
18    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

OPERATING SYSTEMS

Interview with Jeff Mogul
R I K F A R R O W

I’m sure I met Jeff Mogul at a USENIX systems conference, but I can’t
remember which one. I had heard that Jeff was involved with the early
Internet, but later than the groundbreaking work of Internet founders

like Vint Cerf and Bob Kahn. And although I occasionally talked with Jeff,
I knew little about him.

I did suspect he could shed some light on what it was like to manage an Internet connection
in the mid-’80s and to help shape parts of TCP/IP. Jeff had also worked for Digital Equip-
ment Corporation’s (DEC) Western Research Lab. WRL was a small research lab in Palo
Alto that produced a lot of pragmatic work and many papers too.

Rik Farrow: While at Stanford, you wrote several RFCs, including one about Reverse ARP,
that allowed diskless workstations to learn their IP addresses, but also some early work on
subnets. Can you tell us a little about how the Internet, and Stanford’s Internets, appeared in
1984? I think that there are few people who know about early Ethernet and its limitations, as
well as just how small (comparatively) the Internet was in those days.

Jeff Mogul: Actually, I think I had only a minor role in the RARP RFC. The subnet RFCs
(RFCs 917, 919, 922, culminating in RFC 950) were more directly my work; I’m proud that
Jon Postel co-authored that last one with me.

The Internet in 1984 was probably a lot like it was in 1983, at the time of the “TCP Transition”—
I’m sure it had changed, but I don’t remember what changed between 1983 and 1984. How-
ever, the TCP Transition was one of those events one remembers, because January 1, 1983
was the day that the predecessor to IP/TCP, called NCP, was disabled on the ARPANET, and
so anyone who hadn’t gotten TCP working by then would have been unable to send traffic [1].

At any rate, Stanford was connected to the ARPANET via Stanford’s IMP; I think our IMP
was number 11. IMPs had several ports, and so a few large computers could be connected to
each IMP. I vaguely recall some kludges that were used to attach others. We also had an early
“Experimental Ethernet” donated by Xerox PARC, along with a number of Xerox Alto com-
puters. This Ethernet ran at 3 Mbps, and had 8-bit host addresses. Xerox had also developed
a simple internetworking protocol, called PUP (PARC Universal Packet), which added an
8-bit network number, and I believe one could use Altos as routers between PUP networks.
Bill Nowicki and I realized we could use some of the Stanford University Network, or “SUN,”
hardware (this was before Sun Microsystems was started) to build a really simple PUP
router so that we didn’t need to use precious Altos for that.

Once we realized that IP (and TCP) was coming, we needed a way to route IP packets from
the ARPANET (effectively, the backbone of the future Internet) and the Stanford Ether-
nets. This meant installing an IP router at one of the IMP ports. I can’t quite remember the
chronology, but I do remember doing a lot of the work of installing and trying to set up this
router. We used a PDP-11 for hardware, and I am pretty sure that we used J. Noel Chiappa’s “C
gateway” software; people then often used the term “gateway” instead of “router.” I remember
standing in our noisy machine room on lengthy long-distance phone calls to Noel (who was

Jeff Mogul works on fast, cheap,
reliable, and flexible networking
infrastructure for Google. Until
2013, he was a Fellow at HP
Labs, doing research primarily

on computer networks and operating systems
issues for enterprise and cloud computer
systems; previously, he worked at the DEC/
Compaq Western Research Lab. He received
his PhD from Stanford in 1986, an MS from
Stanford in 1980, and an SB from MIT in
1979. He is an ACM Fellow. Jeff is the author
or co-author of several Internet Standards;
he contributed extensively to the HTTP/1.1
specification. He was an Associate Editor of
Internetworking: Research and Experience, and
has been the chair or co-chair of a variety
of conferences and workshops, including
SIGCOMM, OSDI, NSDI, HotOS, and ANCS.
jeffmogul@acm.org

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  19

OPERATING SYSTEMS
Interview with Jeff Mogul

many time zones away) trying to debug his code in our router.
That system was named GOLDEN-GATEWAY.STANFORD.EDU
and had the address 10.1.0.11—Net 10 was the ARPANET; Stan-
ford was IMP 11; the router was on port 1 of the IMP.

While fact-checking this, I found an old hosts.txt file [2] that
included this line:

GATEWAY : 10.1.0.11, 36.40.0.62 : STANFORD-GATEWAY : LSI-11/23 :

MOS : IP/GW,GW/DUMB :

The MOS suggests that we were indeed using Noel’s MIT router
software.

At any rate, we also got something working by the TCP Tran-
sition date. I still have the button that Dan Lynch gave out, “I
survived the TCP Transition.” We also connected some of our
BSD-based VAXes to the Ethernet via a card we got from Xerox,
a driver we got from CMU, and some early IP/TCP software we
got from BBN, the builders of the IMPs. I later took the CMU
driver and generalized it in several ways. CMU had included a
rudimentary packet filter in their driver, inspired by some Xerox
Alto code, and I improved it enough to get an SOSP paper out of
the deal [3]. Actually, I think we used the packet filter to imple-
ment PUP on the VAXes, so that might have happened before the
TCP transition.

In those days, “RFC” really did stand for “Request for Com-
ments”; pretty much anyone could write one and get a number
assigned, without any actual review. The reason I wrote the
original subnetting RFC was because the original “classful” IP
addressing system allocated a single Class A network number
to Stanford (36, or what we would call 36.0.0.0/8 once CIDR was
invented). But we already had a bunch of Ethernets (18 according
to RFC 917), so under this scheme we would have needed a lot
more network numbers (one for each Ethernet), and we expected
the number of Ethernets to grow. That would have bloated the
Internet routing tables, still a problem today, even with CIDR.
In those days, router memories were small—PDP11s had a 16-bit
address space—and there wasn’t a lot of spare bandwidth for
exchanging routing updates, especially on the 56 Kbps ARPA-
NET. Stanford was one of only a few Internet sites that actually
had to worry about multiple subnets, which is why we had to
invent the subnetting concept; I also wrote prototype code for
BSD UNIX to implement this.

You asked about how small the Internet was in those days. It
was definitely small in terms of backbone bandwidth (56 Kbps),
the number of hosts (before DNS was invented, there was one
Internet-wide “host table” file that we used to map names to
addresses—I think SRI maintained and distributed it via FTP),
and the number of people. There was a printed book that listed
the name, address, phone, and email address of all known
ARPANET users. And even in 1986 or 1987, people at academic

networking conferences were still trying to figure out whether
the Internet would ever be good for much of anything beyond
email and FTP.

RF: Around 1987, you also wrote a technical report, and gave
talks, about the harmfulness of fragmentation. Why had that
become a problem?

JM: Internets can include different kinds of network technol-
ogy, with different maximum packet sizes (so-called MTUs).
Things are more homogeneous now than they were in the 1980s,
when Ethernet hadn’t quite taken over. At any rate, if you send a
packet that fits within the MTU of the first-hop link, but some
other link on the path has a smaller MTU, the router forwarding
the packet at that point has to “fragment” the packet—divide it
into smaller pieces that can be reassembled later. Several of us,
including myself and also Chris Kent at Purdue (now Chris Kan-
tarjiev) discovered a problem with fragmentation: sometimes
it made TCP almost unusable. Why? Because our primitive
Ethernet interfaces (NICs) could only buffer one or two received
packets, so if packets arrived faster than the kernel could pull
them out of the NIC buffer, some would get lost. This wasn’t a
huge problem for unfragmented packets, since the TCP receiver
would get the first few packets and ACK them, and after a time-
out, the sender would retransmit the rest: not ideal, but there was
always forward progress.

However, when even one fragment of a fragmented packet is
dropped, the receiver cannot reassemble the packet at all, so it is
as if the whole packet were lost. To make matters worse, when
the TCP sender eventually timed out and re-sent the packet, it
would be fragmented again, and lost again with high probabil-
ity, because these fragments generally arrived in bursts. So: no
progress, and TCP users were sad.

This inspired Chris and me to publish a paper at SIGCOMM
about the problem, and I led an IETF working group that (after a
lot of debate) arrived at RFC 1191, defining “Path MTU Discov-
ery”—which worked unless it didn’t, and that’s another long story
that I mostly left for other people to solve.

RF: You worked on TCP, contributing the first open source fire-
wall software, screend, to BSD UNIX. You later worked on the
evolution of packet filtering in BSD, that lead to BPF. If I recall
correctly, ULTRIX (DEC’s UNIX) was based on BSD. Did DEC
use screend as well?

JM: Screend and the packet filter were two mostly separate
things. As I mentioned earlier, I think the original idea for
packet filtering came from Xerox, but I think they used native
code. Rich Rashid and Mike Accetta at CMU were inspired by
that to add an interpreted packet filter to their Ethernet driver;
interpretation (of a really simple instruction set) made it possible
for user-mode programs to provide packet filters that could be

20    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

OPERATING SYSTEMS
Interview with Jeff Mogul

safely interpreted within the kernel. I found it helpful to extend
their filtering language in a variety of ways, and wrote the 1987
SOSP paper [3] describing this. But the so-called CMU-Stanford
Packet Filter language was a rather inefficient stack-based
execution model, and mostly one had to hand-code the filters.
The Berkeley Packet Filter [4] replaced this with a register-style
execution model, and they wrote a compiler for it, so overall it
was much nicer, although I still think I had a cleaner solution for
enabling programs such as tcpdump to put the Ethernet driver
in “promiscuous mode” without having to make these programs
setuid-root…but that’s orthogonal to the interpreter design.

Screend came a few years later. Most of the BSD community
gathered once or twice a year for a BSD summit meeting, and I
believe we were at Berkeley for one of those the day that the Mor-
ris worm was unleashed. Bad timing! While that allowed a lot of
people to focus on stopping the worm, they weren’t able to install
the patches needed.

Suddenly everyone realized that the original vision of the Internet
as a place where any host could send any packet to any other host
was actually not such a good one. The military had already real-
ized this, and I think they installed “mail gateways” between the
ARPANET and MILNET so that only email could get through;
the rest of us thought that was rather typical of the military
mind. So people started writing what we now call “firewalls.”

I had already worked with Deborah Estrin (then of USC) and
some of her grad students on a cryptographic approach of hers
called “Visa protocols.” With several decades of hindsight,
you could call these “stateless SDN firewalls,” since the Visa
mechanisms used policy controllers separated from the routers.
I believe our paper on this work was published after the Morris
worm, but it was started earlier.

Anyway, at DEC in Palo Alto, Richard Johnsson (and perhaps
others) needed to protect their computers against the Morris
worm (and any copycats) right now, so he hacked a simple fire-
wall into the BSD kernel. I think it either had a hard-coded ACL
table, or perhaps there was a way to update it, but it wasn’t very
flexible or scalable. So I sat down and wrote screend, which did
all of the fancy processing in user-mode code (in that respect,
kind of like the packet-filter idea) and then kept a small cache
of recent decisions in the kernel. It worked pretty well, I got a
USENIX paper [5] out of the idea and helped DEC put it into the
ULTRIX product, from which some colleagues ultimately built a
(small) firewall business around it. I think my code even made it
into the first setup for whitehouse.gov [6].

Yes, DEC’s ULTRIX was very closely based on BSD, but of course
with some DEC-specific additions, testing, documentation, etc.

RF: Right at the point where the Internet was growing exponen-
tially, you worked on HTTP 1.1. What changes were you suggest-
ing to improve the performance of HTTP around the mid-’90s?

JM: The original HTTP protocol would open a new TCP con-
nection for each request, and then close it once the response
was read. This turns out to make things really slow, because
each request had to wait for the TCP handshake, which adds a
network round trip. Network round-trip times (RTTs) are often
tens or even hundreds of milliseconds and are the bane of good
performance. Actually, it often added a lot more delay, because
networks used to lose a lot more packets, and if your SYN was
lost, your TCP had to time out and try again. Timeouts are
usually much longer than RTTs. The other problem with the
request-per-connection model was that each request-response
transaction was serialized behind the previous one.

By making the TCP connections persistent [7], we avoided the setup
costs. But we also enabled the use of “pipelining,” a concept from
computer architecture in which you can have several operations
in flight at once. Since a typical Web page involves lots of HTTP
requests (for images, CSS, etc.), once your browser downloads a
page’s HTML, it typically makes a large number of subsequent
requests from the same server. With pipelining, the browser can
launch a lot of those requests before any of the responses get
back; this effectively allows us to hide all but one RTT.

Various things make persistent connections and pipelining
harder to exploit in practice than we first realized; there are too
many HTTP/1.1 servers that misbehave when asked to pipeline,
so we had to wait for HTTP/2 before it became consistently safe
to use. It took too long, but I think it proved to be a good idea.

RF: After you got your PhD from Stanford, you went to work for
DEC’s Western Research Lab in Palo Alto, California. What was
it like to work in a research lab? Did you have total freedom to
pick what you wanted to work on?

JM: WRL was an unusually wonderful environment. I don’t
think we ever had more than 25–30 researchers, and small
number of other staff, but WRL people not only invented a lot of
cool things at DEC, but many of them have become stars at other
companies. I now work at Google, where many of our technical
leaders started at WRL. Also, WRL hired people who were both
talented and genuinely fun to work with—I have more friends
from WRL than from any other era of my career.

WRL was even smaller when I joined, and it was just getting out
of a narrow focus on building the first practical RISC computers,
called Titans. In many ways, it was an academic environment—
we hired people the same way that universities hire professors,
we published papers, and we solved hard problems. However, we
had more ability than universities to have a large group of people

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  21

OPERATING SYSTEMS
Interview with Jeff Mogul

work on a single system, and we had the resources to build real
hardware.

While many of us tended to look for our own problems to solve,
within the context of the lab’s mission (and we occasionally
agonized over defining a mission statement), one would have
to have been a fool not to remember that our nice salaries and
offices were paid for by a profit-oriented business. WRL people
wanted to change DEC (initially, by trying to convince DEC that
RISC machines would be half as expensive as CISC machines),
and so we tended to focus on solving problems that we thought
the company needed to have solved. Sometimes we were willing
to get ahead of DEC (as with RISC, and much later with Alta-
Vista), but we realized that we needed to do things in a way that
DEC could adopt without having to change lots of things at once.
So, for example, we usually focused on C-based software, while
our sister lab in Palo Alto (SRC, the Systems Research Center)
focused on building clean-slate, top-to-bottom re-designs that
promised much more wonderful results—but were really hard for
DEC to absorb.

As a junior member of the lab, I was encouraged to spend some
time following my own interests, but it was also made clear to
me that I needed to commit substantial time to a project that
contributed to the overall goals of the group. So, for example, my
first major effort was to port the BSD networking stack into the
Titan operating system, Tunix, a rather bizarre combination
of some older BSD UNIX plus a lot of code written in Modula 2.
Anita Borg, who joined WRL at about the same time, did her first
major work on adding demand paging to Tunix.

RF: Any thoughts on the apparent decline of research labs, like
WRL and Bell Labs?

JM: WRL declined rather suddenly. Compaq bought DEC in 1998
and absorbed the three existing research labs (WRL, SRC, and
the Cambridge Research Lab) more or less intact, since Compaq
had never had its own research organization. The Compaq expe-
rience had its good years, but by the end there just wasn’t enough
money to make things work, plus we were under some VPs who
were not ideally suited to running a research organization. HP
bought Compaq in 2002 and incorporated WRL, SRC, and CRL
into HP Labs. Originally the idea was to keep our groups as sepa-
rate parts of HP Labs, but that was unsustainable: while the DEC
labs were fairly generalist, the other HP labs were very topic-
focused, and the other lab directors apparently didn’t like the
idea of keeping our labs around. Shortly after that merger, WRL’s
director left to become an early Google employee, and after a few
months of a rather uninspiring search for another director, HP
dissolved WRL and moved us into the rest of the organization.
To HP’s credit, any WRL person who decided to leave at that
time was compensated as if they had been laid off, and HP was

still generous with layoff packages in 2002. SRC and CRL lasted
somewhat longer.

I stayed at HP Labs for a decade, and for a while it was still a
good place to do corporate research, but there were few upticks
in a general decline. One person in particular did a lot of damage
to the long-term prospects of HP Labs; that’s a complex story,
but I think the bottom line is that it is at best extremely hard to
get value out of a corporate research lab these days, compared to
simply waiting for a startup to invent what you need. The prob-
lem is that the typical reaction is to manage the research orga-
nization more intensely. (“You will innovate or else! And by the
way, here are some stricter rules for how you will be creative.”)
I believe that’s exactly backwards; I think Rick Rashid had it
right when he said that as leader of Microsoft Research, he tried
to ensure that they hired extremely carefully, and then he got
out of the way. My view is that if you hire only researchers who
are smart, who understand what the company needs, and who
are internally motivated to make the company succeed, then a
research lab has some chance of delivering value to the company,
without micro-management from above.

But today, even that might not be enough for a corporate research
lab to compete either with the massive number of startups or
with companies like Google that integrate researchy people into
product groups. And, in any case, once you’ve hired badly, you
end up with an organization full of people who do not self-moti-
vate in the right direction, and then you have to manage them
aggressively, and from that you can never work your way back to
a team of self-motivated, creative people.

The other big problem with corporate research labs is when
the company’s product groups aren’t allowed to reserve some
spare resources, for working collaboratively on tech transfer
with researchers while the technology is still a bit risky. Tech
transfer does still happen to those product groups, but typically
it gets delayed until the group realizes it has to catch up with
competitors. So the research result doesn’t have an effect until
it’s too late to gain a real advantage from it. Researchers can still
have a big impact on products by providing guidance and design
reviews, but when the VP of Research only knows how to claim
success for big-splash inventions, mere expertise-transfer isn’t
visible enough to get support or credit.

HP Labs is still hanging on (now in two separate companies,
after HP split up), and there are still some smart people there,
but with top people quitting every month, I don’t think it will be
interesting for much longer.

I have no direct experience with Bell Labs (or with AT&T Labs
Research), so you should probably ask other people for those
stories.

22    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

OPERATING SYSTEMS
Interview with Jeff Mogul

RF: In 2008, you were involved with a group talking about the
future of system conferences. Did anything actionable come out
of those discussions?

JM: Some discussions never end. I recently joined the NSDI
Steering Committee, and we’re currently in the middle of two
different email threads about how to make systems conferences
work better.

I suspect the discussions about the future of systems confer-
ences started around five minutes into the first SOSP. That is,
over 50 years ago. If two or more systems researchers are sitting
in a bar, or going on a hike, or waiting for a bus, they will prob-
ably start discussing what is wrong with system conferences and
how to fix them. For all I know, snake researchers also sit around
moaning about the sorry state of herpetology conferences…but
systems researchers are a bit weird in that, unlike almost
all other scientific and engineering fields, we often put more
emphasis on conference papers than journal papers, so we might
be unusually interested in how conferences should be organized.

After joining more than my fair share of such BS sessions, and
chairing a few conferences, I thought, “What better way to solve
the problems of computer systems conferences and workshops
than to have a workshop on that?” So I talked USENIX into let-
ting me a run a workshop, WOWCS (Workshop on Organizing
Workshops, Conferences, and Symposia for Computer Systems),
co-located with NSDI ’08, and we got a pretty nice selection of
papers, plus a rousing discussion (which we wrote up as a ;login:
article in August 2008 [8].

People made some interesting proposals, but I haven’t gone back
over the material to see whether any of them bore fruit. There
were a few papers on tools that have become indispensable
(HotCRP and banal). Tom Anderson wrote a follow-up paper
(“Conference Reviewing Considered Harmful” [9]) that pre-
sented some great data showing that PCs should not make their
decisions based on reviewer scores; after that, when I’ve chaired
PCs, I’ve warned people not to argue “we should take paper X
over paper Y because it had a higher average score”—that’s just
amplifying some noise.

Since then, I participated in another workshop debating “publi-
cation culture in computing research” that wasted considerably
more CO2, but I don’t think it led to much change, either.

I think our emphasis in computer systems on conferences is
the worst possible system…except for all of the other ones. In
particular, I think when PC chairs pick well-intentioned PC
members and run a face-to-face PC meeting carefully, the social
structure of the meeting encourages reviewers to discuss papers
with great passion and great integrity, because it’s hard to hide
bad or lazy behavior. I’m not sure how else to get that kind of
combination.

References
[1] Flag day: https://www.internetsociety.org/blog/2013/01/30
-years-tcp-and-ip-everything.

[2] Example of hosts.txt: https://emaillab.jp/pub/hosts
/19840113/HOSTS.TXT.

[3] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The Packet
Filter: An Efficient Mechanism for User-Level Network
Code,” in Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles (SOSP), 1987, pp. 39–51.

[4] S. McCanne and V. Jacobson, “The BSD Packet Filter: A
New Architecture for User-Level Packet Capture,”in Proceed-
ings of the Winter 1993 USENIX Annual Technical Conference,
pp. 259–269.

[5] J. C. Mogul, “Simple and Flexible Datagram Access Con-
trols for Unix-Based Gateways,” in Proceedings of the Summer
1989 USENIX Technical Conference, pp. 203–221.

[6] Section 1.2 mentions using screend as part of the firewall
for whitehouse.gov: http://www.fwtk.org/fwtk/docs
/documentation.html.

[7] J.C. Mogul. 1995. “The Case for Persistent-Connection
HTTP,” in Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM ’95), pp. 299–313. See also http://www.
hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.pdf.

[8] J. C. Mogul (summarizer), “WOWCS ’08: Workshop on
Organizing Workshops, Conferences, and Symposia for Com
puter Systems,” ;login:, vol. 33, no. 4 (August 2008; online only):
https://goo.gl/Gv5BPI.

[9] T. Anderson, “Conference Reviewing Considered Harm-
ful,” SIGOPS Oper. Syst. Rev., vol. 43, no. 2 (April 2009), pp.
108–116. See also https://homes.cs.washington.edu/~tom/
support/confreview.pdf.

