
58    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

COLUMNS

Practical Perl Tools
With Just a Little Bit of a Swagger

D A V I D N . B L A N K - E D E L M A N

I’ve already come out as an API-phile in this column, so I suspect no one
will be shocked that we’re going to dive into yet another API-related
topic this column. Just like the TV show where you recognize everyone

in the bar (and they all know your name), we’ll be back among old friends like
REST and JSON. The one thing I perhaps should provide a trigger warning for
is we’re going to be mentioning Java in the column. If that’s not your cup of you
know what, then you may want to skip ahead in the magazine. If it is any com-
fort, we won’t see any actual Java code in the column, just a bit of the tooling.

Why Are APIs Important?
Even though this column is a bit of a drinking game where every time I say “API,” you drink,
I don’t think we’ve ever discussed why APIs are important. A (good) API can be seen as a
contract between the person who is writing the code to provide a service and the person who
is writing the code to consume that service. This is true even if that turns out to be the same
person, because all you need is a little time to pass for it to be easy to forget just how two
components were supposed to work together. Essentially the contract says, “If you send me a
request of this form, I promise to respond (ideally with the data that was requested) in a way
that you will expect.” It helps to ensure the principle of least surprise, leading to (more) stable
and reliable software. An API also encourages software authors to think up front about how
pieces of a system should interact. I say “encourages” just because we have all dealt with an
API at one time or another that wasn’t as well defined or thought out as we might like.

APIs also make it possible to write “loosely coupled” components that interact only through
their API, à la the microservices concept that is all the rage. I won’t go into more detail here
about why loosely coupled services make for a better system, but if you haven’t heard that
gospel yet, be sure to take some time to look up “microservices.” I joke, but this idea is super
serious. If you haven’t read Steve Yegge’s post [1] that included Jeff Bezos’ big mandate about
APIs, be sure to do so.

And finally, in an ideal world, part of creating a good API is the process of documenting it
well. A well-documented API makes things better for everyone (the people who wrote it, the
people who use it, the people who are thinking about using it, people who want to learn from
it, and so on). And this is where Swagger comes in.

And Now We Swagger
Here’s how the official Web site [2] defines it:

The goal of Swagger™ is to define a standard, language-agnostic interface to REST
APIs which allows both humans and computers to discover and understand the
capabilities of the service without access to source code, documentation, or through
network traffic inspection. When properly defined via Swagger, a consumer
can understand and interact with the remote service with a minimal amount
of implementation logic. Similar to what interfaces have done for lower-level
programming, Swagger removes the guesswork in calling the service.

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’. dnblankedelman@gmail.com

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  59

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

Technically speaking - Swagger is a formal
specification surrounded by a large ecosystem of
tools, which includes everything from front-end user
interfaces, low-level code libraries and commercial API
management solutions.

So what does this standard look like? At the moment, you can
write Swagger specifications in either JSON (the original for-
mat) or YAML (recently added). To get a sense of what it actually
looks like, here’s the Hello World-ish sample in YAML format
from the “Getting Started with Swagger—What Is Swagger?”
article on the official Web site:

swagger: “2.0”

info:

 version: “1.0”

 title: “Hello World API”

paths:

 /hello/{user}:

 get:

 description: Returns a greeting to the user!

 parameters:

 - name: user

 in: path

 type: string

 required: true

 description: The name of the user to greet.

 responses:

 200:

 description: Returns the greeting.

 schema:

 type: string

 400:

 description: Invalid characters in “user” were provided.

This defines a REST interface that has exactly one endpoint,
/hello/{user} (as in /hello/rik). The username at the end is
defined to be a required string. If a valid username was given, the
API promises to return a 200 return code (success) followed by
a greeting to that user (in string form). If there is a problem with
the username, an error code (400) is returned.

This by itself, besides being a reasonable documentation format,
isn’t the cool part. The cool part is when you bring the tools
written around the Swagger specification into the picture. Let’s
quickly mention the non-Perl-related tools and then take a look
at how Swagger plays in the Perl space.

Two of the more interesting non-Perl tools are Swagger Editor
(running sample at http://editor.swagger.io/) and Swagger UI
(running sample at http://petstore.swagger.io/). Swagger Editor
lets you compose your YAML or JSON in real time and see how it
will look as a fully formatted (and purdy, they’ve done a nice job

with the design) documentation page generated on the fly. The
editor also has some options for code generation—more on that in
a moment.

Equally interesting is the Swagger UI tool, which generates a
Web application that lets people not only read the documen-
tation, but try API calls right from the documentation page.
If you’ve ever tried something like Google’s API Explorer or
Spotify’s API Console [3] you’ll have a sense of what Swagger UI
provides. And if you haven’t, you really should because they are
both very useful tools.

Generating Code
So now we step closer to the promise of Perl code. It’s cool that
we now have a good format for specifying our REST API. It is
even cooler that we can process that specification and produce
good-looking (and even interactive) documentation. But even
better would be to run that specification through a post-proces-
sor that actually writes the code for us to make use of the speci-
fication. Why is this cool? It means that your API documentation
and your API code won’t get out of sync, because one begets
the other. As an aside before we go deeper into this: I have seen
efforts that allow people to take existing code and generate a
Swagger spec (i.e., go the other way). I think it is cleaner to write
the doc first, but I can see how going in the opposite direction
could be beneficial in certain cases.

There are two kinds of code we could think about generating:
client and server. We’ll look at both separately. If we are continu-
ing our look at “official” tools, we should start with Swagger
Codegen (http://swagger.io/swagger-codegen/). Swagger Code-
gen is primarily meant to produce client code in a wide range of
languages/frameworks from a Swagger spec. It manages this by
making it relatively easy to add your own modules/templates.

At the moment, it knows how to output clients using these
languages/frameworks:

[

 “android”,

 “async-scala”,

 “csharp”,

 “dart”,

 “flash”,

 “java”,

 “objc”,

 “perl”,

 “php”,

 “python”,

 “qt5cpp”,

 “ruby”,

 “scala”,

 “dynamic-html”,

60    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

 “html”,

 “swagger”,

 “swagger-yaml”,

 “swift”,

 “tizen”,

 “typescript-angular”,

 “typescript-node”,

 “akka-scala”,

 “CsharpDotNet2”

]

This is output from the online Codegen tool at https://generator
.swagger.io, essentially a pretty-printed version of the output of:

curl -X GET --header “Accept: application/json”

 “https://generator.swagger.io/api/gen/clients”

To use Swagger Codegen, you have to install a particular version
of Java (7 as of this writing), Apache maven, and the tool itself.
I used homebrew on my Mac to install all of these components,
including Java. Java 7 gets installed in a homebrew-specific
place via its Cask mechanism since downloading that ver-
sion from Oracle’s Web site isn’t easy. All in all, the process of
bringing up the necessary Java toolchain wasn’t as painful as I
expected, but your mileage may vary.

Once you have everything installed, you can process a Swagger
specification. Swagger ships with sample specs (for example,
one based on an API for a pet store because, um, every modern
pet store needs an API, I guess?) and scripts that process them
to generate sample code for each language. Rather than using
that sample spec, let’s stick to the simpler “hello world” example
shown earlier. To process it, we might type something like:

$ swagger-codegen generate -i ./test.yaml -l perl -o perl-test

The output will look something like this:

reading from ./test.yaml

[main] INFO io.swagger.codegen.DefaultCodegen -

	 generated operationId helloUserGet	

	 for Path: get /hello/{user}

writing file /tmp/perl-test/lib/WWW/SwaggerClient/DefaultApi.pm

writing file /tmp/perl-test/lib/WWW/SwaggerClient/ApiClient.pm

writing file /tmp/perl-test/lib/WWW/SwaggerClient/

	 Configuration.pm

writing file /tmp/perl-test/lib/WWW/SwaggerClient/Object

	 /BaseObject.pm

As you can see, four separate files have been generated to form a
module we can use (WWW::SwaggerClient). Of these, three are
“support” files and one has the code specific to the defined REST
API. That info is in DefaultApi.pm. In it we find the following
code (slightly reformatted to fit on the page):

#

hello_user_get

#

@param string $user The name of the user to greet. (required)

@return string

#

 sub hello_user_get {

 my ($self, %args) = @_;

 # verify the required parameter ’user’ is set

 unless (exists $args{‘user’}) {

 croak(“Missing the required parameter ’user’ when calling

	 hello_user_get”);

 }

 # parse inputs

 my $_resource_path =’/hello/{user}’;

 # default format to json

 $_resource_path =~ s/{format}/json/;

 my $_method =’GET’;

 my $query_params = {};

 my $header_params = {};

 my $form_params = {};

 # ‘Accept’ and ‘Content-Type’ header

 my $_header_accept =

 $self->{api_client}->select_header_accept();

 if ($_header_accept) {

 $header_params->{‘Accept’} = $_header_accept;

 }

 $header_params->{‘Content-Type’} =

 $self->{api_client}->select_header_content_type();

 # path params

 if (exists $args{‘user’}) {

 my $_base_variable = “{“ . “user” . “}”;

 my $_base_value =

 $self->{api_client}->to_path_value($args{‘user’});

 $_resource_path =~ s/$_base_variable/$_base_value/g;

 }

 my $_body_data;

 # authentication setting, if any

 my $auth_settings = [];

 # make the API Call

 my $response =

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  61

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

 $self->{api_client}->call_api($_resource_path,

 	$_method,

 	$query_params,

 	$form_params,

 	$header_params,

 	$_body_data,

 	$auth_settings);

 if (!$response) {

 return;

 }

 my $_response_object =

 $self->{api_client}->deserialize(‘string’, $response);

 return $_response_object;

}

This code is a little gnarly (as are the other files). The generated
code is meant to handle more sophisticated specs, so it looks a
bit like overkill at first glance. It definitely represents a certain
set of opinions and programming choices of the template author.
The generated code includes a bunch of Perl modules you may or
may not have installed (e.g., Log::Any), so be prepared to work a
bit if you are going to use the code right out of the box.

Given all of this, let me highlight one small part of the code
above. In it you can see that it has defined a hello_user_get
subroutine. This is the one you are going to call as a method to
perform the actual call from the Swagger spec. To use all of this,
we would write code like this:

use lib ‘perl-test/lib’;

use WWW::SwaggerClient::DefaultApi;

‘’

my $api = WWW::SwaggerClient::DefaultApi->new();

my $greet = $api->hello_user_get(‘user’ =>’rik’);

If I just run this code from my laptop without any other prepara-
tion, I get the following error:

API Exception(500): Can’t connect to localhost:443 at

perl-test/lib/WWW/SwaggerClient/DefaultApi.pm line 100.

because there is nothing currently listening on my laptop for
connections from a client (i.e., no server). If I ran this under the
debugger, I’d see more detail about what was being attempted
(here’s the key line of the output):

API Exception(500): Can’t connect to localhost:443 at

perl-test/lib/WWW/SwaggerClient/DefaultApi.pm line 100.

 at perl-test/lib/WWW/SwaggerClient/ApiClient.pm line 124.

WWW::SwaggerClient::ApiClient::call_api(WWW::SwaggerClient::

 ApiClient=HASH(0x7fc1339f7d98), “/hello/rik”, “GET”,

 HASH(0x7fc133a76fb0), HASH(0x7fc133a76f98),

 HASH(0x7fc133a76fc8), undef, ARRAY(0x7fc1320083c0))

 called at perl-test/lib/WWW/SwaggerClient/DefaultApi.pm line 100

From this line you can see that it was going to attempt to con-
nect to a server and issue a GET request for the path /hello/rik
just as we’d hoped it would. If you’d like to see a more sophisti-
cated example, I recommend you dissect the sample apps that
come with Swagger Codegen (e.g., the pet store one) to see how it
works. If the generated code isn’t to your liking, you may want to
consider creating a custom plugin that outputs the kind of code
you seek.

Another possibility is to use the module we are about to see for
server code: Swagger2. Swagger2 ships with a Swagger2::Client
module, which lets you write code that looks like this:

use Swagger2::Client;

$ua = Swagger2::Client->generate(“/tmp/test.yaml”);

$ua->base_url->host(“other.server.com”);

yes, this is ugly. If our spec had an operationId parameter,

the name of the method would be based on it instead

$ua->_hello__user_({‘user’=>’rik’})

But let’s move away from the client code possibilities and think
a little bit about the server side of things instead. Swagger Code-
gen has limited support for server code (e.g., it can create server
stubs for NodeJS, Python Flask, Ruby Sinatra, and so on) but
nothing for Perl-based servers. For that we’re going to have to go
a little further off the ranch and use the Swagger2 module.

Probably the easiest path is to use Mojolicious::Plugin::Swagger2,
which ships with the Swagger2 Perl module. With this plugin,
we can use the Mojolicious Web framework we’ve seen in past
columns. If you add code like this to the startup routine of your
Web app:

$app->plugin(Swagger2 =>

 {url => “file:///path/to/test.yaml”});

it will automatically add routes and validation to your Web app
(providing it has operationId info in the spec). The paths defined
in the Swagger spec will automatically become routes that require
the parameters mentioned in the spec. There’s a lovely example
of how this works in the author’s tutorial on his blog [4]. Swag-
ger2 with Mojolicious isn’t the only game in town for Swagger
(for example, there is the REST API framework “raisin” that also
integrates with Swagger), but I think it is a lovely combination.

So with that, I think you’ve got at least a small peek at Swagger
and how it can improve your API life. Take care, and I’ll see you
next time.

62    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

COLUMNS
Practical Perl Tools: With Just a Little Bit of a Swagger

Resources
[1] Steve Yegge’s Google Platform Rant: https://plus.google.com/+RipRowan/posts/eVeouesvaVX.

[2] Swagger: http://swagger.io.

[3] �Google’s API explorer: https://developers.google.com/apis-explorer; Spotify’s API Console: https://developer.spotify.com
/web-api/console/.

[4] Mojolicious Swagger2 tutorial: http://thorsen.pm/perl/programming/2015/07/05/mojolicious-swagger2.html.

USENIX Awards
USENIX honors members of the community with two prestigious awards which
recognize public service and technical excellence:

• The USENIX Lifetime Achievement (Flame) Award
• The LISA Award for Outstanding Achievement in System Administration
The winners of these awards are selected by the USENIX Awards Committee.
The USENIX membership may submit nominations for either or both of the
awards to the committee.

The USENIX Lifetime Achievement (Flame) Award
The USENIX Lifetime Achievement Award recognizes and celebrates singular
contributions to the UNIX community in both intellectual achievement and
service that are not recognized in any other forum. The award itself is in the
form of an original glass sculpture called “The Flame,” and in the case of a team
based at a single place, a plaque for the team office.

Details and a list of past recipients are available at www.usenix.org/about/flame.

The LISA Award for Outstanding Achievement in System
Administration
This award goes to someone whose professional contributions to the system
administration community over a number of years merit special recognition.

Details and a list of past recipients are available at www.usenix.org/lisa/
awards/outstanding.

Call for Award Nominations

USENIX requests nominations for
these two awards; they may be from
any member of the community.
 Nominations should be sent to the
Chair of the Awards Committee via
awards@usenix.org at any time. A
nomination should include:

1. Name and contact information
of the person making the
nomination

2. Name(s) and contact information
of the nominee(s)

3. A citation, approximately 100
words long

4. A statement, at most one page
long, on why the candidate(s)
should receive the award

5. Between two and four supporting
letters, no longer than one page
each

