
8  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS

Teaching Operating Systems with FreeBSD
through Tracing, Analysis, and Experimentation
G E O R G E V . N E V I L L E - N E I L A N D R O B E R T N . M . W A T S O N

Many people who study computer science at universities encounter
their first truly large system when studying operating systems.
Until their first OS course, their projects are small, self-contained,

and often written by only one person or a team of three or four. In this article,
we suggest an approach to studying operating systems we have been using with
graduate students and practitioners that involves using a small ARMv7 board
and tracing. All of our materials are available online, with a BSD-like license.

Since the first courses on operating systems were begun back in the 1970s, there have been
three ways in which such classes have been taught. At the undergraduate level, there is the
“trial by fire,” in which students extend or recreate classical elements and forms of OS design,
including kernels, processes, and file systems. In trial-by-fire courses the students are given
a very large system to work with, and they are expected to make small, but measurable,
changes to it. Handing someone a couple million lines of C and expecting them to get some-
thing out of changing a hundred lines of it seems counterintuitive at the least.

The second undergraduate style is the “toy system.” With a toy system the millions of lines
are reduced to some tens of thousands, which makes understanding the system as a whole
easier but severely constrains the types of problems that can be presented, and the lack of
fidelity, as compared to a real, fielded operating system, often means that students do not
learn a great deal about operating systems, or large systems in general. For graduate students,
studying operating systems is done through a research readings course, where students read,
present, discuss, and write about classic research where they are evaluated on a term project
and one or more exams.

For practitioners, those who have already left the university, or those who entered computer
science from other fields, there have been even fewer options. One of the few examples of a
course aimed at practicing software engineers is the series “FreeBSD Kernel Internals” by
Marshall Kirk McKusick, with whom both authors of this article worked on the most recent
edition of The Design and Implementation of the FreeBSD Operating System. In the “FreeBSD
Kernel Internals” courses, students are walked through the internals of the FreeBSD operat-
ing system with a generous amount of code reading and review, but without modifying the
system as part of the course.

For university courses at both the undergraduate and graduate level, we felt there had to be a
middle way where we could use a real-world artifact such as FreeBSD, which is deployed in
products around the world, while making sure the students didn’t get lost in the millions of
lines of code at their disposal.

Deep-Dive Experimentation
Starting in 2014, the authors undertook to build a pair of tightly coupled courses sharing
pedagogy and teaching material. One version is designed for graduate students and taught
by Robert N. M. Watson at the University of Cambridge. The other version is a practitioner
course taught at conferences in industrial settings by George Neville-Neil.

George V. Neville-Neil works
on networking and operating
system code for fun and profit.
He also teaches courses on
various subjects related to

programming. His areas of interest are code
spelunking, operating systems, networking,
and time protocols. He is the coauthor with
Marshall Kirk McKusick and Robert N. M.
Watson of The Design and Implementation of the
FreeBSD Operating System. For over 10 years he
has been the columnist better known as Kode
Vicious. He earned his bachelor’s degree in
computer science at Northeastern University
in Boston, Massachusetts, and is a member of
ACM, the USENIX Association, and IEEE. He is
an avid bicyclist and traveler and currently lives
in New York City. gnn@neville-neil.com

Dr. Robert N. M. Watson is
a University Senior Lecturer
(Associate Professor) in
systems, security, and
architecture at the University

of Cambridge Computer Laboratory; FreeBSD
developer and past core team member;
and member of the FreeBSD Foundation
Board of Directors. He leads a number of
cross-layer research projects spanning
computer architecture, compilers, program
analysis, program transformation, operating
systems, networking, and security. Recent
work includes the Capsicum security model,
MAC Framework used for sandboxing in
systems such as Junos and Apple iOS, CHERI
(CPU with protected memory segments),
and multithreading in the FreeBSD network
stack. He is a coauthor of The Design and
Implementation of the FreeBSD Operating System
(2nd edition). watson@freebsd.org

A version of this article originally appeared in
the FreeBSD Journal, April/May 2016 issue.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 9

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

In the deep-dive course, students learn about and analyze
 specific CPU/OS/protocol behaviors using tracing via DTrace
(Figure 1) and the CPU performance counters. Using tracing to
teach mitigates the risk of OS kernel hacking in a short course,
while allowing the students to work on real-world systems rather
than toys. For graduate students, we target research skills and
not just OS design. The deep-dive course is only possible due to
development of integrated tracing and profiling tools, includ-
ing DTrace and Hardware Performance Monitoring Counter
(hwpmc) support present in FreeBSD.

The aims of the graduate course include teaching the method-
ology, skills, and knowledge required to understand and per-
form research on contemporary operating systems by teaching
systems-analysis methodology and practice, exploring real-
world systems artifacts, developing scientific writing skills, and
reading selected original systems research papers.

The course is structured into a series of modules. Cambridge
teaches using eight-week academic terms, providing limited
teaching time compared to US-style 12-to-14-week semesters.
However, students are expected to do substantial work outside
of the classroom, whether in the form of reading, writing, or lab
work. For the Cambridge course, we had six one-hour lectures in
which we covered theory, methodology, architecture, and prac-
tice, as well as five two-hour labs. The labs included 30 minutes
of extra teaching time in the form of short lectures on artifacts,
tools, and practical skills. The rest of the students’ time was
spent doing hands-on measurement and experimentation.

Readings were also assigned, as is common in graduate level
courses, and these included both selected portions of module
texts and historic and contemporary research papers. Students
produced a series of lab reports based on experiments done in
(and out) of labs. The lab reports are meant to refine scientific
writing style to make it suitable for systems research. One
practice run was marked, with detailed feedback given, but not
assessed, while the following two reports were assessed and
made up 50% of the final mark.

Three textbooks were used in the course: The Design and Imple-
mentation of the FreeBSD Operating System (2nd edition) as the
core operating systems textbook; The Art of Computer Systems
Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, which shows the stu-
dents how to measure and evaluate their lab work; and DTrace:
Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD,
covering the use of the DTrace system.

Although many courses are now taught on virtual-machine tech-
nology, we felt it was important to give the students experience
with performance measurement. Instead of equipping a large
room of servers, we decided, instead, to teach with one of the new
and inexpensive embedded boards based around the ARM series
of processors. Initially, we hoped to use the Raspberry Pi as it is
popular, cheap, and designed at the same university at which the
course would first be taught. Unfortunately, the RPi available
at the time did not have proper performance counter support
in hardware due to a feature being left off the system-on-chip
design when it was originally produced.

malloc()

Kernel image

Function
Boundary
Tracing
provider

dtmalloc
provider

DTrace - probe context

dtrace_probe()

DIF
interpreter

(predicates,
actions)

Buffers

Per-script,
per-CPU

buffer pairs

User
dtrace

process

CPU ID FUNCTION:NAME
 0 30408 malloc:entry dtrace 608
 0 30408 malloc:entry dtrace 608
 3 30408 malloc:entry dtrace 120
 3 30408 malloc:entry dtrace 120
 3 30408 malloc:entry dtrace 324
 0 30408 malloc:entry intr 1232
 0 30408 malloc:entry csh 64
 0 30408 malloc:entry csh 3272
 2 30408 malloc:entry csh 80
 2 30408 malloc:entry csh 560

dtrace -n 'fbt::malloc:entry { trace(execname); trace(arg0); }'

dtrace -n 'dtmalloc::temp:malloc /execname=“csh”/ { trace(execname); trace(arg3); }'

CPU ID FUNCTION:NAME
 1 54297 temp:malloc csh 1024
 1 54297 temp:malloc csh 64

dtrace_ioctl()

(copyout())

Userland
dtrace

command

DTrace process DTrace output

copied
out

buffer

Figure 1: DTrace is a critical part of the course’s teaching approach—students trace kernels and applications to understand their performance behavior.
They also need to understand—at a high level—how DTrace works in order to reason about the “probe effect” on their measurements.

10  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

With the RPi out of the running, we chose the BeagleBone Black
(BBB), which is built around a 1 GHz, 32-bit ARM Cortex A-8, a
superscalar processor with MMU and L1/L2 caches. Each stu-
dent had one of these boards on which to do lab work. The BBB
has power, serial console, and network via USB. We provided
the software images on SD cards that formed the base of the
students’ lab work. The software images contain the FreeBSD
operating system, with DTrace and support for the on-board
CPU performance counters, and a set of custom microbench-
marks. The benchmarks are used in the labs and cover areas
such as POSIX I/O, POSIX IPC, and networking over TCP.

Eight Weeks, Three Sections
The eight weeks of the course are broken up into three major
sections. In weeks one and two, there is a broad introduction to
OS kernels and tracing. We want to give the students a feel for
the system they are working on and the tools they’ll be work-
ing with. During these first two weeks, students are assigned
their first lab, in which they are expected to look at POSIX I/O
performance. I/O performance is measured using a synthetic
benchmark we provide in which students look at file block
I/O using a constant total size with a variable buffer size. The
conventional view is that increasing the buffer size will result
in fewer system calls and improved overall performance, but
that is not what the students will find. As buffer sizes grow,
the working set first overflows the last-level cache, preventing
further performance growth, and later exceeds the superpage

size, measurably decreasing performance as page faults require
additional memory zeroing.

The second section, covering weeks three through five, is dedi-
cated to the process model (Figure 2). Because the process model
forms the basis of almost all modern programming systems, it
is a core component of what we want the students to be able to
understand and investigate during the course and afterwards
in their own research. While learning about the process model,
the students are also exposed to their first microarchitectural
measurement lab in which they show the implications of IPC on
L1 and L2 caching. The microarchitectural lab is the first one
that contributes to their final grade.

The last section of the course is given over to networking, spe-
cifically the Transport Control Protocol (TCP, Figure 3). During
weeks six through eight, the students are exposed to the TCP
state machine and also measure the effects of latency on band-
width in data transfers. We’ve moved to an explicit iPython/
Junyper Notebooks framework, hosted on the BBB, to drive
DTrace/PMC experimentation, and provide a consistent data
analysis and presentation framework. This allows the students
to be more productive in focusing on OS internals and analysis.

Challenges and Refinements
The graduate course has been taught twice at Cambridge, and
we have reached out to other universities to talk with them about
adopting the material we have produced. In teaching the course,

1980s 1990s

/bin/dd

heap arena2

libc

/bin/dd /bin/dd

libc

rtldrtld

heap arena1

2000s

/bin/dd

libc

rtld

stack

heap

stack

heap heap

stack1

stack1

stack1

stack1

Figure 2: Students learn not just about the abstract notion of a UNIX “process,” but also the evolution of the approach over the decades: dynamic linking,
multithreading, and contemporary memory allocators such as FreeBSD’s jemalloc.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 11

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

we discovered many things that worked, as well as a few chal-
lenges to be overcome as the material is refined. We can confirm
that tracing is a great way to teach complex systems because we
were able to get comprehensive and solid lab reports/analysis
from the students, which was the overall goal of the course.
The students were able to use cache hit vs. system-call rates to
explain IPC performance. They produced TCP time-sequence
plots and graphical versions of the TCP state machine all from
trace output. Their lab reports had real explanations of interest-
ing artifacts, including probe effects, superpages, DUMMYNET
timer effects, and even bugs in DTrace. Our experiment with
using an embedded board platform worked quite well—we could
not have done most of these experiments on VMs. Overall, we
found that the labs were at the right level of difficulty, but that
too many experimental questions led to less focused reports— a
concern addressed in the second round of teaching.

On the technical side, we should have committed to one of R,
Python, or iPython Notebooks for use by the students in doing
their experimental evaluations and write-ups. Having a plethora
of choices meant that there were small problems in each, all of
which had to be solved and which slowed down the students’ prog-

ress. When teaching the course for the first time, there were several
platform bumps, including USB target issues, DTrace for ARMv7
bugs, and the four-argument limitation for DTrace on ARMv7.

Teaching Practitioners
Teaching practitioners differs from teaching university students
in several ways. First, we can assume more background, includ-
ing some knowledge of programming and experience with UNIX.
Second, practitioners often have real problems to solve, which
can lead these students to be more focused and more involved in
the course work. We can’t assume everything, of course, since
most of the students will not have been exposed to kernel inter-
nals or have a deep understanding of corner cases.

Our goals for the practitioner course are to familiarize people
with the tools they will use, including DTrace, and to give them
practical techniques for dealing with their problems. Along the
way we’ll educate them about how the OS works and dispel their
fears of ever understanding it. Contrary to popular belief, educa-
tion is meant to dispel the students’ fear of a topic so that they
can appreciate it more fully and learn it more deeply.

The practitioner’s course is currently two eight-hour days. The
platform is the student’s laptop or a virtual machine. First taught
at AsiaBSDCon 2015, the course was subsequently taught at
AsiaBSDCon 2016 and BSDCan 2016.

Five-Day, 40-Hour Course Hardware or
VM Platform Video Recordings
Like the graduate-level course, this course is broken down into
several sections and follows roughly the same narrative arc.
We start by introducing DTrace using several simple and yet
powerful “one liners.” A DTrace one liner is a single command
that yields an interesting result. This example one-liner displays
every name lookup on the system at runtime.

dtrace -n ’vfs:namei:lookup:entry \

 { printf(“%s”, stringof(arg1));}’

CPU ID FUNCTION:NAME

 2 27847 lookup:entry /bin/ls

 2 27847 lookup:entry /libexec/ld-elf.so.1

 2 27847 lookup:entry /etc

 2 27847 lookup:entry /etc/libmap.conf

 2 27847 lookup:entry /etc/libmap.conf

The major modules are similar to the university course and
cover locking, scheduler, files and the file system, and network-
ing. The material is broken up so that each one-hour lecture is
followed by a 30-minute lab in which students use the VMs on
their laptops to modify examples given during the lectures or
solve a directed problem. Unlike classes where we have access to
hardware, the students do not take any performance measure-
ments with hwpmc(4) since the results would be unreliable and
uninformative.

SYN

SYN / ACK
ACK

DATA / ACK
ACK

DATA / ACK

ACK

FIN / ACK
ACK

FIN / ACK
ACK

CLOSED
CLOSED

SYN SENT

ESTABLISHED

SYN RCVD

ESTABLISHED

FIN WAIT-1

FIN WAIT-2

TIME WAIT

CLOSED

…

CLOSE WAIT

LAST ACK

CLOSED

Node A Node B

DATA / ACK

Figure 3: Labs 3 and 4 of the course require students to track the TCP
state machine and congestion control using DTrace, and to simulate the
effects of latency on TCP behavior using FreeBSD’s DUMMYNET traffic
control facility.

12  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

OPERATING SYSTEMS
Teaching Operating Systems with FreeBSD through Tracing, Analysis, and Experimentation

Having taught the practitioner course several times, we have
learned a few things. Perhaps the most surprising was that the
class really engages the students. Walking around the class
during the labs, we didn’t see a single person checking email or
reading social media—they were actually solving the problems.

The students often came up with novel answers to the problems
presented, and this was only after being exposed to DTrace for
a few hours. Their solutions were interesting enough that we
integrated them back into the teaching during the next section.
Finally, and obvious from the outset, handing a pre-built VM
to the students significantly improves class startup time, with
everyone focused on the task at hand, rather than tweaking their
environment. Since the FreeBSD Project produces VM images
for all the popular VM systems along with each release, it is easy
to have the students pre-load the VM before class, or to hand
them one on a USB stick when they arrive.

It’s All Online!
With the overall success of these courses, we have decided to
put all the material online using a permissive, BSD-like publish-
ing license. The main page can be found at www.teachbsd.org,
and our GitHub repo, which contains all our teaching materials
for both the graduate and practitioner courses, can be found at
https://github.com/teachbsd/course, where you can fork the
material for your own purposes as well as send us pull requests
for new features or any bugs found in the content. The third ver-
sion of the Cambridge course (L41) with the Python lab environ-
ment will be online by May 2017 as the current course wraps up.
We would value your feedback on the course and suggestions for
improvements as well—and please let us know if you are using it
to teach!

HotCloud ’17: 9th USENIX Workshop on Hot Topics
in Cloud Computing
July 10–11, 2017
www.usenix.org/hotcloud17
HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technolo-
gies to share their perspectives, report on recent developments,
discuss research in progress, and identify new/emerging “hot”
trends in this important area. While cloud computing has gained
traction over the past few years, many challenges remain in the
design, implementation, and deployment of cloud computing.

HotCloud is open to examining all models of cloud comput-
ing, including the scalable management of in-house servers,
remotely hosted Infrastructure-as-a-Service (IaaS), infrastructure
augmented with tools and services that provide Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS).

Submissions due: March 14, 2017

HotStorage ’17: 9th USENIX Workshop on Hot Topics
in Storage and File Systems
July 10–11, 2017
www.usenix.org/hotstorage17
The purpose of the HotStorage workshop is to provide a forum
for the cutting edge in storage research, where researchers can
exchange ideas and engage in discussions with their colleagues.
The workshop seeks submissions that explore longer-term chal-
lenges and opportunities for the storage research community.
Submissions should propose new research directions, advocate
non-traditional approaches, or report on noteworthy actual
experience in an emerging area. We particularly value submis-
sions that effectively advocate fresh, unorthodox, unexpected,
controversial, or counterintuitive ideas for advancing the state
of the art.

Submissions will be judged on their originality, technical merit,
topical relevance, and likelihood of leading to insightful discus-
sions that will influence future storage systems research. In
keeping with the goals of the HotStorage workshop, the review
process will heavily favor submissions that are forward looking
and open ended, as opposed to those that summarize mature
work or are intended as a stepping stone to a top-tier conference
publication in the short term.

Submissions due: March 16, 2017

SAVE THE DATE!

2017 USENIX Annual Technical Conference
JULY 12–14, 2017, SANTA CLARA, CA
www.usenix.org/atc17

The 2017 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge
systems research and unlimited opportunities to gain insight into a variety of must-know topics, including virtu-
alization, system and network management and troubleshooting, cloud computing, security, privacy, and trust,
mobile and wireless, and more.

Co-located with USENIX ATC ’16:

SOUPS 2017: Thirteenth Symposium on Usable Privacy and Security
JULY 12–14, 2017
www.usenix.org/soups2017

SOUPS 2017 will bring together an interdisciplinary group of researchers and practitioners in human computer interaction,
security, and privacy. The program will feature technical papers, workshops and tutorials, a poster session, panels and
invited talks, and lightning talks.

Co-Located with USENIX ATC ’17

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the

membership and the Board of Directors will be held on
Thursday, July 13, in Santa Clara, CA, during the

2017 USENIX Annual Technical Conference.

