
28    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

SECURITYBeyondCorp
Design to Deployment at Google

B A R C L A Y O S B O R N , J U S T I N M C W I L L I A M S , B E T S Y B E Y E R ,
A N D M A X S A L T O N S T A L L

Barclay Osborn is a Site
Reliability Engineering Manager
at Google in Los Angeles. He
previously worked at a variety
of software, hardware, and

security startups in San Diego. He holds a BA
in computer science from the University of
California, San Diego. barclay@google.com

Justin McWilliams is a Google
Engineering Manager based in
NYC. Since joining Google in
2006, he has held positions in
IT Support and IT Ops Focused

Software Engineering. He holds a BA from the
University of Michigan, Ann Arbor.
jjm@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

Max Saltonstall is a Program
Manager for Google Corporate
Engineering in New York.
Since joining Google in 2011
he has worked on advertising

products, internal change management,
and IT externalization. He has a degree in
computer science and psychology from Yale.
maxsaltonstall@google.com

The goal of Google’s BeyondCorp initiative is to improve our security
with regard to how employees and devices access internal applica-
tions. Unlike the conventional perimeter security model, BeyondCorp

doesn’t gate access to services and tools based on a user’s physical location
or the originating network; instead, access policies are based on information
about a device, its state, and its associated user. BeyondCorp considers both
internal networks and external networks to be completely untrusted, and
gates access to applications by dynamically asserting and enforcing levels, or
“tiers,” of access.

We present an overview of how Google transitioned from traditional security infrastructure
to the BeyondCorp model and the challenges we faced and the lessons we learned in the pro-
cess. For an architectural discussion of BeyondCorp, see [1].

Overview
As illustrated by Figure 1, the fundamental components of the BeyondCorp system include
the Trust Inferer, Device Inventory Service, Access Control Engine, Access Policy, Gate-
ways, and Resources. The following list defines each term as it is used by BeyondCorp:

◆◆ Access requirements are organized into Trust Tiers representing levels of increasing
sensitivity.

◆◆ Resources are an enumeration of all the applications, services, and infrastructure that are
subject to access control. Resources might include anything from online knowledge bases, to
financial databases, to link-layer connectivity, to lab networks. Each resource is associated
with a minimum trust tier required for access.

◆◆ The Trust Inferer is a system that continuously analyzes and annotates device state. The
system sets the maximum trust tier accessible by the device and assigns the VLAN to be
used by the device on the corporate network. These data are recorded in the Device Inven-
tory Service. Reevaluations are triggered either by state changes or by a failure to receive
updates from a device.

◆◆ The Access Policy is a programmatic representation of the Resources, Trust Tiers, and
other predicates that must be satisfied for successful authorization.

◆◆ The Access Control Engine is a centralized policy enforcement service referenced by each
gateway that provides a binary authorization decision based on the access policy, output of
the Trust Inferer, the resources requested, and real-time credentials.

◆◆ At the heart of this system, the Device Inventory Service continuously collects, process-
es, and publishes changes about the state of known devices.

◆◆ Resources are accessed via Gateways, such as SSH servers, Web proxies, or 802.1x-enabled
networks. Gateways perform authorization actions, such as enforcing a minimum trust tier
or assigning a VLAN.

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  29

SECURITY
BeyondCorp: Design to Deployment at Google

Components of BeyondCorp
Using the components described below, BeyondCorp integrated
various preexisting systems with new systems and components
to enable flexible and granular trust decisions.

Devices and Hosts
An inventory is the primary prerequisite to any inventory-based
access control. Depending on your environment and security
policy, you may need to make a concerted effort to distinguish
between devices and hosts. A device is a collection of physical
or virtual components that act as a computer, whereas a host is
a snapshot of the state of a device at a given point in time. For
example, a device might be a laptop or a mobile phone, while a
host would be the specifics of the operating system and software
running on that device. The Device Inventory Service contains
information on devices, their associated hosts, and trust deci-
sions for both. In the sections below, the generic term “device”
can refer to either a physical device or a host, depending on the
configuration of the access policy. After a basic inventory has
been established, the remainder of the components discussed
below can be deployed as desired in order to provide improved
security, coverage, granularity, latency, and flexibility.

Tiered Access
Trust levels are organized into tiers and assigned to each device
by the Trust Inferer. Each resource is associated with a mini-
mum trust tier required for access. In order to access a given
resource, a device’s trust tier assignment must be equal to or
greater than the resource’s minimum trust tier requirement. To
provide a simplified example, consider the use cases of vari-
ous employees of a catering company: a delivery crew may only
require a low tier of access to retrieve the address of a wedding,

so they don’t need to access more sensitive services like billing
systems.

Assigning the lowest tier of access required to complete a
request has several advantages: it decreases the maintenance
cost associated with highly secured devices (which primarily
entails the costs associated with support and productivity) and
also improves the usability of the device. As a device is allowed
to access more sensitive data, we require more frequent tests of
user presence on the device, so the more we trust a given device,
the shorter-lived its credentials. Therefore, limiting a device’s
trust tier to the minimum access requirement it needs means
that its user is minimally interrupted. We may require installa-
tion of the latest operating system update within a few business
days to retain a high trust tier, whereas devices on lower trust
tiers may have slightly more relaxed timelines.

To provide another example, a laptop that’s centrally managed
by the company but that hasn’t been connected to a network for
some period of time may be out of date. If the operating system
is missing some noncritical patches, trust can be downgraded to
an intermediate tier, allowing access to some business applica-
tions but denying access to others. If a device is missing a critical
security patch, or its antivirus software reports an infection,
it may only be allowed to contact remediation services. On the
furthest end of the spectrum, a known lost or stolen device can
be denied access to all corporate resources.

In addition to providing tier assignments, the Trust Inferer also
supports network segmentation efforts by annotating which
VLANs a device may access. Network segmentation allows us to
restrict access to special networks—lab and test environments,
for example—based on the device state. When a device becomes

Figure 1: Architecture of the BeyondCorp Infrastructure Components

30    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

SECURITY
BeyondCorp: Design to Deployment at Google

untrustworthy, we can assign it to a quarantine network that
provides limited resource access until the device is rehabilitated.

Device Inventory Service
The Device Inventory Service (shown in Figure 2) is a continu-
ously updated pipeline that imports data from a broad range of
sources. Systems management sources might include Active
Directory, Puppet, and Simian. Other on-device agents, configu-
ration management systems, and corporate asset management
systems should also feed into this pipeline. Out-of-band data
sources include vulnerability scanners, certificate authorities,
and network infrastructure elements such as ARP tables. Each
data source sends either full or incremental updates about devices.

Since implementing the initial phases of the Device Inven-
tory Service, we’ve ingested billions of deltas from over 15 data
sources, at a typical rate of about three million per day, totaling
over 80 terabytes. Retaining historical data is essential in allow-
ing us to understand the end-to-end lifecycle of a given device,
track and analyze fleet-wide trends, and perform security audits
and forensic investigations.

Types of Data
Data come in two main flavors: observed and prescribed.

Observed data are programmatically generated and include
items such as the following:

◆◆ The last time a security scan was performed on the device, in
addition to the results of the scan

◆◆ The last-synced policies and timestamp from Active Directory

◆◆ OS version and patch level

◆◆ Any installed software

Prescribed data are manually maintained by IT Operations
and include the following:

◆◆ The assigned owner of the device

◆◆ Users and groups allowed to access the device

◆◆ DNS and DHCP assignments

◆◆ Explicit access to particular VLANs

Explicit assignments are required in cases of insufficient data
or when a client platform isn’t customizable (as is the case for
printers, for example). In contrast to the change rate that char-
acterizes observed data, prescribed data are typically static. We
analyze data from numerous disparate sources to identify cases
where data conflict, as opposed to blindly trusting a single or
small number of systems as truth.

Data Processing

TRANSFORMATION INTO A COMMON DATA FORMAT
Several phases of processing are required to keep the Device
Inventory Service up to date. First, all data must be transformed
into a common data format. Some data sources, such as in-house
or open source solutions, can be tooled to publish changes to the
inventory system on commit. Other sources, particularly those
that are third party, cannot be extended to publish changes and
therefore require periodic polling to obtain updates.

CORRELATION
Once the incoming data are in a common format, all data must
be correlated. During this phase, the data from distinct sources
must be reconciled into unique device-specific records. When
we determine that two existing records describe the same device,
they are combined into a single record. While data correlation may
appear straightforward, in practice it becomes quite complicated
because many data sources don’t share overlapping identifiers.

For example, it may be that the asset management system
stores an asset ID and a device serial number, but disk encryp-
tion escrow stores a hard drive serial number, the certificate

Figure 2: Device Inventory Service

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  31

SECURITY
BeyondCorp: Design to Deployment at Google

authority stores a certificate fingerprint, and an ARP database
stores a MAC address. It may not be clear that deltas from these
individual systems describe the same device until an inven-
tory reporting agent reports several or all of these identifiers
together, at which point the disjoint records can be combined
into a single record.

The question of what, exactly, constitutes a device becomes
even more muddled when you factor in the entire lifecycle, dur-
ing which hard drives, NICs, cases, and motherboards may be
replaced or even swapped among devices. Even more complica-
tions arise if data are manually entered incorrectly.

TRUST EVALUATION
Once the incoming records are merged into an aggregate form,
the Trust Inferer is notified to trigger reevaluation. This analy-
sis references a variety of fields and aggregates the results in
order to assign a trust tier. The Trust Inferer currently refer-
ences dozens of fields, both platform-specific and platform-
agnostic, across various data sources; millions of additional
fields are available for analysis as the system continues to evolve.
For example, to qualify for a high level of trust, we might require
that a device meets all (or more) of the following requirements:

◆◆ Be encrypted

◆◆ Successfully execute all management and configuration agents

◆◆ Install the most recent OS security patches

◆◆ Have a consistent state of data from all input sources

This precomputation reduces the amount of data that must be
pushed to the gateways, as well as the amount of computation

that must be expended at access request time. This step also
allows us to be confident that all of our enforcement gateways
are using a consistent data set. We can make trust changes
even for inactive devices at this stage. For example, in the past,
we denied access for any devices that may have been subject to
Stagefright [2] before such devices could even make an access
request. Precomputation also provides us with an experiment
framework in which we can write pre-commit tests to validate
changes and canary small-percentage changes to the policy or
Trust Inferer without impacting the company as a whole.

Of course, precomputation also has its downsides and can’t be
relied on completely. For example, the access policy may require
real-time two-factor authentication, or accesses originating
from known-malicious netblocks may be restricted. Somewhat
surprisingly, latency between a policy or device state change
and the ability of gateways to enforce this change hasn’t proven
problematic. Our update latency is typically less than a second.
The fact that not all information is available to precompute is a
more substantial concern.

EXCEPTIONS
The Trust Inferer has final say on what trust tier to apply to a
given device. Trust evaluation considers preexisting exceptions
in the Device Inventory Services that allow for overrides to the
general access policy. Exceptions are primarily a mechanism
aimed at reducing the deployment latency of policy changes or
new policy primitives. In these cases, the most expedient course
of action may be to immediately block a particular device that’s
vulnerable to a zero-day exploit before the security scanners
have been updated to look for it, or to permit untrusted devices
to connect to a lab network. Internet of Things devices may
be handled by exceptions and placed in their own trust tier, as
installing and maintaining certificates on these devices could be
infeasible.

Deployment
Initial Rollout
The first phase of the BeyondCorp rollout integrated a sub-
set of gateways with an interim meta-inventory service. This
service comprised a small handful of data sources containing
predominantly prescribed data. We initially implemented an
access policy that mirrored Google’s existing IP-based perimeter
security model, and applied this new policy to untrusted devices,
leaving access enforcement unchanged for devices coming from
privileged networks. This strategy allowed us to safely deploy
various components of the system before it was fully complete
and polished and without disturbing users.

In parallel with this initial rollout, we designed, developed, and
continue to iterate a higher-scale, lower-latency meta-inventory
solution. This Device Inventory Service aggregates data from

Figure 3: The data processing pipeline

32    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

SECURITY
BeyondCorp: Design to Deployment at Google

over 15 sources, ingesting between 30–100 changes per second,
depending on how many devices are actively generating data.
It is replete with trust eligibility annotation and authorization
enforcement for all corporate devices. As the meta-inventory
solution progressed and we obtained more information about
each device, we were able to gradually replace IP-based policies
with trust tier assignments. After we verified the workflows of
lower-tiered devices, we continued to apply fine-grained restric-
tions to higher trust tiers, proceeding to our ultimate goal of
retroactively increasing trust tier requirements for devices and
corporate resources over time.

Given the aforementioned complexity of correlating data from
disparate sources, we decided to use an X.509 certificate as a
persistent device identifier. This certificate provides us with two
core functionalities:

◆◆ If the certificate changes, the device is considered a different
device, even if all other identifiers remain the same.

◆◆ If the certificate is installed on a different device, the correla-
tion logic notices both the certificate collision and the mis-
match in auxiliary identifiers, and degrades the trust tiers in
response.

Thus, the certificate does not remove the necessity of correlation
logic; nor is it sufficient to gain access in and of itself. However, it
does provide a cryptographic GUID which enforcement gate-
ways use to both encrypt traffic and to consistently and uniquely
refer to the device.

Mobile
Because Google seeks to make mobile a first-class platform,
mobile must be able to accomplish the same tasks as other
platforms and therefore requires the same levels of access. It
turns out that deploying a tiered access model tends to be easier
when it comes to mobile as compared to other platforms: mobile
is typically characterized by a lack of legacy protocols and
access methods, as almost all communications are exclusively
HTTP-based. Android devices use cryptographically secured
communications allowing identification of the device in the
device inventory. Note that native applications are subject to the
same authorization enforcement as resources accessed by a Web
browser; this is because API endpoints also live behind proxies
that are integrated with the Access Control Engine.

Legacy and Third-Party Platforms
We determined that legacy and third-party platforms need
a broader set of access methods than we require for mobile
devices. We support the tunneling of arbitrary TCP and UDP
traffic via SSH tunnels and on-client SSL/TLS proxies. How-
ever, gateways only allow tunneled traffic that conforms with
the policies laid out in the Access Control Engine. RADIUS [3] is
one special case: it is also integrated with the device inventory,

but it receives VLAN assignments rather than trust-tier eligibil-
ity semantics from the Trust Inferer. At network connection
time, RADIUS dynamically sets the VLAN by referencing Trust
Inferer assignments using the certificate presented for 802.1x as
the device identifier.

Avoiding User Disruptions
One of our biggest challenges in deploying BeyondCorp was figur-
ing out how to accomplish such a massive undertaking without
disrupting users. In order to craft a strategy, we needed to identify
existing workflows. From the existing workflows, we identified:

◆◆ Which workflows we could make compliant with an unprivi-
leged network

◆◆ Which workflows either permitted more access than desirable
or allowed users to circumvent restrictions that were already
in place

To make these determinations, we followed a two-pronged
approach. We developed a simulation pipeline that examined IP-
level metadata, classified the traffic into services, and applied
our proposed network security policy in our simulated environ-
ment. In addition, we translated the security policy into each
platform’s local firewall configuration language. While on the
corporate network, this measurement allowed us to log traf-
fic metadata destined for Google corporate services that would
cease to function on an unprivileged network. We found some
surprising results, such as services that had supposedly been
decommissioned but were still running with no clear purpose.

After collecting this data, we worked with service owners to
migrate their services to a BeyondCorp-enabled gateway. While
some services were straightforward to migrate, others were
more difficult and required policy exceptions. However, we made
sure that all service owners were held accountable for exceptions
by associating a programmatically enforced owner and expiration
with each exception. As more services are updated and more users
work for extended periods of time without exercising any excep-
tions, the users’ devices can be assigned to an unprivileged VLAN.
With this approach, users of noncompliant applications are not
overly inconvenienced; the pressure is on the service providers
and application developers to configure their services correctly.

The exceptions model has resulted in an increased level of com-
plexity in the BeyondCorp ecosystem, and over time, the answer
to “why was my access denied?” has become less obvious. Given
the inventory data and real-time request data, we need to be
able to ascertain why a specific request failed or succeeded at a
specific point in time. The first layer of our approach in answer-
ing this question has been to craft communications to end users
(warning of potential problems, and how to proceed with self-
remediation or contact support) and to train IT Operations staff.
We also developed a service that can analyze the Trust Inferer’s

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  33

SECURITY
BeyondCorp: Design to Deployment at Google

decision tree and chronological history of events affecting a
device’s trust tier assignment in order to propose steps for reme-
diation. Some problems can be resolved by users themselves,
without engaging support staff with elevated privileges. Users
who have preserved another chain of trust are often able to self-
remediate. For example, if a user believes his or her laptop has
been improperly evaluated but still has a phone at a sufficient
trust tier, we can forward the diagnosis request to the phone for
evaluation.

Challenges and Lessons Learned
Data Quality and Correlation
Poor data quality in asset management can cause devices to
unintentionally loose access to corporate resources. Typos,
transposed identifiers, and missing information are all com-
mon occurrences. Such mistakes may happen when procure-
ment teams receive asset shipments and add the assets to our
systems, or may be due to errors in a manufacturer’s workflow.
Data quality problems also originate quite frequently during
device repairs, when physical parts or components of a device
are replaced or moved between devices. Such issues can corrupt
device records in ways that are difficult to fix without manually
inspecting the device. For example, a single device record might
actually contain data for two unique devices, but automatically
fixing and splitting the data may require physically reconciling
the asset tags and motherboard serial numbers.

The most effective solutions in this arena have been to find local
workflow improvements and automated input validation that
can catch or mitigate human error at input time. Double-entry
accounting helps, but doesn’t catch all cases. However, the need
for highly accurate inventory data in order to make correct trust
evaluations forces a renewed focus on inventory data qual-
ity. Our data are the most accurate they’ve ever been, and this
accuracy has had secondary security benefits. For example, the
percentage of our fleet that is updated with the latest security
patches has increased.

Sparse Data Sets
As mentioned previously, upstream data sources don’t neces-
sarily share overlapping device identifiers. To enumerate a
few potential scenarios: new devices might have asset tags but
no hostnames; the hard drive serial might be associated with
different motherboard serials at different stages in the device
lifecycle; or MAC addresses might collide. A reasonably small set
of heuristics can correlate the majority of deltas from a subset of
data sources. However, in order to drive accuracy closer to 100%,
you need an extremely complex set of heuristics to account for
a seemingly endless number of edge cases. A tiny fraction of
devices with mismatched data can potentially lock hundreds or
even thousands of employees out of applications they need to be

productive. In order to mitigate such scenarios, we monitor and
verify that a set of synthetic records in our production pipeline,
crafted to verify trust evaluation paths, result in the expected
trust tier results.

Pipeline Latency
Since the Device Inventory Service ingests data from several
disparate data sources, each source requires a unique imple-
mentation. Sources that were developed in-house or are based
on open source tools are generally straightforward to extend in
order to asynchronously publish deltas to our existing pipeline.
Other sources must be periodically polled, which requires strik-
ing a balance between frequency of polling and the resulting
server load. Even though delivery to gateways typically takes
less than a second, when polling is required, changes might take
several minutes to register. In addition, pipeline processing can
add latency of its own. Therefore, data propagation needs to be
streamlined.

Communication
Fundamental changes to the security infrastructure can poten-
tially adversely affect the productivity of the entire company’s
workforce. It’s important to communicate the impact, symp-
toms, and available remediation options to users, but it can
be difficult to find the balance between over-communication
and under-communication. Under-communication results
in surprised and confused users, inefficient remediation, and
untenable operational load on the IT support staff. Over-com-
munication is also problematic: change-resistant users tend to
overestimate the impact of changes and attempt to seek unnec-
essary exemptions. Overly frequent communication can also
inure users to potentially impactful changes. Finally, as Google’s
corporate infrastructure is evolving in many unrelated ways,
it’s easy for users to conflate access issues with other ongoing
efforts, which also slows remediation efforts and increases the
operational load on support staff.

Disaster Recovery
Since the composition of the BeyondCorp infrastructure is non-
trivial, and a catastrophic failure could prevent even support
staff from accessing the tools and systems needed for recov-
ery, we built various fail-safes into the system. In addition to
monitoring for potential or manifested unexpected changes in
the assignment of trust tiers, we’ve leveraged some of our exist-
ing disaster recovery practices to help ensure that BeyondCorp
will still function in the event of a catastrophic emergency. Our
disaster recovery protocol relies on a minimal set of dependen-
cies and allows an extremely small subset of privileged main-
tainers to replay an audit log of inventory changes in order to
restore a previously known good state of device inventory state
and trust evaluations. We also have the ability in an emergency

34    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

SECURITY
BeyondCorp: Design to Deployment at Google

to push fine-grained changes to the access policy that allow
maintainers to bootstrap a recovery process.

Next Steps
As with any large-scale effort, some of the challenges we faced
in deploying BeyondCorp were anticipated while others were
not. An increasing number of teams at Google are finding new
and interesting ways to integrate with our systems, providing
us with more detailed and layered protections against malicious
actors. We believe that BeyondCorp has substantially improved
the security posture of Google without sacrificing usability, and
has provided a flexible infrastructure that will allow us to apply
authorization decisions based on policy unencumbered by tech-
nological restrictions. While BeyondCorp has been quite suc-
cessful with Google systems and at Google scale, its principles
and processes are also within the reach of other organizations to
deploy and improve upon.

Resources
[1] Architectural discussion of BeyondCorp: http://research
.google.com/pubs/pub43231.html.

[2] Stagefright: https://en.wikipedia.org/wiki/Stagefright
_(bug).

[3] RADIUS: https://en.wikipedia.org/wiki/RADIUS.

November 2–4, 2016 • Savannah, GA

OSDI ’16: 12th USENIX Symposium on Operating Systems
Design and Implementation

Important Dates
• Abstract registration due: May 3, 2016, 6:00 p.m. EDT

• Complete paper submissions due: May 10, 2016, 6:00 p.m. EDT

• Notification to authors: July 30, 2016

• Final papers due: Tuesday, October 4, 2016, 6:00 p.m. EDT

Program Co-Chairs
Kimberly Keeton, Hewlett Packard Labs
Timothy Roscoe, ETH Zürich

The complete list of symposium organizers is available at
www.usenix.org/osdi16/cfp

Overview
The 12th USENIX Symposium on Operating Systems Design and
Implementation seeks to present innovative, exciting research
in computer systems. OSDI brings together professionals from
academic and industrial backgrounds in a premier forum for dis-
cussing the design, implementation, and implications of systems
software. The OSDI Symposium emphasizes innovative research as
well as quantified or insightful experiences in systems design and
implementation.

OSDI takes a broad view of the systems area and solicits
contributions from many fields of systems practice, includ-
ing, but not limited to, operating systems, file and storage
systems, distributed systems, cloud computing, mobile
systems, secure and reliable systems, systems aspects of big
data, embedded systems, virtualization, networking as it relates
to operating systems, and management and troubleshooting
of complex systems. We also welcome work that explores the
interface to related areas such as computer architecture, net-
working, programming languages, analytics and databases. We
particularly encourage contributions containing highly original
ideas, new approaches, and/or groundbreaking results.

More details and submission instructions are available at
www.usenix.org/osdi16/cfp

We are looking for people with personal experience and ex-
pertise who want to share their knowledge by writing. USENIX
supports many conferences and workshops, and articles about
topics related to any of these subject areas (system administra-
tion, SRE, file systems, storage, networking, distributed systems,
operating systems, and security) are welcome. We will also pub-
lish opinion articles that are relevant to the computer sciences
research community, as well as the system adminstrator and
SRE communities.

Writing is not easy for most of us. Having your writing rejected,
for any reason, is no fun at all. The way to get your articles pub-
lished in ;login:, with the least effort on your part and on the part
of the staff of ;login:, is to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new.
If you plan on writing a book, you need to write one chapter,
a proposed table of contents, and the proposal itself and
send the package to a book publisher. Writing the entire
book first is asking for rejection, unless you are a well-known,
popular writer.

;login: proposals are not like paper submission abstracts. We
are not asking you to write a draft of the article as the proposal,
but instead to describe the article you wish to write. There are
some elements that you will want to include in any proposal:

• What’s the topic of the article?

• What type of article is it (case study, tutorial, editorial,
mini-paper, etc.)?

• Who is the intended audience (syadmins, programmers,
security wonks, network admins, etc.)?

• Why does this article need to be read?

• What, if any, non-text elements (illustrations, code,
diagrams, etc.) will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering
the question about length, the limit for articles is about 3,000
words, and we avoid publishing articles longer than six pages.
We suggest that you try to keep your article between two and
five pages, as this matches the attention span of many people.

The answer to the question about why the article needs to be
read is the place to wax enthusiastic. We do not want marketing,
but your most eloquent explanation of why this article is impor-
tant to the readership of ;login:, which is also the membership
of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not
limited to:

• Previously published articles. A piece that has appeared on
your own Web server but has not been posted to USENET
or slashdot is not considered to have been published.

• Marketing pieces of any type. We don’t accept articles
about products. “Marketing” does not include being
enthusiastic about a new tool or software that you can
download for free, and you are encouraged to write case
studies of hardware or software that you helped install
and configure, as long as you are not affiliated with or
paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using
UNIX systems. Later phases involve Macs, but please send us
text/plain formatted documents for the proposal. Send pro-
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown,
LaTex, or Microsoft Word/Libre Office. Illustrations should
be EPS if possible. Vector formats (TIFF, PNG, or JPG) are also
 acceptable, and should be a minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect
to be asked to read proofs of your article, see the online sched-
ule at www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first pub-
lication rights. USENIX owns the copyright on the collection that
is each issue of ;login:. You have control over who may reprint
your text; financial negotiations are a private matter between
you and any reprinter.

Writing for ;login:

