
www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  63

COLUMNS

The datacenter is the new computer and it’s time to look past the UNIX
shell for building tools and utilities. While the programming envi-
ronment outside the shell is different, the UNIX philosophy is still

applicable: the tools and utilities you build should have a single purpose and
support composition through clean inputs and outputs that allow users to
build larger systems and custom workflows.

In the early days of UNIX, stdin and stdout streams allowed us to chain specialized tools and
compose various workflows to suit our needs. For example, processing HTTP logs was as
simple as running the following command:

$ grep ‘html HTTP’ /var/log/apache.log | uniq -c

What an easy way to build a data pipeline with very little code, but there are a few minor
problems. The above solution only works for a single machine running specific versions of
the UNIX utilities used in the pipeline. Running the same command on another flavor of
UNIX is not guaranteed to work, or even worse, might yield different results. On top of every-
thing else, the data between grep and uniq is often unstructured, which means ad hoc text
parsing will be required to extract specific fields before data processing can continue.

To overcome these challenges, a programming language with a little more power, such as
Go, can be used to model data using modern serialization formats such as JSON, which can
improve interoperability between command line tools and services over a network. Expand-
ing beyond a single system does introduce another set of challenges, such as invoking code
over a network and handing failures without introducing too much overhead or complexity.
One way of doing this is to use remote procedure calls (RPCs) between clients and servers.

Go and its robust standard library provide everything you need to build tools ranging from
simple command line utilities to microservices that scale horizontally across a cluster of
machines. The remainder of this article will focus on Go’s native syscall interface, RPC mech-
anisms, and standard libraries you can use to ship robust sysadmin tools in little to no time.

Remote Procedure Calls (RPC)
When creating system administration tools that need to scale beyond a single host, RPC
should be strongly considered. While there are other platforms for building services, I feel
that RPC maps closest to task originated tools built by most system administrators and pro-
vides better performance by avoiding the unnecessary overhead required by protocols such
as HTTP.

What Are Remote Procedure Calls?
As the name implies, RPC is about calling procedures (functions) remotely. RPC aims to
ease the development of client-server applications by reusing native-language semantics
and sharing code between both client and server. The learning curve for RPC is relatively low
because there is no need to learn new ways of interacting with remote services outside of the
native function calling conventions and error handling of the language you’re programming in.

Kelsey Hightower has worn
every hat possible throughout
his career in tech, and enjoys
leadership roles focused on
making things happen and

shipping software. Kelsey is a strong open
source advocate focused on building simple
tools that make people smile. When he is not
slinging Go code, you can catch him giving
technical workshops covering everything from
programming to system administration and
distributed systems.
kelsey.hightower@gmail.com

Modern System Administration with Go and
Remote Procedure Calls (RPC)
K E L S E Y H I G H T O W E R

64    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

gls: A Distributed ls Service
To demonstrate the simplicity of Go and RPC for system admin-
istration tasks, we are going to reimplement the classic UNIX
tool ls—with a twist. gls is a distributed tool for collecting file
attributes for a given file system on a remote system.

The remainder of this article will walk you through building gls
from the ground up. The source code for gls is hosted on GitHub
[1], but I encourage you to type the commands by hand as you
follow along—of course, this assumes you have a working Go
installation [2].

The gls Package
At the heart of the gls server is the gls package, which holds
common code shared by the gls server and client. Create the gls
package directory under the GOPATH. We’ll get into the details
later, but type exactly what you see here for now:

$ mkdir -p $GOPATH/src/github.com/kelseyhightower/gls

Next, change into the gls package directory and save the follow-
ing code snippet to a file named gls.go:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

$ vim gls.go

package gls

import (

 “os”

 “path/filepath”

)

type Files []File

type File struct {

 Name string

 Size int64

 Mode string

 ModTime string

}

type Ls struct{}

func (ls *Ls) Ls(path *string, files *Files) error {

 root := *path

 err := filepath.Walk(*path, func(path string, info

os.FileInfo, err error) error {

 if err != nil {

 return err

 }

 file := File{

 info.Name(),

 info.Size(),

 info.Mode().String(),

 info.ModTime().Format(“Jan _2 15:04”),

 }

 *files = append(*files, file)

 if info.IsDir() && path != root {

 return filepath.SkipDir

 }

 return nil

 })

 if err != nil {

 return err

 }

 return nil

}

Let’s walk through the gls package to see what’s happening.

First, we declare the gls package and import the os and filepath
packages from the standard library:

package gls

import (

 “os”

 “path/filepath”

)

Next, we define two types, a File type, which holds file metadata,
and a Files type, which holds a list of File objects:

type Files []File

type File struct {

 Name string

 Size int64

 Mode string

 ModTime string

}

Finally, we define the Ls type for the sole purpose of defining
the Ls method, which is responsible for gathering metadata from
files under a specific directory path. For each file found, the
name, size, permissions, and last modified time are captured
and appended to a files list that will ultimately be returned to the
caller.

type Ls struct{}

func (ls *Ls) Ls(path *string, files *Files) error {

 ...

}

There are a couple of things to note here. First, Ls is a method
and not a function. Second, Ls takes two arguments and returns
a single error value. This is not arbitrary, but a requirement of
Go’s RPC support, which provides access to exported methods of
an object over a network. Only methods that meet the following
requirements can be exposed as RPC methods:

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  65

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

◆◆ The method’s type is exported.

◆◆ The method is exported.

◆◆ The method has two arguments, both exported (or built-in)
types.

◆◆ The method’s second argument is a pointer.

◆◆ The method has return type error.

In the case of the gls package, the exported type is the Ls struct
and the exported method is the Ls method. In order to meet the
RPC requirements, the Ls method takes two arguments—the
path to search for files, and a pointer to a files list to store file
metadata—and returns a single error value.

In Go, this is not the typical way methods or functions are writ-
ten. If the Ls method was not exposed as a RPC method, then it
would have been written like this:

func (ls *Ls) Ls(path *string) (*Files, error)

The set of constraints imposed by Go’s RPC support may seem
odd at first, but when you think about it, it all makes sense.
Requiring all RPC methods to have a similar signature, two
arguments and a single return value, means it’s much easier to
encode and decode the communication between the client and
server over the network.

Complex arguments can be expressed using a complex type. For
example, if we wanted to include a pattern to limit which files
are inspected by the Ls method, we could use the Options type in
place of the original path argument.

type Options struct {

 Path string

 Pattern string

}

func (ls *Ls) Ls(options *Options, files *Files) error {...}

The gls Server
With the gls package in place, it’s time to create the gls server,
which is responsible for exposing the Ls method from the gls
package over RPC.

Start in the gls package directory created earlier:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

Create a new directory named server to hold the gls server
binary:

$ mkdir server

Next, change into the server directory and save the following
code snippet in a file named main.go.

$ cd server

$ vim main.go

package main

import (

 “log”

 “net”

 “net/rpc”

 “github.com/kelseyhightower/gls”

)

func main() {

 log.Println(“Starting glsd..”)

 ls := new(gls.Ls)

 rpc.Register(ls)

 l, err := net.Listen(“tcp”, “0.0.0.0:8080”)

 if err != nil {

 log.Fatal(err)

 }

 for {

 conn, err := l.Accept()

 if err != nil {

 log.Println(err)

 }

 rpc.ServeConn(conn)

 conn.Close()

 }

}

Let’s quickly walk through what’s going on here. First, we import
a few packages from the Go standard library, including the net/

rpc package, which provides support for exposing methods over
RPC, and the gls package, which holds the definition of the Ls
method.

Before we move on it’s important to note the full name of the
gls package: github.com/kelseyhightower/gls. This name was
chosen to match where the gls package will be hosted on the
Internet—on GitHub under the username kelseyhightower. Go’s
tooling has native support for working with packages hosted
on remote repositories such as GitHub, and it’s common to see
packages named using this convention. The package name is
important: because we cannot simply import “gls”, we must use
the complete import path where the gls package lives in relation
to the GOPATH or our program will fail to compile. Learn more
about Go’s import semantics from the official docs [3].

With the gls package imported, we are ready to export the gls.Ls
method by registering it using the net/rpc package.

ls := new(gls.Ls)

rpc.Register(ls)

66    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

The rest of the code creates a listener which binds to port 8080
on all available network interfaces and waits for RPC requests
from clients.

The gls Client
The gls client is responsible for making requests to the gls server
and printing the results to stdout. Create the gls client by run-
ning the following commands:

Start in the gls package directory created earlier:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

Create a new directory-named client to hold the gls client binary:

$ mkdir client

Next, change into the client directory and save the following
code snippet in a file named main.go.

$ cd client

$ vim main.go

package main

import (

 “fmt”

 “log”

 “net/rpc”

 “os”

 “github.com/kelseyhightower/gls”

)

func main() {

 client, err := rpc.Dial(“tcp”, “127.0.0.1:8080”)

 if err != nil {

 log.Fatal(err)

 }

 files := make(gls.Files, 0)

 err = client.Call(“Ls.Ls”, os.Args[1], &files)

 if err != nil {

 log.Fatal(err)

 }

 for _, f := range files {

 fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size,

f.ModTime, f.Name)

 }

}

As with the gls server, we import a few packages from the stan-
dard library and the gls package, which in the case of the gls cli-
ent provides access to the gls.Files type. Remember the gls.Files
type is defined in the gls package:

package gls

type Files []File

type File struct {

 Name string

 Size int64

 Mode string

 ModTime string

}

In order to communicate with the gls server, we need an RPC
client and must establish an RPC connection:

client, err := rpc.Dial(“tcp”, “127.0.0.1:8080”)

if err != nil {

 log.Fatal(err)

}

Before making the call to the remote Ls method, we must initial-
ize an empty gls.Files slice to hold the results from the gls server:

files := make(gls.Files, 0)

Now we are ready to make our RPC call and print the results.

err = client.Call(“Ls.Ls”, flag.Args()[0], &files)

if err != nil {

 log.Fatal(err)

}

for _, f := range files {

 fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size, f.ModTime,

f.Name)

}

Also, notice how we are using the first positional command line
argument identified by flag.Args()[0] as the path argument to
the Ls method. This will allow us to use the gls client binary like
the standard ls UNIX command. For example, to list files in the
tmp directory, we can run the gls client like this:

$ gls /tmp/

The string “/tmp/” will be stored at the first position of the slice
returned by the flag.Args() function.

At this point, we are code complete and are ready to build and
deploy the gls client and server.

Build and Deployment
Now that we have written and understand the code behind the gls
client and server, let’s turn our attention to the build and deploy-
ment process. Go is a compiled language, which means we must
run our source code through a compiler before we can run it.

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  67

COLUMNS
Modern System Administration with Go and Remote Procedure Calls (RPC)

Building the gls client and server is as simple as running the fol-
lowing commands from the gls package directory:

$ cd $GOPATH/src/github.com/kelseyhightower/gls

Build the gls client using the go build command:

$ go build -o gls client/main.go

Build the gls server using the go build command:

$ go build -o glsd server/main.go

Running the above commands results in the following binaries:

gls

glsd

One thing to note about the gls and glsd binaries (and Go bina-
ries in general) is that they are self-contained. This means each
binary can be copied to a similar OS and architecture and be run
without the need to install Go on the target system. In a future
article, I’ll cover how cross-compiling in Go works, which allows
you to develop applications on one platform (Linux) and compile
them to run on another (Windows).

You are now ready to launch the gls server:

$./glsd

2015/12/23 07:50:06 Starting glsd..

At this point the gls server is ready to accept RPC requests on
port 8080.

Open a new terminal window and use gls client to get a directory
listing of your home directory from the gls server:

$./gls ~/

drwx------	 170	 Nov 28 20:23	 Applications

drwxr-xr-x	 102	 Dec 20 01:52	 Desktop

drwx------	 1122	 Dec 20 11:57	 Documents

drwx------	 340	 Dec 22 11:30	 Downloads

...

The gls client is hardcoded to communicate with the gls server
over localhost (127.0.0.1) on port 8080. This is being done
because the gls server is not protected by any form of authen-
tication or encryption such as TLS. In a future article, we will
revisit extending the gls client and server to support encryption,
authentication, and communication over any IP/port combina-
tion using a set of command line flags.

Conclusion
The way we think about computers is changing, and this is the
perfect time to rethink the way we approach systems program-
ming in general. Go has native RPC support and low-level syscall
functionality, which allows us to build enhanced versions of
UNIX classics such as ls or new tools that perform tasks that
meet the challenges of today while leveraging the timeless UNIX
philosophy that has defined computing for decades.

Resources
[1] GitHub for the sources in this column: https://github.com
/kelseyhightower/gls.

[2] Installing Go: https://golang.org/doc/install.

[3] Docs for understanding package paths: https://golang.org
/doc/code.html#PackagePaths.

