
www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  19

SECURITY

Secure Client and Server Geolocation over
the Internet
A B D E L R A H M A N A B D O U , P A U L C . V A N O O R S C H O T

W e provide a summary of recent efforts towards achieving Internet
geolocation securely, that is, without allowing the entity being
geolocated to cheat about its own geographic location. Cheating

motivations arise from many factors, including impersonation (if locations
are used to reinforce authentication) and gaining location-dependent bene-
fits. In particular, we provide a technical overview of Client Presence Verifi-
cation (CPV) and Server Location Verification (SLV)—two recently proposed
techniques designed to verify the geographic locations of clients and serv-
ers in real time over the Internet. Each technique addresses a wide range of
adversarial tactics to manipulate geolocation, including the use of IP-hiding
technologies like VPNs and anonymizers, as we now explain.

Internet geolocation is the process of determining the geographic location of an Internet-
connected device. Secure geolocating of a web client (a client visiting a website) is useful for
location-aware authentication, location-aware access control, location-based online voting,
location-based social networking, and fraud reduction. From the client’s perspective, geo-
locating the remote server can provide higher assurance to the server’s identity, and justify
conducting certain sensitive transactions—for example, those requiring certain privacy
measures or requiring data sovereignty [1]. Independent of server and client geolocation,
geolocating network intermediate systems (e.g., routers) can also be useful for monitoring [2]
and network mapping [3].

Both CPV and SLV are based on network measurements, where delays are measured from
trusted network nodes dubbed verifiers and are analyzed in real time to verify physical pres-
ence inside a prescribed geographic region. We explain the threat model of both techniques,
how they militate against known adversarial tactics, how they adapt to various network
dynamics, and what distinguishes them from other geolocation approaches.

Geolocation Background
Many academic geolocation methods have been proposed, but there has been very limited
deployment in practice. As of this writing, most of the geolocation conducted in practice
relies on the clients’ IP address or GPS coordinates of hand-held devices, as explained below.

Geolocation in Practice
There are several methods for device geolocation over the Internet. If the device belongs to
a user that is acting as a web client (i.e., visiting a website), the Geolocation API is a W3C
standard that enables browsers to obtain location information of the device they are running
on and communicate it to a webserver. Servers request location coordinates using JavaScript
as follows:

AbdelRahman Abdou is a
Postdoctoral Researcher in
the Department of Computer
Science at ETH Zurich. He
received his PhD (2015) in

systems and computer engineering from
Carleton University. His research interests
include location-aware security, SDN security,
and using Internet measurements to solve
problems related to Internet security.
abdoua@inf.ethz.ch

Paul C. van Oorschot is a
Professor of Computer Science
at Carleton University, and
the Canada Research Chair in
Authentication and Computer

Security. He was the program chair of USENIX
Security 2008, NDSS 2001–2002, and NSPW
2014–2015; a co-author of the Handbook of
Applied Cryptography; and a past Associate
Editor of IEEE TDSC, IEEE TIFS, and ACM TISSEC.
He is an ACM Fellow and Fellow of the Royal
Society of Canada. His research interests
include authentication and Internet security.
paulv@scs.carleton.ca

20    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

SECURITY
Secure Client and Server Geolocation over the Internet

if(navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(success, error,

geoOptions);

 } else {

 console.log(“Geolocation is not supported on this

browser.”);

}

The geolocation methods a browser uses are left to the browser
vendor’s discretion. Most major browsers rely on the following
in varying orders (that is, when one fails, the next is tried): GPS,
WiFi Positioning System (WPS), IP address-based location
lookups, or cell-tower triangulation of mobile devices. The loca-
tion of an IP address can be obtained from publicly available
routing information or public registries, such as whois. Many
IP location service providers (commercial and free) maintain
lookup tables to instantly map IP addresses to locations. Such
static tabulation methods may take long times to reflect changes
or IP address reassignments, which occur quite often for client
geolocation to be up-to-date (studies were conducted to confirm
this [4]). IP address-based geolocation can, however, be reliable
for benign server geolocation. Flagfox is an example Firefox
extension that visually indicates a flag of the country corre-
sponding to the IP address resolution of the URL (Figure 1).

From a security perspective, none of the above techniques is
resilient to adversarial manipulation. When the geolocation
API is in use, the server normally makes no effort in geolocat-
ing the client device; it rather trusts the browser-communicated
coordinates, which can easily be forged on the fly before being
sent to the server. Firefox extensions that enable forgery include
Fake Location (Figure 2) and Location Guard; both enable a user
to specify where in the world they would like to appear to be. If
the server relies on tabulation methods to geolocate the client
(instead of asking the browser for its coordinates), the common
practice of clients hiding their own IP addresses behind proxies
and anonymizers comes into play.

Geolocation in the Literature
A wide set of techniques can be used, mostly for a server to
geolocate clients [5]. These enable a server to infer a client’s
geographic location from hints obtained from browser-generated
HTTP headers such as preferred language or time zone. Loca-

tions can also be obtained through crowd-sourcing by interpo-
lating a device’s location from its proximity to nearby devices,
like phones or WiFi access points (APs), with known GPS
locations.

Another class of Internet geolocation approaches is based on
network measurements. Similar to GPS triangulations that are
based on the delays between the receiver and satellites, mea-
surement-based techniques also aim to locate devices (clients or
server) by estimating their distance from landmarks in the net-
work with known locations. These landmarks measure network
delays from themselves to the device, typically identified by its
IP address, and map these delays to geographic distances. The
accuracy of such mapping, however, is not anywhere near that
of mapping satellite delays to distances, and is thus the primary
source of inaccuracies in such techniques. Still, measurement-
based geolocation is generally considered more accurate than
methods like tabulation-based geolocation.

From the security point of view, although most of the above
methods are positioned as resilient to evasion, examination
has shown otherwise. Delay-increasing attacks can allow an
adversary to distort its perceived location [6]. Delay-decreasing
was also studied, for example, by manipulating ICMP “ping”
and “traceroute” as they fail to preserve the integrity of timing
measurements.

Figure 1 [a-c]: Snapshots of the Flagfox browser extension

Figure 2: Snapshots of the Fake Location extension—an example browser
extension allowing users to fake their locations

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  21

SECURITY
Secure Client and Server Geolocation over the Internet

Combining both attacks, an adversary can forge the calculated
location to an accuracy of a few tens of kilometers relative to a
target desired location [7].

Client Presence Verification—CPV
CPV [8] is a measurement-based technique designed to verify
the geographic locations of web users (clients) over the Inter-
net. The client is assumed to be motivated to misrepresent its
location to gain location-dependent benefits. CPV’s design takes
into consideration various adversarial location-forging tactics,
including delay manipulations and IP-hiding technologies like
VPNs and anonymizers. CPV does not rely fundamentally on the
clients’ IP addresses, nor does it determine geographic locations.
Rather, it verifies an asserted (unverified) location, typically
made by a client. The client’s location could be asserted using the
client’s GPS coordinates, the client’s IP address, or even explic-
itly asking the user to fill-in their street address in an online
form during login.

To verify location assertions, CPV relies on an infrastructure of
geographically scattered nodes, dubbed verifiers. The technique
works as follows. When a client visits a website and asserts the
geographic location from which he/she is currently browsing,
three verifiers surrounding the asserted location are selected.
The verifiers measure (in real time) network delays between
themselves and the client’s browser, and analyze these delays
to corroborate that the client is present somewhere inside the
triangle determined by their (the verifiers’) geographic locations.
Because the verifiers cannot pinpoint where exactly the client
is within the triangle, the size of the triangle is the verification
granularity.

Secure One-Way Delay Estimation
The verifiers do not measure round-trip times (RTT) between
themselves and the client. Rather, they estimate the smaller of
the forward and reverse one-way delays (OWDs) between each
of them and the client. The larger OWD is discarded because
propagation delays between two network nodes are bounded by
the physical distance between them, so a smaller OWD mea-
surement is a better representation to the geographic distance
between both nodes than the larger—the larger must have been
affected by other factors such as network congestion or circu-
itous routing.

To measure the OWD between a verifier and the client, CPV does not
rely on standard OWD-estimation protocols like OWAMP (RFC
4656), as those require honest client cooperation: for example,
client clock synchronization and honest reporting of delays. As
such, CPV relies on the minimum-pairs (MP) protocol [9]. MP
requires the three verifiers, A, B, and C, to first synchronize
their clocks and pre-share cryptographic keys to ensure opera-
tional integrity.

Through JavaScript, the client’s browser is first directed to
establish a WebSocket (RFC 6455) connection to the three veri-
fiers, which are chosen based on the client’s asserted location.
Verifier A begins by sending a cryptographically protected time-
stamp (in millisecond precision) to the client, which the browser
forwards to the other two verifiers. On receiving this, verifier
B calculates the propagation time from A → client → B, and like-
wise when the timestamp is received by C. Verifiers B and C then
follow suit, taking turns in sending timestamps. When all three
verifiers are done exchanging timestamp messages, they will
have six delay values as follows:

• A→ client → B

• A→ client → C

• B→ client → A

• B→ client → C

• C→ client → A

• C→ client → B

Between each pair of verifiers, e.g., between {A → client → B}
and {B → client → A}, the verifiers exclude the larger OWD and
solve a system of three equations simultaneously for an estimate
to the smaller OWD between the client and each verifier. That
is, if the smaller of the forward and reverse OWD between the
client and A, B, and C, respectively, is a, b, c, then (note: = sign
here is used to indicate mathematical equality rather than an
assignment operator):

• a + b = min(AtB, BtA)

• a + c = min(AtC, CtA)

• b + c = min(BtC, CtB)

where AtB is the delay A → client → B, and so on. Analysis of
MP’s accuracy showed that the protocol is likely to provide more
accurate estimates to the smaller OWD than simply using half
the RTT [9].

Corroborating Presence Inside the Triangle
In order to avoid potential inaccuracies from delay-to-distance
mapping, the calculated OWDs are not mapped to distances.
Rather, they are compared to the smaller OWDs between the
verifiers themselves, which are measured and updated periodi-
cally in a background process, independent of whether or not a
client is currently being verified. Assuming x = min(AB, BA) is
the smaller of the forward and reverse OWDs between verifiers
A and B directly (not to be confused with min(AtB, BtA) from the
previous section), and likewise y = min(BC, CB) and z = min(AC,
CA), then the client’s asserted location is accepted as inside the
triangle if:

area(Δxab)+area(Δybc)+area(Δzca) ≤ area(Δxyz) + ϵ

such that area (Δxab) is the area of that triangle calculated from
its side lengths x, a, and b. The value of ϵ is used to account for

22    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

SECURITY
Secure Client and Server Geolocation over the Internet

the two extra access network traversals occurring at the client
when the timestamps propagate from a verifier to the client to
another verifier.

Iterative Delay Measurement
To account for abrupt delay spikes or network irregularities,
the above process of OWD calculations and comparison with
those between the verifiers is iteratively repeated n times. If the
condition is met for the majority of the conducted iterations, the
location assertion is accepted.

CPV Calibration
There are several parameters that tune CPV’s reaction to events.
The most important three are ϵ, n, which is the number of delay
measurement iterations, and τ, which is the fraction of those
iterations that must pass if the condition is met for the client’s
asserted location to be accepted. This calibration should take
place before the location verification process begins. To do that,
the three verifiers may use network nodes that they know as a
ground truth to be inside the triangle. From the network delays
of these nodes, the verifiers compute values for the above-men-
tioned three parameters and then run CPV to verify a client’s
location.

Hindering Illicit Traffic Relaying
In an attempt to defeat geolocation, a middlebox (like a proxy
server or a VPN gateway) that is physically inside the triangle
can be specifically customized to filter out the verifiers’ time-
stamps from the client’s traffic and forward them to the verifiers
on behalf of the client. This threat against CPV is exacerbated
by the presence of numerous cheap public VPN providers whose
primary service is to enable subscribers to evade geolocation
technologies.

Techniques like CPV can mitigate this by adapting known proof-
of-work techniques [10]. The verifiers generate a cryptographic
client puzzle with each timestamp message, which the client’s
browser must solve before forwarding the message (puzzle solu-
tion and timestamp) to the other two verifiers. The puzzles must
be easy to solve so that they do not (1) overwhelm the client with
high processing costs and (2) overshadow the network propaga-
tion delays. In the case of a middlebox connected to many simul-
taneously cheating clients, the middlebox will choose to either
solve these puzzles on behalf of the clients or forward them to
the clients. In the latter case, the network delay between the
middlebox and the client will get added to the time the verifiers
observe for location verification, which results in CPV correctly
detecting the client’s absence from the respective triangle. It is
thus in the middlebox’s interest to choose the former case—solv-
ing the puzzles on behalf of the clients. However, this means that
as more clients are connected, the middlebox will have to solve
more puzzles. When these puzzles begin to accumulate, they

will increase queueing delays, which contribute to the delays
observed by the verifiers, eventually causing CPV to reject the
location assertions of all middlebox-connected clients.

In this model, there are two main parameters contributing to the
puzzle queueing rate at the middlebox: the puzzle difficulty and
the middlebox’s computational resources. Queueing analysis [10]
shows that the puzzle difficulty has a higher impact on the rate
of puzzle queueing than the middlebox’s computational power.
This analysis suggests that this puzzle mechanism will effec-
tively hinder illicit middlebox relaying.

Evaluation Results
CPV was evaluated using PlanetLab—a distributed testbed for
Internet measurement research and network experiments—
using 80 PlanetLab nodes in North America. Three of the nodes
were selected to act as verifiers, and the remaining 77 acted as
clients. Some of the 77 nodes were inside the triangle and oth-
ers were outside. All 77 nodes carried out the protocol with the
verifiers simultaneously to get their locations verified. Knowing
the ground-truth of which nodes were inside and which were
outside (the geographic locations of PlanetLab nodes are publicly
disclosed on PlanetLab’s website), we could count the number
of false rejects, nodes inside the triangle identified by CPV as
outside, and false accepts. The process is repeated after choos-
ing a different triangle, a different set of three nodes to act as
verifiers, again counting false rejects and false accepts. In total,
34 triangles where chosen. Triangles were chosen to be nearly
equilateral (physically), with inside angles ranging from 50–70
degrees (0.87–1.22 radians). The smallest triangle had an area
equivalent to a circle of radius 100 km, and the largest of 400 km.

When the inside nodes were not too close to the triangle’s sides,
that is, away from the closest side by at least 10% of its length,
CPV resulted in a total of 1.0% false accepts and 2.0% false
rejects [8]. These results were obtained when n = 600 CPV
iterations were performed with each client. The results were not
much different when only 100 iterations were performed, where
the false accept rate increased only to 1.1% and the false reject
rate remained unchanged. However, when only 10 iterations
were performed, false accepts and false rejects were at 2.1% and
4.1%, respectively.

Testing was later repeated to assess the effect of WiFi access
networks on CPV’s efficacy [11]. WiFi access networks often
have higher delays and delay jitters. A different evaluation
technique was used, as the PlanetLab infrastructure used
above involved nodes connected using wired access networks.
To model WiFi clients, 802.11 delay models from the literature
were used to generate the last-mile delays, which were added to
the delay traces collected from PlanetLab. Since higher network
delays for nodes inside the triangles may result in higher false
rejects, the generated 802.11 delays were only added to the delays

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  23

SECURITY
Secure Client and Server Geolocation over the Internet

of inside nodes to create the most stressful testing situation.
802.11 networks employ slotted retransmissions. The delays
were generated such that each slot was 20 µsec, the propagation
delay from the device to the wireless gateway was 1 µsec, and the
four other wireless devices were continuously competing for the
wireless media along with each wireless CPV client. With these
parameters, CPV’s false accepts were at 2% and false rejects at
4%. Although CPV’s efficacy was affected by the WiFi access
network, increasing the number of iterations can improve the
results (see [11]).

Live Demo
A live demo of CPV is currently running on http://cpv.ccsl​
.carleton.ca. This link hits a webserver in Ottawa, Canada,
which enables clients to verify whether they are present inside
a US-based triangle determined by verifiers in San Francisco,
Las Vegas, and San Diego. The verifiers are provided by host-
ing services DigitalOcean, ServerPoint, and M5 Hosting. Each
VM has a 500 MB RAM and runs Ubuntu 16.04. NTP is used to
synchronize their clocks. Additionally, each verifier issues an
NTP query every 30 minutes using the “ntpq” utility to calculate
the clock offset with the other two verifiers, which is added to
the calculated OWDs between the verifiers for more accurate
OWD estimates. Each verifier issues a timestamp to the other
two verifiers every six seconds for direct OWD measurements
between the verifiers.

A Java implementation of a CPV verifier runs on top of a light-
weight custom-written WebSocket server, which is also imple-
mented in Java. When a location verification request is initiated,
the verifiers first check that it was issued from the authentic
server (the one based in Ottawa in that demo implementation),
because this server digitally signs connection IDs when they
are issued. Additionally, each exchanged timestamp message
between the verifiers through the client is corroborated using
an MD5-based HMAC (a stronger HMAC is recommended to be
used in practice). For the currently running demo, eight delay-
measuring iterations are performed, once every 300 ms. When
all iterations are performed, the verifiers send the measured
delays back to the Ottawa server, which processes the result and
returns it to the browser as a jQuery response.

No client puzzles are implemented yet in this demo as of this
writing, nor is any automatic calibration of CPV’s parameters.
Instead, the main server has manually set parameters of ϵ = 10
ms and τ = 0.7, which are static and used across all clients.

Server Location Verification (SLV)
Analogous to CPV but on the server side, SLV [12] works by find-
ing evidence of a server’s physical presence inside a geographic
region by measuring the server’s network delays. A browser typi-
cally communicates with an SLV Manager, which orchestrates

a network of server location verifiers. The challenges faced in
doing so are quite different from verifying clients: (1) clients do
not normally have the ability to write and run code on the server,
whereas that was easily achievable by the server on the client,
typically using JavaScript; (2) the common physical distribu-
tion of web content using content distribution networks (CDNs)
and replication technologies begs the questions: Of the multiple
physical servers that may serve client content, which such serv-
ers should be selected to geographically locate (verify) in order to
provide a useful server-authentication service? How should that
machine be identified?

The answers to these questions depend on the threat model and
the application for which geolocation is to be used. Since the goal
of SLV is to reinforce server authentication, the implementation
of SLV takes the view that the first machine that terminates the
client’s TCP (and TLS) handshake is the most critical one. The
protection provided from verifying that first machine would
be comparable to that provided by TLS in the cases where the
browser fetches content from multiple machines, some of which
are not TLS-protected: for example, a page with mixed content.

For deciding on the mechanism used to identify machines, it is
important to dissect man-in-the-middle (MITM) and server
impersonation attacks. In MITM attacks, an adversary hijacks
network traffic intended for the authentic server and relays it
to the authentic server with or without modification. Hijacking
could occur on several layers of the network stack as follows.
(Note that using uncompromised TLS protects against the
following hijacking cases; the value of using server location to
reinforce server authentication is more profound for non-TLS-
enabled websites or to catch attacks against the TLS system.)

◆◆ Case 1: Attacker’s machine has a different IP address than
the authentic server. In upper layers, phishing and pharming
attacks are prominent traffic hijacking examples; the outbound
traffic from the client has a different IP address from that of the
authentic server. If the browser submits the domain name of
the visited website to the SLV Manager, the Manager may re-
solve it to a different IP address from that seen by the browser
(which could also occur benignly in the cases of CDNs). Verify-
ing the geographic location of that IP address then becomes
useless to the browser because a MITM adversary would go
undetected. It is thus important to have the browser resolve a
domain and submit the IP address to the SLV Manager.

◆◆ Case 2: Attacker’s machine has same IP address as au-
thentic server. In a lower layer hijacking, such as MAC table
poisoning, ARP spoofing, and BGP spoofing, outbound traffic
from the client has the same destination IP address as that of
the authentic server. Such tactics are based on routing manipu-
lation, so that traffic intended to the authentic server’s IP ad-
dress reaches a different network location (versus geographic
location), which corresponds to the attacker’s machine.

24    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

SECURITY
Secure Client and Server Geolocation over the Internet

In comparison to upper layers, lower layer hijacking attacks
tend to be more scalable, affecting a larger proportion of clients.
For MAC table poisoning and ARP spoofing, the closer the
attacker’s machine is to the authentic server’s network, the more
the affected clients. Likewise, BGP spoofing can cause traffic
hijacking at a global scale [13]. This implies that as with higher
layer traffic hijacking attacks (discussed above), identifying the
server by its IP address will likely allow the SLV Manager to
detect whether the browser-intended machine is at a different
geographic location from that asserted through a static location
mapping previously obtained for that IP address.

Revisiting the above questions, if SLV targets the IP address
as resolved by the browser of the first machine that the client
initially handshakes, regardless of whether the browser will be
instructed to fetch other content from different places later in
the session, it can detect most of the above server impersonation
attacks.

Verification Mechanism
After obtaining an unverified server location assertion, three
verifiers surrounding that location are selected. The veri-
fiers measure network RTTs to the server over several layers,
including an application using HTTP request-response times
and transport using TCP handshake responses. By means of
comparing these delays with the delays between the verifiers,
each pair of verifiers then verify whether the server is physically
present inside the circle whose diameter is the physical distance
between the verifier pair, and whose center is the midpoint
between them (Figure 3).

Evaluation Results
Pilot testing of ∼200 experiments was conducted on SLV using
PlanetLab, half of which were true location assertions made by
servers and the other half were false assertions. As with CPV,
the rates of false rejects and false accepts were the fundamental
evaluation parameters. SLV resulted in 0% false accepts and
2.4% false rejects [12]. Although the false reject rate may seem
high for some applications, it can be improved by proper selec-
tion of verifiers, those with sufficient network bandwidth and
processing resources.

SLV Browser Extension
We have built a Firefox browser extension to reinforce TLS
by integrating the webserver’s verified physical location, as
described above, into the server authentication process. The
extension sends the IP address of the server to the SLV Manager
and receives the location verification result. The extension uses
FlagFox to obtain an unverified assertion for the server’s loca-
tion. It also displays a flag in the URL (Figure 1) and a green tick
mark or a red cross indicating whether the location asserted by
FlagFox is true (according to SLV’s verification) or not. This pro-

cess takes a few seconds to execute, during which a throbber is
displayed by the flag instead. Note that such visual cues are only
meant as visual feedback in prototypes and are not an indica-
tion that we would expect end-users to base decisions upon. See
below for how policies could be implemented to automatically
make decisions on behalf of users.

Server Location Pinning in the Browser.
To avoid having the user interpret visual icons, the SLV exten-
sion is supported with a location pinning feature, whereby a
browser saves the fact that a website identified by its URL was
previously verified to host content from a particular geographic
location, analogous to key pinning [14]. Although location veri-
fication is performed based on the IP address, the SLV Manager
only receives an IP address from the browser, with location pin-
ning in the browser based on the domain name. Upon receiving
the verification result for a website, its location gets pinned only
if the result is positive. This operation follows a trust on first use
(TOFU) concept.

In general, for interpreting a received verification result, the SLV
extension checks whether that location to some degree of geo-
graphic precision was pinned before for that website. The result
of the operation falls into one of three categories: Critical, Suspi-
cious, or Unsuspicious. Critical means the verification result for
a previously pinned location was negative. A Suspicious outcome
occurs when the location verification result is negative, but no
location was previously pinned for that website . Finally, an
Unsuspicious outcome is when location verification passes for a
domain that was not previously pinned. Note that these are only
meant to illustrate how a client might utilize SLV, but we expect
different applications would make different choices.

Figure 3: Server Location Verification (SLV) using network measurements
from three verifiers (A, B, and C) to a server. Please view the online ver-
sion of this article to see the figure in color. Map data: Google, INEGI.

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  25

SECURITY
Secure Client and Server Geolocation over the Internet

Such outcomes could result in the browser automatically taking
decisions through a policy-based engine. An example would be
to instruct the browser to block/terminate the connection for all
Critical outcomes of the user’s personal banking website. Such
terminology is subject to more research scrutiny and is not yet
part of the above-described SLV extension.

Conclusion
This article provides a technical overview of recent advance-
ments in the field of secure geolocation over the Internet. Two
technologies, CPV and SLV, were explained to address client

and server geolocation, respectively. Both rely on network tim-
ing measurements for secure location verification, taking into
consideration safety measures to limit adversarial manipula-
tions. Of the wide variety of applications that may benefit from
secure location information of clients and servers, reinforcing
authentication (location-aware authentication) for both ends
remains an important example. Future research on CPV and
SLV includes further enhancing their accuracy in terms of the
false reject and accept rates and their efficiency for large-scale
deployments in practice.

References
[1] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A Position
Paper on Data Sovereignty: The Importance of Geolocating
Data in the Cloud,” in Proceedings of the 3rd USENIX Confer-
ence on Hot topics in Cloud Computing (HotCloud ’11): https://​
www.usenix.org/legacy/event/hotcloud11/tech/final_files​
/Peterson.pdf.

[2] B. Huffaker, M. Fomenkov, and k. claffy, “DRoP: DNS-Based
Router Positioning,” SIGCOMM Computer Communication
Review, vol. 44, no. 3 (2014), pp. 5–13: http://www.caida.org​
/publications/papers/2014/drop/drop.pdf.

[3] A. Csoma, A. Gulyás, and L. Toka, “On Measuring the Geo-
graphic Diversity of Internet Routes,” IEEE Communications
Magazine, vol. 55, no. 5 (2017), pp. 192–197: https://arxiv.org/pdf​
/1601.01116.pdf.

[4] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP
Geolocation Databases: Unreliable?” ACM SIGCOMM Com-
puter Communication Review, vol. 41, no. 2 (2011), pp. 53–56:
https://inl.info.ucl.ac.be/system/files/paper_2.pdf.

[5] J. A. Muir and P. C. van Oorschot, “Internet Geolocation:
Evasion and Counterevasion,” ACM Computing Surveys, vol. 42,
no. 1 (2009): https://www.ccsl.carleton.ca/~jamuir/papers/TR​
-06-05.pdf.

[6] P. Gill, Y. Ganjali, B. Wong, and D. Lie, “Dude, Where’s That
IP?: Circumventing Measurement-Based IP Geolocation,” in
Proceedings of the 19th USENIX Conference on Security (Secu-
rity ’10), pp. 241–256: https://people.cs.umass.edu/~phillipa​
/papers/UsenixSec2010.pdf.

[7] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate
Manipulation of Delay-Based Internet Geolocation,” in Proceed-
ings of the ACM Asia Conference on Computer and Communica-
tions Security (ASIACCS ’17), pp. 887–898: http://people.scs​
.carleton.ca/~paulv/papers/asiaccs-2017.pdf.

[8] A. Abdou, A. Matrawy, and P. C. van Oorschot, “CPV: Delay-
Based Location Verification for the Internet,” IEEE Transactions
on Dependable and Secure Computing (TDSC), vol. 14, no. 2 (2017),
pp. 130–144: https://sce.carleton.ca/~abdou/CPV_TDSC.pdf.

[9] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate One-
Way Delay Estimation with Reduced Client-Trustworthiness,”
IEEE Communications Letter, vol. 19, no. 5 (2015): http://people​
.scs.carleton.ca/~paulv/papers/OWD.pdf.

[10] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Taxing the
Queue: Hindering Middleboxes from Unauthorized Large-Scale
Traffic Relaying,” IEEE Communications Letter, vol. 19, no. 1
(2015): http://people.scs.carleton.ca/~paulv/papers/taxing-the​
-queue.pdf.

[11] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Loca-
tion Verification of Wireless Internet Clients: Evaluation and
Improvements,” IEEE Transactions on Emerging Topics in
Computing (TETC), vol. 5, no. 4 (2017), pp. 563–575.

[12] A. Abdou and P. C. van Oorschot, “Server Location Verifi-
cation (SLV) and Server Location Pinning: Augmenting TLS
Authentication,” ACM Transactions on Privacy and Security
(TOPS), vol. 21, no. 1, (2017), pp. 1–26.

[13] R. Hiran, N. Carlsson, and P. Gill, “Characterizing
Large-Scale Routing Anomalies: A Case Study of the China
Telecom Incident,” in International Conference on Passive and
Active Network Measurement (Springer, 2013), pp. 229–238:
https://people.cs.umass.edu/~phillipa/papers/Hiran_Pam2013​
_full.pdf.

[14] M. Kranch and J. Bonneau, “Upgrading HTTPS in Mid-
Air: An Empirical Study of Strict Transport Security and Key
Pinning,” Network and Distributed System Security Sympo-
sium, Internet Society, 2015: http://www.jbonneau.com/doc​
/KB15-NDSS-hsts_pinning_survey.pdf.

https://www.usenix.org/legacy/event/hotcloud11/tech/final_files/Peterson.pdf
https://www.usenix.org/legacy/event/hotcloud11/tech/final_files/Peterson.pdf
https://www.usenix.org/legacy/event/hotcloud11/tech/final_files/Peterson.pdf
http://www.caida.org/publications/papers/2014/drop/drop.pdf
http://www.caida.org/publications/papers/2014/drop/drop.pdf
https://arxiv.org/pdf/1601.01116.pdf
https://arxiv.org/pdf/1601.01116.pdf
https://inl.info.ucl.ac.be/system/files/paper_2.pdf
https://www.ccsl.carleton.ca/~jamuir/papers/TR-06-05.pdf
https://www.ccsl.carleton.ca/~jamuir/papers/TR-06-05.pdf
https://people.cs.umass.edu/~phillipa/papers/UsenixSec2010.pdf
https://people.cs.umass.edu/~phillipa/papers/UsenixSec2010.pdf
http://people.scs.carleton.ca/~paulv/papers/asiaccs-2017.pdf
http://people.scs.carleton.ca/~paulv/papers/asiaccs-2017.pdf
https://sce.carleton.ca/~abdou/CPV_TDSC.pdf
http://people.scs.carleton.ca/~paulv/papers/OWD.pdf
http://people.scs.carleton.ca/~paulv/papers/OWD.pdf
http://people.scs.carleton.ca/~paulv/papers/taxing-the-queue.pdf
http://people.scs.carleton.ca/~paulv/papers/taxing-the-queue.pdf
https://people.cs.umass.edu/~phillipa/papers/Hiran_Pam2013_full.pdf
https://people.cs.umass.edu/~phillipa/papers/Hiran_Pam2013_full.pdf
http://www.jbonneau.com/doc/KB15-NDSS-hsts_pinning_survey.pdf
http://www.jbonneau.com/doc/KB15-NDSS-hsts_pinning_survey.pdf

