
52    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

COLUMNS
R ecently someone asked me when I thought that Python 2 and Python

3 might converge. They were a bit dismayed when I replied “never.” If
anything, Python 3 is moving farther and farther away from Python

2 at an accelerating pace. As I write this, Python 3.6 is just days from being
released. It is filled with all sorts of interesting new features that you might
want to use if you dare. Of course, you’ll have to give up compatibility with all
prior versions if you do. That said, maybe an upgrade is still worth it for your
personal projects. In this article, I look at a few of the more interesting new
additions. A full list of changes can be found in the “What’s New in Python
3.6” document [1].

But First, Some Reflection
Since my earliest usage of Python, I’ve mostly viewed it as a personal productivity tool. I
write a lot of custom scripts and use it for all sorts of tasks ranging from system administra-
tion to data processing. When I see new features, I think about how I might use them to make
my life easier and more interesting. To be sure, this is a different view than that of a typical
library writer who wants to maintain backwards compatibility with prior versions of Python.
If you’re mainly writing scripts for yourself, it is liberating to free yourself from the con-
straints of backwards compatibility. In this regard, Python 3.6 does not disappoint. However,
if you’re maintaining code for others, everything you’re about to read should be taken with a
grain of caution. So, with that said, let’s begin!

String Formatting
Suppose you had a list of tuples like this

portfolio = [

 (‘IBM’, 50, 91.1),

 (‘MSFT’, 100, 63.45),

 (‘HPE’, 35, 42.75)

]

and you wanted to produce a nicely formatted table. There are many approaches to string
formatting you might take. For example, you could use the classic string formatting operator
(%):

>>> for name, shares, price in portfolio:

... print(‘%10s %10d %10.2f’ % (name, shares, price))

...

 	 IBM 	50 	 91.10

 	 MSFT 	100 	 63.45

 	 HPE 	35 	 42.75

>>>

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Gleeful Incompatibility
D A V I D B E A Z L E Y

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  53

COLUMNS
Gleeful Incompatibility

Or you could use the more verbose .format() method of strings:

>>> for name, shares, price in portfolio:

... print(‘{:>10s} {:10d} {:10.2f}’.format(name, shares,

price))

...

 	 IBM 	50 	 91.10

 	 MSFT 	100 	 63.45

 	 HPE 	35 	 42.75

>>>

Starting in Python 3.6, you can now use so-called “f-strings” to
accomplish the same thing using far less code:

>>> for name, shares, price in portfolio:

... print(f’{name:>10s} {shares:10d} {price:10.2f}’)

...

 	 IBM 	50 	 91.10

 	 MSFT 	100 	 63.45

 	 HPE 	35 	 42.75

>>>

f-strings are a special declaration of a string literal where
expressions enclosed in braces are evaluated, converted to
strings, and inserted into the resulting string [2]. In the above
example, the name, shares, and price variables are picked up
from the enclosing loop and inserted into the string. There’s no
need to use a special operator or method such as % or .format().

At first glance, it might appear that f-strings are a minor
enhancement of what is already possible with the normal
format() method. For example, format() already allows similar
name substitutions:

>>> ‘{name:>10s} {shares:10d} {price:10.2f}’.

format(name=name, shares=shares, price=price)

‘ HPE 35 42.75’

>>>

However, f-strings allow so much more. The greater power
comes from the fact that nearly arbitrary expressions can be
evaluated in the curly braces. For example, you can invoke meth-
ods and perform math calculations like this:

>>> f’{name.lower():>10s} {shares:10d} {price:10.2f}

{shares*price:10.2f}’

‘ hpe 35 42.75 1496.25’

>>>

That’s pretty neat and possibly rather surprising. For the most
part, any expression can be placed inside the braces. The only
restriction is that it cannot involve the backslash character (\).
So attempts to mix f-strings and regular expressions might be
thwarted. Of course, that’s probably a good thing. Maybe.

Supervising Subclasses
Another interesting feature of Python 3.6 is the ability of a par-
ent class to supervise the creation of child subclasses [3]. This
can be done by providing a new special class method __init_

subclass__(). For example, suppose you have this class:

class Base(object):

 @classmethod

 def __init_subclass__(cls):

 print(‘Base Child’, cls)

 super().__init_subclass__()

Now, if you inherit from the class, you’ll see the method fire:

>>> class A(Base):

... pass

...

Base Child <class ‘__main__.A’>

>>> class B(A):

... pass

...

Base Child <class ‘__main__.B’>

>>>

The use of super() in this example is to account for multiple
inheritance. It allows for all of the parents to participate in the
supervision if they want. For example, if you also had this class:

class Parent(object):

 @classmethod

 def __init_subclass__(cls):

 print(‘Parent Child’, cls)

 super().__init_subclass__()

Now watch what happens with multiple inheritance:

>>> class C(Base, Parent):

... pass

...

Base Child <class ‘__main__.C’>

Parent Child <class ‘__main__.C’>

>>>

Supervising subclasses might seem like a fairly esoteric fea-
ture, but it turns out to be rather useful in a lot of library and
framework code because it can eliminate the need to use more
advanced techniques such as class decorators or metaclasses.
Here’s an example that uses the __init_subclass__() method
to register classes with a dictionary that’s used in a convenience
function.

54    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

COLUMNS
Gleeful Incompatibility

class TableFormatter(object):

 _formats = {}

 @classmethod

 def __init_subclass__(cls):

 cls._formats[cls.name] = cls

def create_formatter(name):

 formatter_cls = TableFormatter._formats.get(name)

 if formatter_cls:

 return formatter_cls()

 else:

 raise RuntimeError(‘Bad format: %s’ % name)

class TextTableFormatter(object):

 name = ‘text’

class CSVTableFormatter(object):

 name = ‘csv’

class HTMLTableFormatter(object):

 name = ‘html’

In this code, the TableFormatter class maintains a registry of
child classes. The create_formatter() function consults the
registry and makes an instance using a short name. For example:

>>> create_formatter(‘csv’)

<__main__.CSVTableFormatter object at 0x10ae9f748>

>>>

There are many other situations where a base class might want
to supervise child classes. We’ll see another example shortly.

Ordering Some (All?) of the Dicts
One of the more dangerously interesting features of Python 3.6
is that there are many situations where dictionaries are now
ordered—preserving the order in which items were inserted. A
dictionary like this

>>> s = { ‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 385.23 }

>>>

now preserves the exact insertion order. This makes it much eas-
ier to turn a dictionary into a list or tuple in a way that respects
the original structure of data. For example:

>>> keys = list(s)

>>> keys

[‘name’, ‘shares’, ‘price’]

>>> row = tuple(s.values())

(‘ACME’, 100, 385.23)

>>> dict(zip(keys, row))

{ ‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 385.23 }

>>>

The fact that order is preserved may simplify a lot of data-han-
dling problems: e.g., preserving the order of data found in files,
JSON objects, and more. So, on the whole, it seems like a nice
feature.

This ordering applies to other dictionary-related functional-
ity. For example, if you write a function involving **kwargs, the
order of the keyword arguments is preserved [4]:

>>> def func(**kwargs):

... print(kwargs)

...

>>> func(spam=1, bar=2, grok=3)

{ ‘spam’: 1, ‘bar’: 2, ‘grok’: 3 }

>>>

Since the order is preserved, it seems to open up more possibili-
ties for interesting functions involving **kwargs. For example,
maybe you want to convert a sequence of lists to dictionaries:

rows = [

 [‘IBM’, ‘50’, ‘91.1’],

 [‘MSFT’, ‘100’, ‘63.45’],

 [‘HPE’, ‘35’, ‘42.75’]

]

def parse_rows(_rows, **columns):

 types = columns.values()

 names = columns.keys()

 for row in _rows:

 yield { name: func(val)

 for name, func, val in zip(names, types, row) }

for r in parse_rows(rows, name=str, shares=int, price=float):

 print(r)

Similarly, modules and classes now capture the definition order
of their contents [5]. This is potentially useful for code that per-
forms various forms of code introspection. For example, you can
iterate over the contents of a class or module in definition order
using a loop like this:

>>> import module

>>> for key, val in vars(module).items():

... print(key, val)

...

>>>

As noted, this is one of the more dangerous features of Python
3.6. Past versions of Python do not guarantee dictionary order-
ing. So, if you rely upon this, know that your code will not work
on any prior version. Also, the ordering seems to be provisional—
meaning that it could be removed or refined in future Python
versions.

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  55

COLUMNS
Gleeful Incompatibility

Annotating All the Things
Since the earliest release of Python 3, it was possible for func-
tions to have annotated arguments. For example:

def add(x:int, y:int) -> int:

 return x + y

The annotations didn’t actually do anything, but served more as
a kind of documentation. Tools could obtain the annotations by
looking at the function’s __annotations__ attribute like this:

>>> add.__annotations__

{‘x’: <class ‘int’>, ‘y’: <class ‘int’>, ‘return’: <class ‘int’>}

>>>

The annotation idea is now extended to class attributes and vari-
ables [6]. For example, you can write a class like this:

class Point:

 x:int

 y:int

 def __init__(self, x, y):

 self.x = x

 self.y = y

Like their function counterparts, the annotations do noth-
ing. They are merely collected in a class __annotations__

attribute.

>>> Point.__annotations__

{‘x’: <class ‘int’>, ‘y’: <class ‘int’>}

>>>

You can also annotate free-floating variables in a module. For
example:

spam.py

x:int = 0

y:int = 1

In this case, they become part of a module level __annota-

tions__ dictionary.

>>> import spam

>>> spam.__annotations__

{‘x’: <class ‘int’>, ‘y’: <class ‘int’>}

>>>

It’s important to note that the annotations don’t change any
aspect of Python’s behavior. They are extra metadata that can
be used by other tools such as frameworks, IDEs, or program
checkers.

Summoning the Genie
Now that we’ve seen a few new features, it’s time to gleefully put
them into practice with something more interesting. How about
a typed tuple object with a silly name?

import operator

class Toople(tuple):

 @classmethod

 def __init_subclass__(subcls):

 types = list(subcls.__annotations__.items())

 @staticmethod

 def __new__(cls, *args):

 if len(args) != len(types):

 raise TypeError(f’Expected {len(types)} args’)

 for val, (name, ty) in zip(args, types):

 if not isinstance(val, ty):

 raise TypeError(f’{name} must be an {ty.

__name__}’)

 return super().__new__(cls, args)

 subcls.__new__ = __new__

 def __repr__(self):

 return f’{subcls.__name__}{super().__repr__()}’

 subcls.__repr__ = __repr__

 # Make properties for the attributes

 for n, name in enumerate(subcls.__annotations__):

 setattr(subcls, name, property(operator.itemgetter(n)))

Good god—f-strings, annotations, subclassing of the tuple
built-in, and an __init_subclass__ method that’s patching
child classes. What is going on here? Obviously, it’s a small bit of
Python 3.6 code that lets you write typed-tuple classes like this:

class Point(Toople):

 x:int

 y:int

class Stock(Toople):

 name:str

 shares:int

 price:float

Check it out:

>>> p = Point(2, 3)

>>> p

Point(2, 3)

>>> p.x

2

>>> p.y

3

56    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

COLUMNS
Gleeful Incompatibility

>>> s = Stock(‘ACME’, 50, 98.23)

>>> s

Stock(‘ACME’, 50, 98.23)

>>> s.name

‘ACME’

>>> s.shares

50

>>>

>>> Stock(‘ACME’, ‘50’, ‘98.23’)

Traceback (most recent call last):

 ...

TypeError: shares must be an int

>>>

Okay, that’s kind of awesome and insane. Don’t try it on anything
earlier than Python 3.6 though. It requires all of the features dis-
cussed including the reliance on newfound dictionary ordering.
In fact, your coworkers might chase you out of the office while
waving flaming staplers and hurling single-serve coffee packets
at you if you put code like that in your current application. Nev-
ertheless, it’s a taste of what might be possible in the Python of
the distant future.

Final Words
Over the last few years, a lot has been said about the Python 2 vs.
Python 3 split. There are those who claim that Python 3 doesn’t
offer much that’s new. Although that might have been true five
years ago, it’s becoming much less so now. In fact, Python 3 has
all sorts of interesting new language features that you might
want to take advantage of (e.g., I haven’t even talked about the
expanded features of async functions that were introduced in
Python 3.5). Python 3.6 pushes all of this to a whole new level.
Frankly, Python 3 has become a lot of fun that rewards curiosity
and an adventurous spirit. If you’re starting a new project, it’s
definitely worth a look.

References
[1] What’s New in Python 3.6: https://docs.python.org/3.6
/whatsnew/3.6.html.

[2] PEP 498—String literal interpolation: https://www.python
.org/dev/peps/pep-0498/.

[3] PEP 487—Simpler customization of class creation: https://
www.python.org/dev/peps/pep-0487/.

[4] PEP 468—Preserving the order of **kwargs in a function:
https://www.python.org/dev/peps/pep-0468/.

[5] PEP 520—Preserving class attribute definition order:
https://www.python.org/dev/peps/pep-0520/.

[6] PEP 526—Syntax for variable annotations: https://www
.python.org/dev/peps/pep-0526/.

