
2  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve long been fascinated by hardware. That fascination was re-awakened

by Tom Van Vleck’s letter to the editor in this issue. Tom is a Multician
(multicians.org), and he wrote to us with comments about my interview

with Peter G. Neumann in the Winter 2017 issue of ;login:.
When I was fortunate enough to assemble my first (nearly UNIX) system [1], it included a
34 MB Seagate drive with the ST-506 interface. The disk controller was not part of the hard
drive, as it is today. Instead, the disk controller sent commands—such as seek-inward, switch
to head two, read sector headers until sector 10 is reached, then write to sector 10, over a 34
pin control cable—and read or wrote data over a separate 20 pin cable. Device driver writ-
ers had to consider issues like how fast to seek, how many blocks to skip between reading or
writing to allow the CPU to finish with the previous operation, and handling the bad block
map. The latter was truly a PITA, as it appeared as a printed label on the hard drive case and
had to been entered, as block numbers, when formatting the drive. Even worse, the controller
actually was responsible for sending or receiving analog signals for writing or reading, and
that meant that you could only read a hard drive with the controller that had originally done
the writing.

By the time ATA [2] became popular, hard drives included their own controllers, and instead
of two cables, we only needed a single 40 pin cable that could be used to attach two drives.
Each drive had a jumper to determine whether it was a master or not (device 0 or 1), and
getting this wrong meant your system wouldn’t boot. But having the controller built into the
drive was a huge leap forward, as you could now move drives between host adapters. The
host adapter was just a 16-bit ISA bus relay for commands and data between the bus and the
drive’s onboard drive controller. As the ATA standards evolved, the drive controllers became
more sophisticated, able to understand SCSI commands.

The Small Computer System Interface [3] (SCSI, pronounced “scuzzy”) required an even
smarter drive controller. Up to seven devices, plus a host adapter, could be connected to
a SCSI cable, and each drive had to be capable of bus arbitration. The SCSI standard also
allowed the drives to queue up multiple commands.

SATA, which means serial ATA, uses a four pin cable, with commands and data being sent
serially rather than in parallel. Just as PC busses have moved from the parallel ISA bus to
the PCI busses that support many simultaneous serial channels, SATA achieves higher data
rates by moving away from parallel busses.

And somewhere along the way, disk vendors quietly changed how sectors were accessed.
Except with really old interfaces, like the ST-506, disks presented an array of blocks. The
operating system was responsible for writing blocks to the most appropriate free block, and
the OS did its best to write sectors that would be read in sequence together later, or at least be
located in nearby tracks, for better performance.

Since around 1999, hard disks accept Logical Block Addresses (LBAs) instead of block num-
bers. The hard disk then maps the LBA to a physical block address, a bit like flash transla-
tion layers (FTL) work. This change had two effects: the disk controller needed to become
smarter, and the operating system no longer had control over disk layout. File systems like

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 3

EDITORIAL
Musings

ext4 and BSD’s fast file system (FFS) create cylinder groups,
and associate directories and free block lists within these cylin-
der groups, to speed up both reading and writing. But the disk
controller is unaware of these distinctions and just stores blocks
using its own algorithms. These algorithms can even move blocks
later, for example, if a group of blocks is often read in sequence.

I certainly thought that the operating system should have control
over block placement, but the disk vendors saw things differently.
They wanted to create the cheapest, most efficient drives in
order to remain competitive, and for them, that meant taking
control away from the operating system developers.

Disk vendors continue to leverage the CPUs and memory
on disk drive controllers, and that’s led to some interesting
developments.

The Lineup
Timothy Feldman wrote a ;login: article [4] in 2013 about Shin-
gled Magnetic Recording (SMR), a new technique for increas-
ing drive capacity. But SMR introduces its own set of issues,
including highly variable write latencies. In this article, Tim
explains a huge change to SMR drives: hybrid drives that include
both conventional and SMR partitions. A new API means that
the operating system can control how much of a drive appears as
a conventional drive and how much as SMR, and it even allows
changing the proportion of these two formats on the fly, with
the disk controller moving blocks between the two regions as
required. Tim explains the plans for the new APIs, changes that
will be implemented in the drive’s on-disk controller, but also
need to be included in device drivers.

Carl Waldspurger et al. in their FAST ’17 paper explain how to
use very small samples of cache misses to determine how best
to configure full-size caches. Cache miss rates are crucial when
determining the optimal cache size. The authors create hashes
of block numbers and select cache misses to record by using a
portion of the hash space. Their creative use of hashes for getting
a random collection of samples caught my attention.

I searched through the CCS [5] program for papers that match
my criteria for articles that will have broad appeal and, out of a
huge selection of security research, found two.

Luca Allodi narrates how he infiltrated a Russian exploit
 market. But his real point is how examining what is bought
and sold tells us about which exploits are likely to be used in
un targeted attacks. I liked Luca’s exploit, managing to gain
access to the market, and also how he explains what the going
prices for exploits can reveal about which exploits are likely to
be widely used.

Frank Li and Vern Paxson describe how they determined that
it often takes a very long time for open source software to be
patched. It’s likely that commercial software is similar, but with

open source, they could trace the time a patch appeared in the
code, the time it was announced or distributed, and compare
that with the time the vulnerability first appeared in the Com-
mon Vulnerability Exposure (CVE) ratings. Much of their work
involved crafting the means of trawling online Git repositories
as well as info about vulnerabilities, a task that would have been
much more difficult without techniques for winnowing the data.

AbdelRahman Abdou and Paul C. van Oorschot volunteered to
share their work on secure geolocation. While geolocation is
commonly used, often for secure applications, geolocation is just
as commonly spoofed. Abdou and van Oorschot lay out their pro-
posal along with examples of how well it worked using sensors in
PlanetLab.

Diptanu Choudhury offered an article about using eBPF. The
extended Berkeley Packet Filter has been around for a few years
and provides a secure method for injecting code within a live
kernel. Choudhury’s particular example involves the Express
Data Path (XDP), which can be used for moving network meth-
ods, like a firewall or packet forwarder, into code that can access
a network device’s ring buffer, avoiding slow memory copies.
Diptanu explains enough about eBPF to be helpful to anyone
interested in beginning to use eBPF, as its programs can use
triggers throughout the Linux and BSD kernels.

Tapasweni Pathak discusses her research into flaws in Linux 3.x
kernels. Extending prior work, and using some of the same tools
for searching through source code, Pathak explains her process
and shows us, via graphs, just how well the kernel source is doing
when it comes to bugs that can cause crashes or be exploited. For
the most part, things have gotten better.

I interviewed Laura Nolan, a Google SRE and a past co-chair
of SREcon Europe. Laura had helped me find authors for SRE
articles, and I hoped to learn more about what it’s like to be an
SRE. Laura was definitely forthcoming, as well as providing a
humorous example, before she went to Google, of what it’s like
to be a woman in this field. Laura also answers questions about
why Google chose to use Paxos.

Bob Solomon interviewed David Rowe, the developer of the Open
Source Line Echo Canceller (Oslec). Bob asks David about the
difficulties involved in building something as difficult as an
echo canceller and the tricks David used for testing and debug-
ging, while allowing him to tell us a bit about what it’s like to be a
successful open source developer.

Chris McEniry takes us on a journey through using gRPC and
protocol buffers in Golang. Borrowing the certificate generation
portion of his Winter 2017 column, Mac explains how to use pro-
tobuf, a non-language-specific library, with Golang, as well as
how to use gRPC, Golang’s version of Remote Procedure Calls. A
lot of work for one column.

4  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

EDITORIAL
Musings

David Blank-Edelman wants to prove to you that Perl is alive
and well. He takes us to a site that keeps track of the hottest, or
currently most interesting, Perl modules. He also demonstrates a
few of these modules.

Dave Josephsen returns from KubeCon and CloudNativeCon
fired up about the Open Tracing API. Dave explains just why
tracing requests traveling between microservices is a crucial
part of monitoring these systems, tells us how Open Tracing
works, and suggests several frameworks for getting started.

Dan Geer and Dan Conway examine the security risks involved
with crypto-currencies. At the time their column was written,
Bitcoin had exceeded $18,000/BTC, 100,000 times its value just
five years ago. Geer and Conway discuss the failings not just of
Bitcoin but of other crypto-currencies. The amount of “value”
that’s already been lost or stolen is enough to give any sane per-
son pause.

Robert Ferrell muses about the past, and the dark future, of the
Internet. A much more serious column than his usual, but totally
fitting the times.

Mark Lamourine has reviewed two books. He has high praise for
Fluent Python, by Luciano Ramalho, a book that will sit beside
his copy of Dave Beazley’s Python Essential Reference. Mark also
reviewed Once Upon an Algorithm by Martin Erwig.

You might find yourself wondering whether disk vendors really
have taken control over block placement on modern drives. I
heard Dave Anderson of Seagate mention this during FAST ’07,
questioned him about it, and wrote about this in a Musings col-
umn later in 2007. I’ve since been asked to prove this a number
of times, and the best I’ve been able to come up with involves the
documentation for a Seagate Enterprise SAS drive in 2004 [6].
I’m sure there are better examples, and even a standards doc that
explains this change. If you know about this, please let me know,
because people still find this hard to believe.

In the meantime, enjoy your hard drives, which are gaining not
only in capacity over time, but also in intelligence.

References
[1] Rik Farrow, the long version, Morrow Micronix: https://
www.rikfarrow.com/about/.

[2] Parallel ATA: https://en.wikipedia.org/wiki/Parallel_ATA.

[3] Small Computer System Interface: https://en.wikipedia
.org/wiki/SCSI.

[4] T. Feldman and G. Gibson, “Shingled Magnetic Recording:
Areal Density Increase Requires New Data Management,”
;login:, vol. 38, no. 3 (June 2013): https://goo.gl/wj5Doi.

[5] ACM CCS 2017 Agenda: https://ccs2017.sigsac.org
/agenda.html.

[6] Seagate documentation: https://www.seagate.com/www
-content/product-content/enterprise-hdd-fam/enterprise
-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf.

https://www.rikfarrow.com/about/
https://www.rikfarrow.com/about/
https://en.wikipedia.org/wiki/Parallel_ATA
https://en.wikipedia
https://goo.gl/wj5Doi
https://ccs2017.sigsac.org
https://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf
https://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf
https://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 5

EDITORIAL
Musings

Letter to the Editor
Great interview of Peter in the Winter 2017 ;login:. I had the
pleasure of knowing and learning from Peter for many years.

Rik asked, “What happened with Multics?” It was a moderate
commercial success, until its hardware became obsolete and
was not replaced. The operating system design and features,
and the people who helped build them, influenced many sub-
sequent systems, including CHERI.

I can amplify Peter’s remarks on Multics in a few areas.

Peter said, “The 645 was pretty much frozen early”—in
fact, Multics had a major hardware re-design in 1973 (after
Bell Labs left Multics development) when the GE-645 was
replaced by the Honeywell 6180. The 6180 architecture
extended the Multics hardware-software co-design, provid-
ing support for eight rings in hardware (instead of the 645’s
64 rings simulated in software), as well as better security. A
later I/O controller ran in paged mode and supported Multics
device drivers that ran unprivileged in the user ring.

The transition from discrete transistor implementation to
integrated circuits gave us 1 MIPS per 6180 CPU rather than
the 645’s 435 KIPS. The later DPS8/70 was rated at 1.7 MIPS.

Another minor clarification: Peter said, “The buffer overflow
problem was solved by making everything outside of the
active stack frame not executable, and enforcing that in hard-
ware.” Actually, there were several features preventing buffer
overflows in Multics:

◆◆ The PL/I language has bounded strings and arrays, not
just pointers.

◆◆ CPU string instructions enforced bounds at no runtime
cost.

◆◆ “Execute” permission is limited to code segments.
◆◆ The stack grows from low addresses to high.
◆◆ ITS format prevents use of random data as pointers.
◆◆ The segment numbers are randomized.

See http://multicians.org/exec-env.html#buffer_overflow for
more on this topic.

Another clarification: Peter said, “In the early 1970s there
was even an effort that retrofitted multilevel security into
Multics, which required a little jiggling of ring 0 and ring 1. I
was a distant advisor to that (from SRI), although the heavy
lifting was done by Jerry Saltzer, Mike Schroeder, and Rich
Feiertag, with help from Roger Schell and Paul Karger.” There
were several projects to enhance Multics security so it could
be sold to the US Air Force. The MLS controls were done by a

project called Project Guardian, led by Earl Boebert. A more
ambitious project to restructure the Multics kernel, led by
Schell, Saltzer, Schroeder, and Feiertag, was canceled before
its results were included in Multics (http://multicians.org
/b2.html#guardian).

In the mid-’80s, the NCSC B2 security level was awarded to
Multics, after a thorough examination of the OS architecture,
implementation, and assurance. The evaluation process
found a few implementation bugs; much of the effort in attain-
ing the digraph was documenting the existing product.

There are over 2000 names on the list of Multicians. I am
mildly uncomfortable at being the only person mentioned by
Peter as “heavily involved” in Multics—we all were. I did my
part, but there were many others who made contributions
more important than mine, and some who worked on Multics
longer. I look back on those times and those colleagues with
affection and awe.

Jeffrey Yost’s interview with Roger Schell, a key person in
the design of security features and TCSEC (“the Orange
Book”), is also fascinating: https://conservancy.umn.edu
/handle/11299/133439.

Regards,
Tom Van Vleck
thvv@multicians.org

http://multicians.org/exec-env.html#buffer_overflow
http://multicians.org
https://conservancy.umn.edu

