
www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  23

OPERATING SYSTEMS

Interview with Amit Levy
R I K F A R R O W

I’d met Amit Levy a couple of times during luncheons at system confer-
ences. Amit is not shy about talking about his projects. I liked hearing
about them, as Amit would clearly tell me about the motivations behind

his projects and answer any questions I had.

So this time after we talked at OSDI ’16, I asked him if I could create a more formal version of
our post-luncheon conversations, and he agreed. In particular, we talked about his work on
Tock using Rust and leveraging type safety.

Rik Farrow: You’ve done a lot of things, including your side-project MemCachier [1], but
you’ve published more about security-related topics. What got you interested in building a
replacement for TinyOS [2]?

Amit Levy: Almost all of my work has had something to do with using type safety as a means
of building secure systems. Even MemCachier really started as a an exercise to learn Go
and with the idea that building a memcached clone in a type-safe language would make it
relatively easy to also build a safe, multi-tenant cache service. So, in that sense, rethinking
the embedded operating system in the context of IoT security was a pretty natural extension
of much of what I’d been working on, just a different application space. For me the exciting
thing about Tock [3] is really figuring out how to provide safety and isolation properties to a
system with extremely limited resources. And the context is allowing IoT platforms to run
untrusted programs.

The actual story is just more coincidental. My roommates and I wanted to build an auto-
matic lock for our front door after we forgot to lock it a couple times and two of our bikes were
stolen. So I started looking into IoT and, particularly, low-power computers and Bluetooth
low energy. Phil Levis was also interested in Bluetooth (for much less frivolous reasons), so
we started reading the spec together and talking about ideas. Eventually, Phil, Prabal Dutta,
and David Culler decided their students should start having weekly phone calls about soft-
ware/hardware co-design, and the need for a replacement for TinyOS just came out of those
weekly phone calls.

RF: You’ve mentioned that Tock will run on a SAM4L processor, which certainly does appear
to be low power, as well as much simpler and much slower (under 100 MHz clock) than what
most systems use. Do platforms like this have any hardware features that support security,
things like memory management or the system call interface?

AL: Yes. Most of the new ARM Cortex-M series microcontrollers (including the SAM4L)
have a feature called a memory protection unit (MPU). The MPU does not provide memory
virtualization (so there is only a single address space) but does enable setting read/write
/execute permission bits on ranges of memory as granular as 16 bytes. In fact, Tock uses the
MPU to enable a limited number of traditional OS processes. ARM also recently released a
specification for TrustZone-M, which has similarities to TrustZone on “application”-grade
ARM processors like the ones in our cell-phones. TrustZone-M has some additional inter-
esting features (like allowing interrupts to trap to untrusted code directly), which could

Amit Levy is a PhD student in
the Department of Computer
Science at Stanford University.
His work focuses on building
pragmatic, secure systems that

increase flexibility for application developers
while preserving end-user control of private
data. amit@amitlevy.com

Rik is the editor of ;login:.
rik@usenix.org

24    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

OPERATING SYSTEMS
Interview with Amit Levy

help increase performance of embedded systems that rely on
hardware protection. I think we’re expecting to see some SoCs
(system-on-chip) with TrustZone-M available in the next couple
of years.

However, there just isn’t enough memory on these microcon-
trollers to use a protection model based on memory isolation
(e.g., processes) as a ubiquitous means of protection in the
system.

In general, though, I think the simplicity of microcontrollers can
be viewed as a hardware security feature. What I mean is that
in many use cases, we also care about hardening embedded sys-
tems against hardware-based side-channel attacks—like timing
and power analysis. TPMs (trusted platform modules), two-fac-
tor authentication devices, and HSMs (hardware security mod-
ules) are a few examples of systems where it’s really important
to mitigate side-channel attacks. To thwart these attacks, it’s
important for the hardware to be simple. Caches, like the TLB on
higher-grade processors, are notoriously leaky.

RF: How does type safety improve security?

AL: Type safety serves two primary roles. It helps program-
mers avoid many common errors like buffer-overflows. When
hardware protection is available, it’s possible to catch some of
these kinds of bugs at runtime. Type safety lets us catch them
at compile time, before we run our program, and saves us from
them when hardware protection isn’t an option.

The second role is that we can leverage type safety to express
really fine-grained security policies. For example, hardware
protection lets me expose only certain regions of memory to
untrusted code—say a memory-mapped I/O register. However,
I have no control over what values are written to that memory.
Type safety lets me restrict the manner in which the untrusted
code uses a region of memory. For example, I can ensure that
only a certain range of values is ever written to a particular
register or that the value was created by a trusted module.
Importantly, the compiled binary looks nearly identical to one
compiled from source code in C that doesn’t have these protec-
tions. There’s nothing particularly magical going on. The type
system just lets the compiler reject code that violates certain
rules, and, in most cases when we’re writing C, we don’t really
want to violate those rules anyway.

RF: So you have some untrusted code, and you can’t distinguish
it from code written in C once it’s compiled. That implies to me
that you can’t rely on type safety here, because the untrusted
code could have been compiled from C, and thus you don’t know
what types it can write to your target memory. I am likely just
missing something here, so could you clear this up?

AL: You’re right, if all you have is a pre-compiled binary, the
type system doesn’t help. You have to be able to compile the code
yourself. In Tock, this is part of what motivates which systems
components go where. Applications, which may even be loaded
by an end user in some cases, typically live in a process. The
process is isolated by hardware protection, so it doesn’t rely on
the type system and a binary is fine. Conversely, components
like peripheral drivers are specific to a hardware platform—my
particular embedded product has a different set of sensors,
actuators, radios, etc. from other embedded products—but don’t
change when I change applications. The system integrator wants
to make sure that if they use a driver for a particular tempera-
ture sensor they found on the Web that it’s not able to leak secret
encryption keys or access other peripherals on the same bus, but
if they can verify safety when they compile the kernel that’s fine.

RF: In some of your work [4], you talk about problems you have
when using Rust. Can you explain?

AL: Rust kind of provides the lowest-level of abstraction you
need to guarantee type safety. This ends up surfacing some fun-
damental safety tradeoffs into the language. One of the simpler
examples is that if you want to use closures-based callbacks
(e.g., as is common in Node.js), you need to dynamically allocate
those closures—they can’t be on the stack or statically allocated.
Most type-safe languages assume that more or less everything
is dynamically allocated, so this is implicit, while in Rust it’s
explicit.

In Tock, we disallow dynamic allocation in the kernel (that’s
a common practice for reliable systems), so this is good for us
because it means we can use closures as long as we can prove to
the compiler that they don’t need to be dynamically allocated.
However, it also means that when we try to adopt common
coding styles from other frameworks that don’t actually work
with our system constraints, we get a compiler error. I think it’s
tempting as a systems builder to look at type-safe languages and
think that they are magic, and so you get to stop thinking about
system constraints. That’s not true. There’s nothing magic about
type safety. It just lets you guarantee things you already knew
how to do.

Unfortunately, I think it’s easy to draw the wrong conclusion
from that paper—that there are drawbacks with Rust that are
artifactual rather than fundamental. There were three issues
that we ran into building Tock in Rust, and all three of them
turned out to be fundamental (or at least nearly fundamental)
and, on balance, were the right design decisions for the language.
There is a great paper by Dan Grossman from 2002 called “Exis-
tential Types for Imperative Languages” [5] that explains this
really well. If you’re going to read our paper, it’s worth reading
that one as well.

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  25

OPERATING SYSTEMS
Interview with Amit Levy

References
[1] MemCachier: https://www.memcachier.com/.

[2] TinyOS: http://tinyos.stanford.edu/tinyos-wiki/index.php
/TinyOS_Documentation_Wiki.

[3] TockOS: http://www.tockos.org/.

[4] A. Levy, M. P. Andersen, B. Campbell, D. Culler, P. Dutta, B.
Ghena, P. Levis, and P. Pannuto, “Ownership Is Theft: Experi-
ences Building an Embedded OS in Rust,” in Proceedings of
the 8th Workshop on Programming Languages and Operating
Systems (PLOS ’15), October 2015: https://sing.stanford.edu
/site/publications/59.

[5]: Dan Grossman, “Existential Types for Imperative Lan-
guages,” in Proceedings of the 11th European Symposium on
Programming Languages and Systems (ESOP ’02), pp. 21–35:
https://homes.cs.washington.edu/~djg/papers/exists_imp.pdf.

http://tinyos.stanford.edu/tinyos-wiki/index.php

