
26    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

FILE SYSTEMSMarFS, a Near-POSIX Interface to
Cloud Objects
J E F F I N M A N , W I L L V I N I N G , G A R R E T T R A N S O M , A N D G A R Y G R I D E R

Jeff Inman is a Software
Developer in LANL’s High-
Performance Computing
Division, with surprisingly many
decades of research experience

in areas including parallelism, bioinformatics,
GPUs, compilers, embedded computing, and
scalable storage. jti@lanl.gov

Will Vining graduated from the
University of New Mexico with
a bachelor’s degree in computer
science in 2016. He is currently
a graduate student at LANL and

is one of the primary developers for MarFS.
wfvining@lanl.gov

Garrett Ransom is a recent
employee of LANL’s High
Performance Computing
(HPC) Division. As part of the
Infrastructure Team, Garrett

performs system administration and assists
with the development of storage technologies.
gransom@lanl.gov

Gary Grider currently is the
Division Leader of the High
Performance Computing (HPC)
Division at Los Alamos National
Laboratory. Gary is responsible

for all aspects of High Performance Computing
technologies at Los Alamos. ggrider@lanl.gov

The engineering forces driving development of “cloud” storage have
produced resilient, cost-effective storage systems that can scale to
100s of petabytes, with good parallel access and bandwidth. These

features would make a good match for the vast storage needs of High-Perfor-
mance Computing datacenters, but cloud storage gains some of its capability
from its use of HTTP-style Representational State Transfer (REST) seman-
tics, whereas most large datacenters have legacy applications that rely on
POSIX file-system semantics. MarFS is an open-source project at Los Ala-
mos National Laboratory that allows us to present cloud-style object-storage
as a scalable near-POSIX file system. We have also developed a new storage
architecture to improve bandwidth and scalability beyond what’s available
in commodity object stores, while retaining their resilience and economy. In
addition, we present a scheme for scaling the POSIX interface to allow bil-
lions of files in a single directory and trillions of files in total.

HPC Storage Challenges
The issues faced by extreme-scale HPC sites are daunting. We use Parallel File Systems to
store data sets for weeks to months, with sizes in the 100s of terabytes, and bandwidth on
the order of 1 TB/sec. On the other hand, our parallel archives are used to store data forever,
but can only support speeds of 10s of GB/sec. MarFS was designed to provide an economical
middle-ground between the expensive capacity of PFS and the expensive bandwidth of tape,
storing data sets for years, with speeds of 100s of GB/sec.

The supercomputers generating the data that is ultimately stored in MarFS are currently
in the millions of cores, and multiple PBs of memory, and are expected to grow to a billion
cores and 10s of PBs of memory beyond 2020. Applications that produce one file per process
on such machines could produce billions of files, which a user may want to keep in a single
directory. Furthermore, as we push to add value to the data we store, we expect file-oriented
metadata to grow by perhaps orders of magnitude. The goal is for MarFS to easily handle up
to multi-PB-sized data sets, as well as metadata for billions of files in a single directory, and
10s of trillions of files in aggregate.

Modern “cloud” storage systems provide a way to scale data storage well beyond previous
approaches, using sophisticated, highly scalable erasure-coded protection schemes. These
systems would allow us to build very reliable storage systems out of very unreliable (and
therefore inexpensive) disk technologies. The metadata underlying cloud storage is basically
a flat metadata space, which also scales very well. Reliability, economics, and scalability
combine to make this technology appealing to many large-data sites. For HPC, the problem
with these storage systems is that they only provide simple get/put/delete interfaces using
object-names, rather than POSIX file-and-directory semantics (files, directories, ownership,
open/read/write/close, etc.), and most HPC datacenters need to support legacy applications
that rely on POSIX semantics. It became clear from a market survey that other products that
provide POSIX-like access to scalable cloud objects were not designed to handle PB-sized
files, or billions to trillions of files.

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  27

FILE SYSTEMS FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

MarFS is an open-source software technology developed at
LANL to bridge this gap, putting a highly scalable POSIX meta-
data interface on top of highly scalable cloud object systems,
making object storage systems usable by legacy applications.
MarFS scales data capacity and bandwidth by splitting data
across many objects, or even many object systems. For meta-
data, MarFS is designed to scale capacity and bandwidth in two
dimensions. Currently, directory-metadata is scaled by simple
directory decomposition high in the tree. We’ve developed a pro-
totype file-metadata service, where we’ve demonstrated scaling
metadata by sharding it across many file systems, as illustrated
in Figure 1. This metadata sharding is not yet in use in the pro-
duction version of MarFS.

MarFS Implementation Overview
Figure 2 shows the basic components of MarFS. There is a
metadata implementation that handles file and directory struc-
ture, and a data implementation that stores file contents. In the
default metadata implementation, user directories are imple-
mented as regular directories, and user files are represented
as sparse files truncated to the size of the corresponding data,
with hidden extended attributes that hold system metadata (e.g.,
object-ID). This gives us basic POSIX access-control “for free.”

Object-storage systems typically have a range of object-sizes for
which internal storage and/or bandwidth is optimal. When stor-
ing data for files larger than this, we break the data up into dis-
tinct objects (“chunks”), transparent to the user. We refer to such
multi-object files as “multi-files.” Allowing data to be inserted
or deleted in the middle of a multi-file (or to create sparse files)
would require metadata machinery that would compromise the
performance and scalability of parallel accesses. Therefore,
we don’t allow it. This makes us “not quite POSIX,” but we gain
trivial stateless computation of the object-ID and offset corre-
sponding to any logical offset in a file, maintaining efficiency for
parallel reads and writes.

Millions of small files pose another kind of metadata hazard
in that they may invisibly consume significant resources from
the object-store. We work around this by transparently pack-
ing many small files together into a single object, although they
appear to users as distinct files. The packing is done dynami-
cally, during data-ingest, by pftool (discussed below), so the
packed files will typically be found together in a directory
traversal, and are likely to be deleted together, avoiding packed
files with many “holes.” Nevertheless, we are also developing
a repacker, so that multiple “Swiss cheese” packed files can be
repackaged into fewer objects.

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard 2

Directory-Metadata File-Metadata

/test1/dir/sub/myfile

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard 0

/

/dir

/dir/sub

namespace = test1

(225)

/dir/A/B/sub (315)

(17)

1 2 3

4

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard 1

/ns.test1
sub.225
dir.17

sub.315

scatter0
scatter1
. . .
scatterk-1. . .

Shard S-1

. . .

Figure 1: Storing metadata (MD) for a new file having path /test1/dir/
sub/myfile. A directory-MD Server (dMDS) holds directory MD, and a
set of file-MD Servers (fMDS) hold parts of the file MD. (1) The dMDS is
consulted for access-permissions (if not in cache). (2) The dMDS also re-
turns the inode of the leaf directory (e.g., 225). (3) A hash of the file-path,
modulo the number of fMDS shards, selects the shard to hold this file MD.
(4) The file-path hash, modulo number of internal “scatter” directories,
identifies the internal subdirectory for the MD.

Meta-Data Data
(namespace) (repository)

/

dir/

file3file2file1

http://10.10.0.xx:81/bparc/proxy1/a2334ba0f3e...

open
close
write
read
 . . .

put
get
delete

mknod
setxattr
mkdir
opendir

Figure 2: The default metadata scheme uses a regular POSIX file system
to represent files, with object-storage holding file contents. The file system
must support sparse files and extended attributes. Data and metadata
schemes are installed as modular DAL and MDAL implementations,
respectively.

28    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

The internal MarFS data-interface must translate between the
POSIX file-system semantics seen by applications (open/read
/write/close) and the RESTful semantics of an object-store (get
/put/delete). We do this by assigning an ongoing GET or PUT
transaction to a thread at “open”-time (or at the time when data
is first read-from/written-to an object). This thread can block in
the libcurl callbacks that move data on behalf of the transaction.
MarFS read or write requests then provide buffers that allow
the callbacks to unblock for long enough to write data from a
caller’s write-buffer to a PUT, or receive GET data into a caller’s
read-buffer, before blocking again. When object-boundaries are
crossed in a multi-file, MarFS transparently ends one transac-
tion to the old object and begins a new transaction to the corre-
sponding second object. This is depicted in Figure 3.

MarFS is driven by a configuration-file, allowing specification
of details like the layout of namespaces and repositories, object
chunk-sizes, resource quotas, types of access that are enabled,
file systems used for metadata, etc.

Flexibility
Our initial development utilized an object store supporting the
S3 protocol, but we are now in production with a Scality RING,
using Scality’s sproxyd. This protocol eliminates the need for
maintenance of some internal S3 metadata, improving band-
width. However, in our relentless quest for economical capacity
and bandwidth, we have developed an alternative to cloud-style
object-storage, doing our own erasure coding and storing the
coded parts in distinct ZFS pools, which themselves are also
erasure protected, forming a two-tier erasure arrangement.

Intel’s Intelligent Storage Acceleration Library (ISA-L) pro-
vides an efficient implementation of Galois Field erasure code
generation, allowing an arbitrary number of erasure blocks to be
generated for a set of data blocks. Up to that number of corrupted
blocks can then be regenerated from the surviving data and
erasure blocks. We wrapped ISA-L functionality within a utility
library (libne) to provide POSIX-like manipulation of sets of
data and erasure blocks through higher-level open, close, read,
and write functions. For example, data provided to the high-level
write function is subdivided into N blocks. The functions of
ISA-L are applied across the N data blocks to produce E addi-
tional erasure-code blocks, making a “stripe” of N+E blocks. The
stripe is then written across N+E internal files, with one block
per file.

The failure tolerance of the system depends on the number of
erasure blocks produced. Given (N+E) blocks written with libne,
we can survive the complete loss of up to E blocks of any stripe.
If desired, checksums are also calculated across each block,
providing a means of identifying corrupted blocks while reading,
and are stored within either the parts themselves or in their
extended attributes. Both N and E are configurable, allowing for
a customized balancing of the tradeoffs between computation
overhead and reliability.

Should a problem be detected, whether that be in the form of a
corrupted block, offline server, failed disk, or a failed checksum
verification, the erasure utilities will continue to service read
requests by automatically performing regeneration on the fly.
Such reads will also return an error code, indicating the blocks
that are corrupt or missing, but will not attempt to repair the
stored data itself. This approach preserves information about
failures while avoiding interference with other ongoing accesses.

The Data and Metadata Abstraction Layers
(DAL/MDAL)
The desire to experiment with swapping out storage-protocols
leads us to the idea of a Data Abstraction Layer (DAL). This is
an abstract interface to internal RESTful storage functions
(e.g., GET, PUT, and DELETE), which can be implemented and
installed in a modular way, swapping out the storage component
of Figure 2. We have used this approach to provide a new kind of

post

write

write

write

write
wait

read()

EMPTYFULL

File-Handle

libmarfs

wait

install
post

wait

GET

w
r
i
t
e
f
n

curl/aws4c

wait
X

RD

wait
wait

Figure 3: Sequence diagram showing interactions between a user per-
forming a read, a file-handle containing locks, and a thread performing
a GET operation on an object. The GET thread receives callbacks from
libcurl and uses locking to coordinate across multiple read() calls.
The colors of the locks (red/dark gray = FULL and RD, green/light gray =
EMPTY) in the file-handle are represented at the moment marked “X”.
The circle in the file-handle is a pointer to the caller’s read-buffer.

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  29

FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

scalable data-store based on libne, where erasure-coded blocks
are written across a set of independent file systems. This should
allow us to overcome the overhead of the internal communication
and metadata management required of an object-store, improv-
ing our overall storage throughput without compromising reli-
ability. We refer to this architecture as multi-component storage.

We refer to a storage-server and its associated JBODs as a Disk
Scalable Unit (DSU). A DSU holds one or more capacity units,
and each capacity unit hosts an independent ZFS pool. All DSUs
have an identical configuration of capacity units. So, to expand
capacity, one would add an identical new capacity unit to every
DSU. ZFS provides its own erasure encoding and checksum pro-
tection for each data and erasure block, but it remains vulnerable
to large-scale failures. To maximize resilience and bandwidth,
each of the N+E files of a stripe is written to a different DSU, all
on the same-numbered capacity unit. Thus, we can survive the
complete loss of any E DSUs in the set of N+E that hold an object.

The parallel nature of this design allows for independent read
/write operations across each of the ZFS systems, without the
opacity and overhead of an object store. Our expectation is that
this architecture will provide improved bandwidth, with more
than sufficient reliability.

Multi-component (MC) storage is realized as an implementa-
tion of the Data Abstraction Layer, utilizing libne to perform
low-level accesses. The MC DAL depends on a directory tree of
NFS mounts, which groups capacity units (hosting ZFS pools)
into DSUs, and DSUs into pods, as shown in Figure 4. A pod is
just a set of N+E DSUs, where N and E are the parameters of the
erasure coding used in the repository. The blocks of a stripe are
written across a pod, starting at some DSU and wrapping within
the pod.

To reduce the number of files in any one of the internal directo-
ries of the individual storage systems, we add another layer of k
sub-directories (scatter0, scatter1, etc.) inside each ZFS pool.
For a repository that has 3+1 erasure coding, two pods of four
DSUs, and two capacity units per DSU, the directory scaffolding
might look like this:

/repo3+1/pod[0..1]/block[0..3]/cap[0..1]/scatter[0..k-1]/

To determine the location of the blocks for an object, we compute
a hash of the object-ID and use that to fill in the pod and scatter-
directory, in a path-template provided by the MarFS configura-
tion. For new data, computation of the capacity-unit may follow
from policy guidance (e.g., favor newly added capacity, or spread
load in a given ratio) rather than a simple hash. Filling-in these
fields of the scaffolding template produces a new template
(shown below), which is used by libne, along with a starting
block (also computed from the hash), to write the object across
the N+E independent storage systems in the selected pod:

/repo3+1/pod1/block%d/cap1/scatter7/object-id

In stripes where some blocks are all-zero, ZFS can store the zero
blocks much more compactly. By computing the starting block
from the hash, we can ensure that capacity is utilized at roughly
the same rate in each ZFS pool; otherwise, the capacity in block0
might be used up more quickly if a large number of small objects
are created. For access to existing data for which the capacity
unit can’t be predicted from metadata (e.g., from the creation-
date), we will generate a set of paths covering the available
capacity units and issue stat requests to all of them in parallel.

The MC DAL is configurable on per-MarFS-repository basis,
allowing for different storage configurations to be used simulta-
neously. The configurable parameters are the path template, the
number of pods, the erasure parameters (N and E), the number of
capacity units per DSU, and the number of scatter directories in
each capacity unit.

Multi-component storage provides a high level of data integrity
through two layers of erasure coding; data on any individual disk
is recoverable in two decoupled erasure regimes. ZFS allows
recovery of individual blocks, and data-blocks are stored along

dsu0:/zfs0

cap0

dsu0:/zfs1

cap1

dsu0

dsu1:/zfs0

cap0

dsu1:/zfs1

cap1

dsu1

dsu2:/zfs0

cap0

dsu2:/zfs1

cap1

dsu2

client

pod0

/repo/pod0/block0/cap0
/repo/pod0/block0/cap1

/repo/pod0/block1/cap0
/repo/pod0/block1/cap1

/repo/pod0/block2/cap0
/repo/pod0/block2/cap1

Figure 4: NFS mounts and exports supporting the multi-component DAL.
This example shows a single “pod” of 3 DSUs (e.g., N=2, E=1), each having
two capacity units. The capacity units each host a single ZFS file system
which is exported via NFS. On the client, NFS mounts are made to each
of the exports. A stripe of three blocks would be written across the DSUs.
The scatter directories are internal to the ZFS file systems and are not
shown here.

30    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

FILE SYSTEMS
MarFS, a Near-POSIX Interface to Cloud Objects

with erasure-blocks across ZFS pools. Even moderately sized
multi-object files will tend to have objects in all pods. Because
the pods are independent, we could lose E pools from each of the
pods without data loss.

In conjunction with libne, the MC DAL can read through miss-
ing blocks or corrupted data. Errors are detected when an object
is read. When that happens, the object-ID is flagged as degraded
and logged to a file so the object can be rebuilt, either by an
offline program run by an administrator, or by a daemon that is
notified when there is rebuild work to be done.

We also support a Metadata Abstraction Layer (MDAL), allow-
ing modular replacement of the metadata system. This is how we
would swap-in something like the scalable MD system of Figure
1, replacing the metadata implementation in Figure 2.

Metadata Performance
MarFS teammates wrote an MPI application to measure pure
metadata (MD) performance and scalability in the forward-
looking scheme of Figure 1. The goal was to benchmark only
internal MD activity, ignoring any overhead associated with
the persisting of data or metadata. Thus, we installed a “no-op”
DAL that does nothing for data-write operations, and an MDAL
that integrates with the application. Specific MPI ranks acted
as clients, file-MD shards, a directory-MD shard (one instance
only), or as the master. File and directory MD were stored in
tmpfs. Clients performed scripted MD operations, organized by
the master rank.

Using 8800 * 16 cores, and one MPI rank/core, we were able to
create approximately 820M files/sec, and we stored 915 billion
files in a single directory. Because the MD is distributed, and
resides in a broad directory-tree per shard, a stat of any one of
these files can return quickly. We are exploring semantics for
parallel readdir and stat in this model.

Data Performance
Our production hardware uses SMR drives everywhere, and
there has been concern about sustained throughput in this
technology. On an object-storage testbed with 48 DSUs, we were
able to achieve 28.5 GB/sec, for sustained low-level writes. With
production workloads on similar hardware (but with incomplete
JBODs), we are typically seeing less than 15 GB/sec. To support
the pre-tape tier of the storage hierarchy for the new Trinity
supercomputer, this is less-than-hoped-for performance. The
multi-component architecture was developed to boost band-
width, while also increasing reliability.

We are building a new testbed with 12 DSUs. There, we will
debug and benchmark the MC DAL back end in a 10+2 configura-
tion to prepare for a transition to production, where the 48 DSUs
will be treated as four pods of 10+2.

Parallel Data-Movement with pftool

pftool is an open-source tool for moving data in parallel from
one mounted file system to another and is the de facto produc-
tion workhorse for performing data-movement at scale between
storage systems at LANL. Moving data is coordinated by a
scheduler which distributes subtasks to worker processes scat-
tered across a cluster. As workers become idle they are given
new subtasks, including performing one portion of the parallel
traversal of the source-directory tree (returning sets of source-
files for copy/compare as new subtasks) or executing one such
copy/compare subtask. For large files, a copy/compare subtask
can refer to a set of offset+size “chunks” of the large file to be
copied, allowing large individual files to be copied in parallel, as
well. pftool coordinates with file systems to choose this chunk-
size. For MarFS, this means large files are broken into chunks
that match up with back-end objects in a multi-file, and a special
exemption from our sequential-writes-only rule is granted.

The subtasks are executed independently of each other and are
asynchronous with respect to the scheduler. If the overall opera-
tion fails or is cancelled, it can be restarted and will efficiently
resume with any portions of the work that were not previously
performed. The duties of the scheduler are light (dispatching
subtasks from a work-queue), so the scheduler doesn’t become a
bottleneck even at very large scales. The result is a self-balanc-
ing parallel data-movement application.

Future Work
We are exploring several new development paths, including the
MD scalability of Figure 1, pftool extensions to allow cross-site
transport, custom-RDMA protocols to improve storage band-
width, and power management schemes for cold storage.

Acknowledgments
We thank our hard-working teammates. Thanks to Rik Farrow
for helpful comments. This work was done at the Los Alamos
National Laboratory, supported by the US Department of Energy
contract DE-FC02-06ER25750. This publication has been
assigned the LANL identifier LA-UR-16-28952. MarFS can be
downloaded at https://github.com/mar-file-system/marfs. A
commercial product using MarFS has been announced, with Lus-
tre for metadata and SpectraLogic Black Pearl for data storage.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages
to help you promote your organization, programs, and products to our membership
and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly
 targeted audience, we offer key outreach for our sponsors. To learn more about
 becoming a USENIX Supporter, as well as our multiple conference sponsorship
 packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our conferences
affordable for all and supports scholarships for students, equal representation of women
and minorities in the computing research community, and the development of open
source technology.

Learn more at:
www.usenix.org/supporter

