a catastrophic failure could prevent even support 
staff from accessing the tools and systems needed for recov-
ery, we built various fail-safes into the system. In addition to 
monitoring for potential or manifested unexpected changes in 
the assignment of trust tiers, we’ve leveraged some of our exist-
ing disaster recovery practices to help ensure that BeyondCorp 
will still function in the event of a catastrophic emergency. Our 
disaster recovery protocol relies on a minimal set of dependen-
cies and allows an extremely small subset of privileged main-
tainers to replay an audit log of inventory changes in order to 
restore a previously known good state of device inventory state 
and trust evaluations. We also have the ability in an emergency 
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to push fine-grained changes to the access policy that allow 
maintainers to bootstrap a recovery process.

Next Steps
As with any large-scale effort, some of the challenges we faced 
in deploying BeyondCorp were anticipated while others were 
not. An increasing number of teams at Google are finding new 
and interesting ways to integrate with our systems, providing 
us with more detailed and layered protections against malicious 
actors. We believe that BeyondCorp has substantially improved 
the security posture of Google without sacrificing usability, and 
has provided a flexible infrastructure that will allow us to apply 
authorization decisions based on policy unencumbered by tech-
nological restrictions. While BeyondCorp has been quite suc-
cessful with Google systems and at Google scale, its principles 
and processes are also within the reach of other organizations to 
deploy and improve upon.

Resources
[1] Architectural discussion of BeyondCorp: http://research 
.google.com/pubs/pub43231.html.

[2] Stagefright: https://en.wikipedia.org/wiki/Stagefright 
_(bug).

[3] RADIUS: https://en.wikipedia.org/wiki/RADIUS.
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