
14    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

OPERATING SYSTEMS

Linux Kernel Self-Protection
K E E S C O O K

Kees Cook has been working
with Free Software since
1994, and has been a Debian
Developer since 2007. He
is currently employed as a

software developer by Google, working on
Android, Brillo, and Chrome OS. From 2006
through 2011 he worked for Canonical as
the Ubuntu Security Team’s Tech Lead and
remains on the Ubuntu Technical Board. Before
that, he worked as the lead sysadmin at OSDL
before it became the Linux Foundation. He has
written various utilities, including GOPchop
and Sendpage, and contributes randomly to
other projects, including fun chunks of code
in OpenSSH, Inkscape, Wine, MPlayer, and
Wireshark. Lately, he’s been spending most
of his time focused on security features in the
Linux kernel. kees@outflux.net

R ecent focus on defending the Linux kernel from attack has resulted
in many fundamental self-protections being brought into the
upstream releases across a wide spectrum of kernel internals.

Getting these defenses deployed into the real world means there are fewer
chances for attackers to gain a foothold on systems.

Linux systems have seen significant improvements in security over the last decade. Contain-
ers (with various combinations of namespaces) and mandatory access control policies (like
SELinux) keep walls between groups of processes; privileged processes try to use only fine-
grained capabilities; risky processes confine themselves with seccomp; execution chains
are cryptographically integrity-checked, and the list goes on. This reduction in the attack
surface of user space has resulted in more attention being given to attacks against the Linux
kernel itself. Because the kernel is the mediator for all the mentioned security systems, suc-
cessful exploitation of a flaw in the kernel means all these protections go out the window.

Much recent work has involved providing the Linux kernel with better self-protection.
Although much of the prior security work in the kernel was designed to protect user space
from user space, the Kernel Self-Protection Project [1] focuses instead on protecting the ker-
nel from user space. Many of the ideas and technologies in this project come from the large
PaX and grsecurity (https://grsecurity.net) patches, while others originate from academic
research papers and similar sources. Ultimately, there are two fundamental principles:
eliminate classes of bugs and remove exploitation methods.

Fixing security bugs is important, but there are always more to be found. With the average
lifetime of security bugs being five years [2], kernel development needs to be aimed at elimi-
nating entire classes of bugs instead of playing whack-a-mole. Poor design patterns that lead
to bugs can be exterminated by changing APIs or data structures.

Removing exploitation methods is fundamentally about creating a hostile environment for
an attack. The kernel already runs smoothly day-to-day, but when it hits unexpected situ-
ations, it needs to deal with them gracefully. These situations tend not to affect the regular
operation of the kernel, but leaving them unaddressed makes exploitation easier.

Even redesigning kernel internals so that the criticality of flaws is reduced has a signifi-
cant impact on security. If a bug causes a system to reboot instead of give full control to an
attacker, this is an improvement. The downtime will be annoying, but it sure beats going
weeks not realizing a system was backdoored and then having to perform extensive post-
intrusion forensics.

There has been a steady stream of improvements making their way into the kernel, but the
last three years have seen a number of significant (or at least interesting) protections added
or improved. There isn’t room to cover everything in this article, but what follows are high-
lights spanning a range of areas.

The self-protection technologies in the Linux kernel can be roughly separated into two catego-
ries: probabilistic and deterministic. Understanding the differences between these categories

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  15

OPERATING SYSTEMS
Linux Kernel Self-Protection

helps us evaluate their utility for a given system or organization’s
threat model. After defining what needs to be protected against,
it’s easier to digest what actually addresses the risks.

Probabilistic protections derive their strength from some system
state being unknown to an attacker. They tend to be weaker
than deterministic protections since information exposures can
defeat them. However, they still have very practical real-world
value. They tend to be pragmatic defenses, geared toward giving
an advantage (even if small) to a defender.

Deterministic protections derive their strength from some sys-
tem state that always blocks an attacker. Since these protections
are generally enforced by architectural characteristics of the
system, they cannot be bypassed just by knowing some secret. In
order to disable the protection, an attacker would need to already
have control over the system.

Probabilistic Protections
Two familiar examples of probabilistic protections, present in
user space too, are the stack canary and Address Space Layout
Randomization (ASLR). The stack canary is used to detect
the common flaw of a stack buffer overflow in an effort to kill
this entire class of bug. The protection, however, depends on
the secrecy of the canary value in memory. If this is exposed,
the protection can be bypassed by including the canary in the
overflow. Similarly, ASLR raises the bar for attackers since
they can no longer easily predict where targets are in memory.
If the ASLR offset is exposed, then the memory layout becomes
predictable again.

The Linux kernel has used a stack canary for a very long time.
Recent improvements in the compiler (since GCC v4.9) have
allowed for wider coverage of the stack canary protection, with
-fstack-protector-strong, available in Linux since v3.14 when the
kernel build configuration option CONFIG_CC_STACKPROTECTOR

_STRONG was enabled.

ASLR in the kernel (KASLR) is a contentious issue since there
have been a large number of ways to locally expose the offset.
However, KASLR isn’t limited to just randomizing the position
of the kernel code. Improvements have been made to randomize
the location of otherwise fixed data allocation positions as well.

KASLR still raises the bar for attackers, especially on systems
that run without exposing user space, for example on protocol-
only systems like routers, access points, or similar. An attacker
facing KASLR risks crashing or rebooting their target if they
make a mistake, which leads to very noticeable events from the
perspective of the defender.

KASLR of the kernel code itself is controlled by CONFIG_RANDOM-

IZE_BASE and was introduced on x86 in Linux v3.14, arm64 in
v4.6, and MIPS in v4.7. Other architectures are expected to gain

the feature soon. In the further future, in an effort to address
the weakness to exposures, the hope is to reorganize the kernel
code at boot instead of just shifting it in memory by a single
offset. KASLR of kernel memory is still being worked on, and is
similarly architecture-specific. CONFIG_RANDOMIZE_MEMORY
exists for x86_64 since Linux v4.8, and much of the same effect
is already present on arm64 since v4.6.

Another place for randomization in the kernel is the order of
the kernel’s heap memory layout (not just its base offset). The
introduction of CONFIG_SLAB_FREELIST_RANDOM in v4.7 (for
the SLAB allocator) and v4.8 (for the SLUB allocator) makes it
harder for attackers to build heap-spraying attacks. With this
protection, an attacker has less control over the relationship
between sequential memory allocations (they’re less likely to be
adjacent). If enough memory is allocated, though, the effect of
this protection is diminished. Like KASLR, it raises the bar, if
only a little.

Deterministic Protections
Two familiar examples of deterministic protections, present in
user space too, are read-only memory and bounds-checking. The
read-only memory flag, enforced by the CPU over designated
segments of memory, will block any write attempts made within
the marked regions. For an attacker trying to redirect execution
flow, the less writable memory there is, the less opportunity they
have to make changes to the kernel after they have found a stray
write flaw. Bounds checking similarly restricts the cases where
a stray write flaw may exist to begin with. If every index into
an array is verified to be within the size of the given array, no
amount of an attacker’s wishing will escape the checks.

By far the most fundamental protection in the kernel is correct
memory permissions. This is collected under the poorly named
CONFIG_DEBUG_RODATA [3]. While it was at one time used for
debugging, kernel memory permissions are used to enforce
memory integrity. And while it once only controlled making
read-only data actually read-only, it also now makes sure that
the various safe combinations of memory permissions are in
place: kernel code is executable and read-only, unchanging data
is read-only and not executable, and writable data is (obviously)
writable but additionally not executable. Fundamentally, noth-
ing should ever be both executable and writable: such memory
areas are trivial places attackers could use to gain control.

In the face of proper kernel memory protection, attackers tend
to use user space memory for constructing portions of their
attacks. As a result, the next most fundamental protection is
making sure the kernel doesn’t execute or (unexpectedly) read/
write user space memory. The idea isn’t new that kernel memory
isn’t available to user space (this is the whole point of system
calls), but this protection is the inverse: user space memory isn’t

16    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

OPERATING SYSTEMS
Linux Kernel Self-Protection

available to the kernel. If an attack confuses the kernel into
trying to read or execute memory that lives in user space, it gets
rejected. For example, without this protection it’s trivial for an
attacker to just write the executable portion of their attack in
user space memory, entirely bypassing the permissions that
make sure nothing is writable and executable in kernel memory.

Some models of CPUs have started providing this protection in
hardware (e.g., SMEP and SMAP on x86 since Skylake, and PXN
and PAN on ARM since ARMv8.1), but they are still rare, espe-
cially on server-class systems. Emulating these protections in
software is the next best thing. 32-bit ARM systems can do this
with CONFIG_CPU_SW_DOMAIN_PAN since Linux v4.3, and 64-bit
ARM systems can do this with CONFIG_ARM64_SW_TTBR0_PAN
since Linux v4.10. Unfortunately, as of v4.10, emulation for
SMEP and SMAP was still not available for x86 in the upstream
kernel [4].

The places where the kernel explicitly reads and writes user-
space memory is through its internal calls to, respectively,
copy_from_user() and copy_to_user(). Since these calls
temporarily disable the restriction on the kernel’s access of user-
space memory, they need to be especially well bounds checked.
Bugs here lead to writing past the end of kernel memory buffers,
or exposing kernel memory contents to user space. While some
of the bounds checking already happens at kernel compile time
(especially since v4.8), many checks need to happen at runtime.
The addition of CONFIG_HARDENED_USERCOPY in v4.8 added
many types of object-size bounds checking. For example, copies
performed against kernel heap memory are checked against the
actual size of the object that was allocated, and objects on the
stack are checked that they haven’t spanned stack frames.

The kernel stack itself gained protections on x86 in v4.9 and
arm64 in v4.10. Prior to CONFIG_VMAP_STACK, the kernel stack
was allocated without any guard pages. This meant that when an
attacker was able to write beyond the end of the current kernel
stack, the write would continue on to the next kernel stack,
allowing for the (likely malicious) manipulation of another
process’s stack. With guard pages, these large writes will fail as
soon as they run off the end of the current stack. Introduced at
the same time, the addition of CONFIG_THREAD_INFO_IN_TASK
moves the especially sensitive thread_info structure off the
kernel stack, making an entire class of stack-based attacks
impossible.

Future Work
While not yet in the kernel as of v4.10, another interesting
probabilistic protection that will hopefully arrive soon is struct
randomization [5]. This will randomly reorganize the layout of
commonly attacked memory structures in the kernel. This pro-
tection is less useful on distribution kernels (since the resulting

layout is public), but still makes exploitation more challenging
since an attacker now has to track this layout on a per-distri-
bution and per-kernel-build basis. For organizations that build
their own kernels, this makes attacks much more difficult to
mount because an attacker doesn’t know the layout of the more
sensitive areas of the kernel without also being able to first
gather very specific details through information exposures.

Building on the deterministic memory protection provided by
CONFIG_DEBUG_RODATA, there has been some upstream work to
further reduce the attack surface of the kernel by making more
sensitive data structures read-only [6]. While many structures
can already be easily marked read-only, others need to be written
either once at initialization time or at various rare moments later
on. By providing a way to make these structures read-only dur-
ing the rest of their lifetime, their exposure to an attacker will be
vastly reduced.

Another area under current development, as of v4.10, is protect-
ing the kernel from reference-counting bugs. When there is a
flaw in reference counting, the kernel may free memory that is
still in use, allowing it to get reallocated and overwritten leading
to use-after-free exploits. By detecting that a reference count is
about to overflow [7], an entire class of use-after-free bugs can
be eliminated. The work underway is to create a specific data
type that is protected and only used for reference counting, and
then replace all the existing unsafe instances.

Staying Updated
By far the best way to protect Linux systems (or any systems)
is to keep them up-to-date. This isn’t new advice, but it usually
only takes the form of recommending that all security updates
be installed. While that is absolutely a best practice to adhere
to, it only addresses known flaws. The idea must be taken a step
further: to get the latest kernel self-protection technologies,
systems need to be running the latest Linux kernel.

If products are built using the Linux kernel, they need to be
able to receive the latest kernels as part of their regular update
cycle. This can end up being a fair amount of up-front cost, since
drivers need to be upstreamed and proper automated testing
procedures need to be implemented. The long-term results will
quickly pay dividends since the burden of code maintenance is
shared with upstream and the test environment will catch bugs
as soon as they are introduced instead of months or years later.

If systems are built around a Linux distribution, they need to be
kept upgraded to the latest distribution release. Many distribu-
tions have a “long term support” release that requires waiting a
couple of years or more between upgrades. If, instead, a system
is upgraded to the regular releases that usually come out on a six-
month cycle, they will be much closer to the latest kernel. While
distribution kernels will still lag slightly behind the latest kernel

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  17

OPERATING SYSTEMS
Linux Kernel Self-Protection

release, it’s a reasonable tradeoff to make: the system has a more
current kernel, but it is still supported by the distribution (unlike
rolling your own kernel on top of a distribution).

The work to stay updated tends to be spread thinly across a
longer time frame, rather than stacking up only to be addressed
in bulk every few years. This generally means fewer emergencies
and a smoother planning cycle. Beyond the other benefits of hav-
ing more modern software, it’ll also come with an ever increas-
ing series of defenses designed to stop attacks before they begin.

References
[1] http://kernsec.org/wiki/index.php/Kernel_Self_Protection
_Project.

[2] https://outflux.net/blog/archives/2016/10/18/security
-bug-lifetime/.

[3] Along with CONFIG_DEBUG_SET_MODULE_RONX.

[4] Available in grsecurity via
CONFIG_PAX_MEMORY_UDEREF.

[5] Available in grsecurity via the RANDSTRUCT GCC plugin.

[6] Available in grsecurity via CONFIG_PAX_KERNEXEC
and the CONSTIFY GCC plugin.

[7] Available in grsecurity via CONFIG_PAX_REFCOUNT.

XKCD

xkcd.com

