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SECURITY

Secure Client and Server Geolocation over  
the Internet
A B D E L R A H M A N  A B D O U ,  P A U L  C .  V A N  O O R S C H O T

W e provide a summary of recent efforts towards achieving Internet 
geolocation securely, that is, without allowing the entity being 
geolocated to cheat about its own geographic location. Cheating 

motivations arise from many factors, including impersonation (if locations 
are used to reinforce authentication) and gaining location-dependent bene-
fits. In particular, we provide a technical overview of Client Presence Verifi-
cation (CPV) and Server Location Verification (SLV)—two recently proposed 
techniques designed to verify the geographic locations of clients and serv-
ers in real time over the Internet. Each technique addresses a wide range of 
adversarial tactics to manipulate geolocation, including the use of IP-hiding 
technologies like VPNs and anonymizers, as we now explain.

Internet geolocation is the process of determining the geographic location of an Internet-
connected device. Secure geolocating of a web client (a client visiting a website) is useful for 
location-aware authentication, location-aware access control, location-based online voting, 
location-based social networking, and fraud reduction. From the client’s perspective, geo-
locating the remote server can provide higher assurance to the server’s identity, and justify 
conducting certain sensitive transactions—for example, those requiring certain privacy 
measures or requiring data sovereignty [1]. Independent of server and client geolocation, 
geolocating network intermediate systems (e.g., routers) can also be useful for monitoring [2] 
and network mapping [3].

Both CPV and SLV are based on network measurements, where delays are measured from 
trusted network nodes dubbed verifiers and are analyzed in real time to verify physical pres-
ence inside a prescribed geographic region. We explain the threat model of both techniques, 
how they militate against known adversarial tactics, how they adapt to various network 
dynamics, and what distinguishes them from other geolocation approaches.

Geolocation Background
Many academic geolocation methods have been proposed, but there has been very limited 
deployment in practice. As of this writing, most of the geolocation conducted in practice 
relies on the clients’ IP address or GPS coordinates of hand-held devices, as explained below.

Geolocation in Practice
There are several methods for device geolocation over the Internet. If the device belongs to 
a user that is acting as a web client (i.e., visiting a website), the Geolocation API is a W3C 
standard that enables browsers to obtain location information of the device they are running 
on and communicate it to a webserver. Servers request location coordinates using JavaScript 
as follows:
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if(navigator.geolocation) {

      navigator.geolocation.getCurrentPosition(success, error, 

geoOptions);

   } else {

      console.log(“Geolocation is not supported on this 

browser.”);

}

The geolocation methods a browser uses are left to the browser 
vendor’s discretion. Most major browsers rely on the following 
in varying orders (that is, when one fails, the next is tried): GPS, 
WiFi Positioning System (WPS), IP address-based location 
lookups, or cell-tower triangulation of mobile devices. The loca-
tion of an IP address can be obtained from publicly available 
routing information or public registries, such as whois. Many 
IP location service providers (commercial and free) maintain 
lookup tables to instantly map IP addresses to locations. Such 
static tabulation methods may take long times to reflect changes 
or IP address reassignments, which occur quite often for client 
geolocation to be up-to-date (studies were conducted to confirm 
this [4]). IP address-based geolocation can, however, be reliable 
for benign server geolocation. Flagfox is an example Firefox 
extension that visually indicates a flag of the country corre-
sponding to the IP address resolution of the URL (Figure 1).

From a security perspective, none of the above techniques is 
resilient to adversarial manipulation. When the geolocation 
API is in use, the server normally makes no effort in geolocat-
ing the client device; it rather trusts the browser-communicated 
coordinates, which can easily be forged on the fly before being 
sent to the server. Firefox extensions that enable forgery include 
Fake Location (Figure 2) and Location Guard; both enable a user 
to specify where in the world they would like to appear to be. If 
the server relies on tabulation methods to geolocate the client 
(instead of asking the browser for its coordinates), the common 
practice of clients hiding their own IP addresses behind proxies 
and anonymizers comes into play.

Geolocation in the Literature
A wide set of techniques can be used, mostly for a server to 
geolocate clients [5]. These enable a server to infer a client’s 
geographic location from hints obtained from browser-generated 
HTTP headers such as preferred language or time zone. Loca-

tions can also be obtained through crowd-sourcing by interpo-
lating a device’s location from its proximity to nearby devices, 
like phones or WiFi access points (APs), with known GPS 
locations.

Another class of Internet geolocation approaches is based on 
network measurements. Similar to GPS triangulations that are 
based on the delays between the receiver and satellites, mea-
surement-based techniques also aim to locate devices (clients or 
server) by estimating their distance from landmarks in the net-
work with known locations. These landmarks measure network 
delays from themselves to the device, typically identified by its 
IP address, and map these delays to geographic distances. The 
accuracy of such mapping, however, is not anywhere near that 
of mapping satellite delays to distances, and is thus the primary 
source of inaccuracies in such techniques. Still, measurement-
based geolocation is generally considered more accurate than 
methods like tabulation-based geolocation.

From the security point of view, although most of the above 
methods are positioned as resilient to evasion, examination 
has shown otherwise. Delay-increasing attacks can allow an 
adversary to distort its perceived location [6]. Delay-decreasing 
was also studied, for example, by manipulating ICMP “ping” 
and “traceroute” as they fail to preserve the integrity of timing 
measurements.

Figure 1 [a-c]: Snapshots of the Flagfox browser extension

Figure 2: Snapshots of the Fake Location extension—an example browser 
extension allowing users to fake their locations
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Combining both attacks, an adversary can forge the calculated 
location to an accuracy of a few tens of kilometers relative to a 
target desired location [7].

Client Presence Verification—CPV
CPV [8] is a measurement-based technique designed to verify 
the geographic locations of web users (clients) over the Inter-
net. The client is assumed to be motivated to misrepresent its 
location to gain location-dependent benefits. CPV’s design takes 
into consideration various adversarial location-forging tactics, 
including delay manipulations and IP-hiding technologies like 
VPNs and anonymizers. CPV does not rely fundamentally on the 
clients’ IP addresses, nor does it determine geographic locations. 
Rather, it verifies an asserted (unverified) location, typically 
made by a client. The client’s location could be asserted using the 
client’s GPS coordinates, the client’s IP address, or even explic-
itly asking the user to fill-in their street address in an online 
form during login.

To verify location assertions, CPV relies on an infrastructure of 
geographically scattered nodes, dubbed verifiers. The technique 
works as follows. When a client visits a website and asserts the 
geographic location from which he/she is currently browsing, 
three verifiers surrounding the asserted location are selected. 
The verifiers measure (in real time) network delays between 
themselves and the client’s browser, and analyze these delays 
to corroborate that the client is present somewhere inside the 
triangle determined by their (the verifiers’) geographic locations. 
Because the verifiers cannot pinpoint where exactly the client 
is within the triangle, the size of the triangle is the verification 
granularity.

Secure One-Way Delay Estimation
The verifiers do not measure round-trip times (RTT) between 
themselves and the client. Rather, they estimate the smaller of 
the forward and reverse one-way delays (OWDs) between each 
of them and the client. The larger OWD is discarded because 
propagation delays between two network nodes are bounded by 
the physical distance between them, so a smaller OWD mea-
surement is a better representation to the geographic distance 
between both nodes than the larger—the larger must have been 
affected by other factors such as network congestion or circu-
itous routing.

To measure the OWD between a verifier and the client, CPV does not 
rely on standard OWD-estimation protocols like OWAMP (RFC 
4656), as those require honest client cooperation: for example, 
client clock synchronization and honest reporting of delays. As 
such, CPV relies on the minimum-pairs (MP) protocol [9]. MP 
requires the three verifiers, A, B, and C, to first synchronize 
their clocks and pre-share cryptographic keys to ensure opera-
tional integrity.

Through JavaScript, the client’s browser is first directed to 
establish a WebSocket (RFC 6455) connection to the three veri-
fiers, which are chosen based on the client’s asserted location. 
Verifier A begins by sending a cryptographically protected time-
stamp (in millisecond precision) to the client, which the browser 
forwards to the other two verifiers. On receiving this, verifier 
B calculates the propagation time from A → client → B, and like-
wise when the timestamp is received by C. Verifiers B and C then 
follow suit, taking turns in sending timestamps. When all three 
verifiers are done exchanging timestamp messages, they will 
have six delay values as follows:

• A→ client → B

• A→ client → C

• B→ client → A

• B→ client → C

• C→ client → A

• C→ client → B

Between each pair of verifiers, e.g., between {A → client → B} 
and {B → client → A}, the verifiers exclude the larger OWD and 
solve a system of three equations simultaneously for an estimate 
to the smaller OWD between the client and each verifier. That 
is, if the smaller of the forward and reverse OWD between the 
client and A, B, and C, respectively, is a, b, c, then (note: = sign 
here is used to indicate mathematical equality rather than an 
assignment operator):

• a + b = min(AtB, BtA)

• a + c = min(AtC, CtA)

• b + c = min(BtC, CtB)

where AtB is the delay A → client → B, and so on. Analysis of 
MP’s accuracy showed that the protocol is likely to provide more 
accurate estimates to the smaller OWD than simply using half 
the RTT [9].

Corroborating Presence Inside the Triangle
In order to avoid potential inaccuracies from delay-to-distance 
mapping, the calculated OWDs are not mapped to distances. 
Rather, they are compared to the smaller OWDs between the 
verifiers themselves, which are measured and updated periodi-
cally in a background process, independent of whether or not a 
client is currently being verified. Assuming x = min(AB, BA) is 
the smaller of the forward and reverse OWDs between verifiers 
A and B directly (not to be confused with min(AtB, BtA) from the 
previous section), and likewise y = min(BC, CB) and z = min(AC, 
CA), then the client’s asserted location is accepted as inside the 
triangle if:

area(Δxab)+area(Δybc)+area(Δzca) ≤ area(Δxyz) + ϵ

such that area (Δxab) is the area of that triangle calculated from 
its side lengths x, a, and b. The value of ϵ is used to account for 
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the two extra access network traversals occurring at the client 
when the timestamps propagate from a verifier to the client to 
another verifier.

Iterative Delay Measurement
To account for abrupt delay spikes or network irregularities, 
the above process of OWD calculations and comparison with 
those between the verifiers is iteratively repeated n times. If the 
condition is met for the majority of the conducted iterations, the 
location assertion is accepted.

CPV Calibration
There are several parameters that tune CPV’s reaction to events. 
The most important three are ϵ, n, which is the number of delay 
measurement iterations, and τ, which is the fraction of those 
iterations that must pass if the condition is met for the client’s 
asserted location to be accepted. This calibration should take 
place before the location verification process begins. To do that, 
the three verifiers may use network nodes that they know as a 
ground truth to be inside the triangle. From the network delays 
of these nodes, the verifiers compute values for the above-men-
tioned three parameters and then run CPV to verify a client’s 
location.

Hindering Illicit Traffic Relaying
In an attempt to defeat geolocation, a middlebox (like a proxy 
server or a VPN gateway) that is physically inside the triangle 
can be specifically customized to filter out the verifiers’ time-
stamps from the client’s traffic and forward them to the verifiers 
on behalf of the client. This threat against CPV is exacerbated 
by the presence of numerous cheap public VPN providers whose 
primary service is to enable subscribers to evade geolocation 
technologies.

Techniques like CPV can mitigate this by adapting known proof-
of-work techniques [10]. The verifiers generate a cryptographic 
client puzzle with each timestamp message, which the client’s 
browser must solve before forwarding the message (puzzle solu-
tion and timestamp) to the other two verifiers. The puzzles must 
be easy to solve so that they do not (1) overwhelm the client with 
high processing costs and (2) overshadow the network propaga-
tion delays. In the case of a middlebox connected to many simul-
taneously cheating clients, the middlebox will choose to either 
solve these puzzles on behalf of the clients or forward them to 
the clients. In the latter case, the network delay between the 
middlebox and the client will get added to the time the verifiers 
observe for location verification, which results in CPV correctly 
detecting the client’s absence from the respective triangle. It is 
thus in the middlebox’s interest to choose the former case—solv-
ing the puzzles on behalf of the clients. However, this means that 
as more clients are connected, the middlebox will have to solve 
more puzzles. When these puzzles begin to accumulate, they 

will increase queueing delays, which contribute to the delays 
observed by the verifiers, eventually causing CPV to reject the 
location assertions of all middlebox-connected clients.

In this model, there are two main parameters contributing to the 
puzzle queueing rate at the middlebox: the puzzle difficulty and 
the middlebox’s computational resources. Queueing analysis [10] 
shows that the puzzle difficulty has a higher impact on the rate 
of puzzle queueing than the middlebox’s computational power. 
This analysis suggests that this puzzle mechanism will effec-
tively hinder illicit middlebox relaying.

Evaluation Results
CPV was evaluated using PlanetLab—a distributed testbed for 
Internet measurement research and network experiments—
using 80 PlanetLab nodes in North America. Three of the nodes 
were selected to act as verifiers, and the remaining 77 acted as 
clients. Some of the 77 nodes were inside the triangle and oth-
ers were outside. All 77 nodes carried out the protocol with the 
verifiers simultaneously to get their locations verified. Knowing 
the ground-truth of which nodes were inside and which were 
outside (the geographic locations of PlanetLab nodes are publicly 
disclosed on PlanetLab’s website), we could count the number 
of false rejects, nodes inside the triangle identified by CPV as 
outside, and false accepts. The process is repeated after choos-
ing a different triangle, a different set of three nodes to act as 
verifiers, again counting false rejects and false accepts. In total, 
34 triangles where chosen. Triangles were chosen to be nearly 
equilateral (physically), with inside angles ranging from 50–70 
degrees (0.87–1.22 radians). The smallest triangle had an area 
equivalent to a circle of radius 100 km, and the largest of 400 km.

When the inside nodes were not too close to the triangle’s sides, 
that is, away from the closest side by at least 10% of its length, 
CPV resulted in a total of 1.0% false accepts and 2.0% false 
rejects [8]. These results were obtained when n = 600 CPV 
iterations were performed with each client. The results were not 
much different when only 100 iterations were performed, where 
the false accept rate increased only to 1.1% and the false reject 
rate remained unchanged. However, when only 10 iterations 
were performed, false accepts and false rejects were at 2.1% and 
4.1%, respectively.

Testing was later repeated to assess the effect of WiFi access 
networks on CPV’s efficacy [11]. WiFi access networks often 
have higher delays and delay jitters. A different evaluation 
technique was used, as the PlanetLab infrastructure used 
above involved nodes connected using wired access networks. 
To model WiFi clients, 802.11 delay models from the literature 
were used to generate the last-mile delays, which were added to 
the delay traces collected from PlanetLab. Since higher network 
delays for nodes inside the triangles may result in higher false 
rejects, the generated 802.11 delays were only added to the delays 
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of inside nodes to create the most stressful testing situation. 
802.11 networks employ slotted retransmissions. The delays 
were generated such that each slot was 20 µsec, the propagation 
delay from the device to the wireless gateway was 1 µsec, and the 
four other wireless devices were continuously competing for the 
wireless media along with each wireless CPV client. With these 
parameters, CPV’s false accepts were at 2% and false rejects at 
4%. Although CPV’s efficacy was affected by the WiFi access 
network, increasing the number of iterations can improve the 
results (see [11]).

Live Demo
A live demo of CPV is currently running on http://cpv.ccsl​
.carleton.ca. This link hits a webserver in Ottawa, Canada, 
which enables clients to verify whether they are present inside 
a US-based triangle determined by verifiers in San Francisco, 
Las Vegas, and San Diego. The verifiers are provided by host-
ing services DigitalOcean, ServerPoint, and M5 Hosting. Each 
VM has a 500 MB RAM and runs Ubuntu 16.04. NTP is used to 
synchronize their clocks. Additionally, each verifier issues an 
NTP query every 30 minutes using the  “ntpq” utility to calculate 
the clock offset with the other two verifiers, which is added to 
the calculated OWDs between the verifiers for more accurate 
OWD estimates. Each verifier issues a timestamp to the other 
two verifiers every six seconds for direct OWD measurements 
between the verifiers.

A Java implementation of a CPV verifier runs on top of a light-
weight custom-written WebSocket server, which is also imple-
mented in Java. When a location verification request is initiated, 
the verifiers first check that it was issued from the authentic 
server (the one based in Ottawa in that demo implementation), 
because this server digitally signs connection IDs when they 
are issued. Additionally, each exchanged timestamp message 
between the verifiers through the client is corroborated using 
an MD5-based HMAC (a stronger HMAC is recommended to be 
used in practice). For the currently running demo, eight delay-
measuring iterations are performed, once every 300 ms. When 
all iterations are performed, the verifiers send the measured 
delays back to the Ottawa server, which processes the result and 
returns it to the browser as a jQuery response. 

No client puzzles are implemented yet in this demo as of this 
writing, nor is any automatic calibration of CPV’s parameters. 
Instead, the main server has manually set parameters of ϵ = 10 
ms and τ = 0.7, which are static and used across all clients.

Server Location Verification (SLV)
Analogous to CPV but on the server side, SLV [12] works by find-
ing evidence of a server’s physical presence inside a geographic 
region by measuring the server’s network delays. A browser typi-
cally communicates with an SLV Manager, which orchestrates 

a network of server location verifiers. The challenges faced in 
doing so are quite different from verifying clients: (1) clients do 
not normally have the ability to write and run code on the server, 
whereas that was easily achievable by the server on the client, 
typically using JavaScript; (2) the common physical distribu-
tion of web content using content distribution networks (CDNs) 
and replication technologies begs the questions: Of the multiple 
physical servers that may serve client content, which such serv-
ers should be selected to geographically locate (verify) in order to 
provide a useful server-authentication service? How should that 
machine be identified?

The answers to these questions depend on the threat model and 
the application for which geolocation is to be used. Since the goal 
of SLV is to reinforce server authentication, the implementation 
of SLV takes the view that the first machine that terminates the 
client’s TCP (and TLS) handshake is the most critical one. The 
protection provided from verifying that first machine would 
be comparable to that provided by TLS in the cases where the 
browser fetches content from multiple machines, some of which 
are not TLS-protected: for example, a page with mixed content.

For deciding on the mechanism used to identify machines, it is 
important to dissect man-in-the-middle (MITM) and server 
impersonation attacks. In MITM attacks, an adversary hijacks 
network traffic intended for the authentic server and relays it 
to the authentic server with or without modification. Hijacking 
could occur on several layers of the network stack as follows. 
(Note that using uncompromised TLS protects against the 
following hijacking cases; the value of using server location to 
reinforce server authentication is more profound for non-TLS-
enabled websites or to catch attacks against the TLS system.)

◆◆ Case 1: Attacker’s machine has a different IP address than 
the authentic server. In upper layers, phishing and pharming 
attacks are prominent traffic hijacking examples; the outbound 
traffic from the client has a different IP address from that of the 
authentic server. If the browser submits the domain name of 
the visited website to the SLV Manager, the Manager may re-
solve it to a different IP address from that seen by the browser 
(which could also occur benignly in the cases of CDNs). Verify-
ing the geographic location of that IP address then becomes 
useless to the browser because a MITM adversary would go 
undetected. It is thus important to have the browser resolve a 
domain and submit the IP address to the SLV Manager.

◆◆ Case 2: Attacker’s machine has same IP address as au-
thentic server. In a lower layer hijacking, such as MAC table 
poisoning, ARP spoofing, and BGP spoofing, outbound traffic 
from the client has the same destination IP address as that of 
the authentic server. Such tactics are based on routing manipu-
lation, so that traffic intended to the authentic server’s IP ad-
dress reaches a different network location (versus geographic 
location), which corresponds to the attacker’s machine.
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In comparison to upper layers, lower layer hijacking attacks 
tend to be more scalable, affecting a larger proportion of clients. 
For MAC table poisoning and ARP spoofing, the closer the 
attacker’s machine is to the authentic server’s network, the more 
the affected clients. Likewise, BGP spoofing can cause traffic 
hijacking at a global scale [13]. This implies that as with higher 
layer traffic hijacking attacks (discussed above), identifying the 
server by its IP address will likely allow the SLV Manager to 
detect whether the browser-intended machine is at a different 
geographic location from that asserted through a static location 
mapping previously obtained for that IP address.

Revisiting the above questions, if SLV targets the IP address 
as resolved by the browser of the first machine that the client 
initially handshakes, regardless of whether the browser will be 
instructed to fetch other content from different places later in 
the session, it can detect most of the above server impersonation 
attacks.

Verification Mechanism
After obtaining an unverified server location assertion, three 
verifiers surrounding that location are selected. The veri-
fiers measure network RTTs to the server over several layers, 
including an application using HTTP request-response times 
and transport using TCP handshake responses. By means of 
comparing these delays with the delays between the verifiers, 
each pair of verifiers then verify whether the server is physically 
present inside the circle whose diameter is the physical distance 
between the verifier pair, and whose center is the midpoint 
between them (Figure 3).

Evaluation Results
Pilot testing of ∼200 experiments was conducted on SLV using 
PlanetLab, half of which were true location assertions made by 
servers and the other half were false assertions. As with CPV, 
the rates of false rejects and false accepts were the fundamental 
evaluation parameters. SLV resulted in 0% false accepts and 
2.4% false rejects [12]. Although the false reject rate may seem 
high for some applications, it can be improved by proper selec-
tion of verifiers, those with sufficient network bandwidth and 
processing resources.

SLV Browser Extension
We have built a Firefox browser extension to reinforce TLS 
by integrating the webserver’s verified physical location, as 
described above, into the server authentication process. The 
extension sends the IP address of the server to the SLV Manager 
and receives the location verification result. The extension uses 
FlagFox to obtain an unverified assertion for the server’s loca-
tion. It also displays a flag in the URL (Figure 1) and a green tick 
mark or a red cross indicating whether the location asserted by 
FlagFox is true (according to SLV’s verification) or not. This pro-

cess takes a few seconds to execute, during which a throbber is 
displayed by the flag instead. Note that such visual cues are only 
meant as visual feedback in prototypes and are not an indica-
tion that we would expect end-users to base decisions upon. See 
below for how policies could be implemented to automatically 
make decisions on behalf of users.

Server Location Pinning in the Browser. 
To avoid having the user interpret visual icons, the SLV exten-
sion is supported with a location pinning feature, whereby a 
browser saves the fact that a website identified by its URL was 
previously verified to host content from a particular geographic 
location, analogous to key pinning [14]. Although location veri-
fication is performed based on the IP address, the SLV Manager 
only receives an IP address from the browser, with location pin-
ning in the browser based on the domain name. Upon receiving 
the verification result for a website, its location gets pinned only 
if the result is positive. This operation follows a trust on first use 
(TOFU) concept.

In general, for interpreting a received verification result, the SLV 
extension checks whether that location to some degree of geo-
graphic precision was pinned before for that website. The result 
of the operation falls into one of three categories: Critical, Suspi-
cious, or Unsuspicious. Critical means the verification result for 
a previously pinned location was negative. A Suspicious outcome 
occurs when the location verification result is negative, but no 
location was previously pinned for that website . Finally, an 
Unsuspicious outcome is when location verification passes for a 
domain that was not previously pinned. Note that these are only 
meant to illustrate how a client might utilize SLV, but we expect 
different applications would make different choices.

Figure 3: Server Location Verification (SLV) using network measurements 
from three verifiers (A, B, and C) to a server. Please view the online ver-
sion of this article to see the figure in color. Map data: Google, INEGI.
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Such outcomes could result in the browser automatically taking 
decisions through a policy-based engine. An example would be 
to instruct the browser to block/terminate the connection for all 
Critical outcomes of the user’s personal banking website. Such 
terminology is subject to more research scrutiny and is not yet 
part of the above-described SLV extension.

Conclusion
This article provides a technical overview of recent advance-
ments in the field of secure geolocation over the Internet. Two 
technologies, CPV and SLV, were explained to address client 

and server geolocation, respectively. Both rely on network tim-
ing measurements for secure location verification, taking into 
consideration safety measures to limit adversarial manipula-
tions. Of the wide variety of applications that may benefit from 
secure location information of clients and servers, reinforcing 
authentication (location-aware authentication) for both ends 
remains an important example. Future research on CPV and 
SLV includes further enhancing their accuracy in terms of the 
false reject and accept rates and their efficiency for large-scale 
deployments in practice.
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