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PROGRAMMING

Faults in Linux 3.x
T A P A S W E N I  P A T H A K

Prior studies have used tools to find bugs in the Linux kernel versions 
1 and 2. In this article, I share the results for faults in 3.x versions. 
This study is a continuation of the work by Chou et al. [1] for versions 

1.0 to 2.4.1 and Palix et al. [2a–c] for 2.6 versions. I explain the types of bugs 
studied, trends for these bugs over newer versions, and how the reports were 
generated across the different Linux kernel versions.

In 2001, Chou et al. used static analysis tools run over each kernel version to get the results, 
and the number of common faults found was very high. By 2011, Linux kernel was in its third 
decade. Palix et al. found that the number of common faults decreased from the previous 
study results, implying better code quality in 2.6.x, but it was still very high. On February 
8, 2015, Linux kernel version 3.19 was released. Patches are regularly submitted for faults 
found using checkpatch [3], Sparse [4], Coccinelle [5] and Smatch [6]. The number of lines 
of code in the Linux kernel also crossed 15M at this time. I wanted to follow the path of the 
previous studies and research how many bugs were in 3.x versions.

Methodology
Palix et al. used the open source tools Coccinelle [5], to automatically find faults in source 
code, and Herodotos [7, 2c], to run Coccinelle for each fault type and to track the faults across 
multiple versions of the Linux kernel. Coccinelle and Herodotos are available on the open 
access archive HAL [7, 2b]. Coccinelle is a tool for pattern matching and text transformation. 
To study the bed of faults it is necessary to understand the history behind them. When were 
they first released? When did they die if they did? Did they move after they were first intro-
duced? Following the methodology deployed in the 2011 study, I used Coccinelle to automati-
cally find problematic programming patterns in Linux kernels, and Herodotos to correlate 
these fault reports between different versions of the Linux kernel. The data about faults in 
this article were compared with the last study performed and helped to improve the reports 
generated for the study done on 3.x versions. As an example, there were cases where false 
positives previously reported moved around in different places in the code file.

Emac’s org mode (orgmode.org), a text file format, was used to categorize the reports as bug 
or false positive. With this it was easier to move between different versions of the Linux 
kernel for the same report and study the history and reason behind a given bug type clas-
sification. This manual process was performed to make sure that none of the false posi-
tives generated were marked as bugs. I cloned all Linux kernel versions from 3.0 to 3.19 and 
considered the function stack, calls, and all possible inputs, outputs, Linux kernel standards, 
stack size etc. to categorize these reports as bugs or false positives. I also submitted patches 
for the bugs that were present in the then-current Linux kernel version.

In a few cases, I was not able to categorize the reports as bugs or false positives. In these 
cases, I used UNKNOWN/IGNORED.

The tools and marked reports generated were publicly made available in a GitHub repository [8].
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After analyzing the reports, Nicolas Palix generated figures to 
highlight the rise and fall of the number of bugs in the different 
versions. I used org2sql to update the database of records for the 
Linux kernel versions 3.xx. org2sql tries to import all the faults 
and needs of at least two parameters: the prefix of files to drop  
(/fast_scratch/linuxes/) and the new.org file to import. The 
output is on stdout, which I then directed to an SQL file, which 
later was used with psql. All the figures were generated using 
these data and scripts [9].

Studied Fault Types and Their State
Inconsistent Assumptions about NULL
Dereferencing a pointer is undefined if the pointer is null. This 
fault type comes in two flavors: IsNull and NullRef. An IsNull 
fault is where a NULL test is done preceding a dereference, and 
a NullRef fault is where a NULL test is done following a derefer-
ence. The former is always an error, while the latter may be an 
error or may simply indicate overly cautious code, if the pointer 
can never be NULL.

Both fault types consistently decreased between versions 3.0 to 
3.19. Figure 1 shows that the introduction of the IsNull bug type 
moved close to zero with Linux version 3.19 from the highest 
point with Linux version 3.0.

208 NullRef faults (Figure 2) were reported in total in Linux 
3.19, and 112 of them were introduced in 3.0 or later.

As an example, a bug in Linux 3.15 occurred where a null check 
was done after referencing it inside the file drivers/staging/
media/rtl2832u_sdr/rtl2832_sdr.c, line 992, in the function 
rtl2832_sdr_start_streaming for the s variable. 

dev_dbg(&s->udev->dev, “%s:\n”, __func__);

if (!s->udev)

An interesting false positive (FP) was found in Linux-3.11 
inside the file net/nfc/llcp_core.c, lines 724 (null test) and 761 
(nullref), in the function nfc_llcp_tx_work(), if llcp_sock is 
checked for null with one more condition (&&):

if (llcp_sock == NULL && nfc_llcp_ptype(skb) == LLCP_PDU_I)

         .....

else if (llcp_sock && !llcp_sock->remote_ready)

         .....

Then inside the else, llcp->sock is dereferenced using

skb_queue_tail(&llcp_sock->tx_pending_queue, copy_skb);

The code is only a problem if llcp_sock is null and if ptype  

== LLCP_PDU_I. But ptype is defined as u8 ptype = nfc_llcp 

_ptype(skb). And up at the top of the sequence of ifs there  
is another case for where llcp_sock == NULL && nfc_llcp 

_ptype(skb) == LLCP_PDU_I.

Disabling but Not Reenabling Interrupts
This includes interrupts that are turned off but not turned  
on again, using the function spin_lock_irqsave. spin_lock 

_irqsave is used to save the interrupt state before acquiring the 
spin lock. This is because spin lock disables the interrupt, when 
the lock is taken in interrupt context, and reenables it while 
unlocking or when using local_irq_disable and local_irq 

_save. The interrupt state is saved so that it can reinstate the 
interrupts again.

Locking but Not Unlocking and Double Locking
Double locking is a bug. This check looks for cases where a lock 
is taken but not released, that is, where an unlock is missing. In a 
few cases, interrupts are disabled at the same time that a lock is 
taken. Figure 3 shows that for the LockIntr bug type, the intro-
duction rate reached its peak during 2013. With the introduction 
of Linux 3.9, the LockIntr rate fell to zero, implying there were 
no new LockIntr bugs that were produced with this release.

I even found a few interesting FPs where I plan to improve the 
semantic patch in Linux 3.5 inside the file kernel/workqueue.c  
at line 1013, in the function __queue_work():

 spin_lock_irqsave(&last_gcwq->lock, flags);

 worker = find_worker_executing_work(last_gcwq, work);

if (worker && worker->current_cwq->wq == wq

gcwq = last_gcwq;

  else {

Figure 1: Birth and death of IsNull

Figure 2: Birth and death of NullRef
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	 /* meh... not running there, queue here */

	 spin_unlock_irqrestore(&last_gcwq->lock, flags);

	 spin_lock_irqsave(&gcwq->lock, flags);

In the case where the unlock seems to be missing, there is the 
code gcwq = last_gcwq. In the case where the unlock is present, it 
is followed by the code spin_lock_irqsave(&gcwq->lock, flags). 
That is, the whole set of nested ifs terminates with the need to 
unlock &gcwq->lock. This lock is unlocked later. And in the case 
where worker && worker->current_cwq->wq == wq, it is the case 
that gcwq = last_gcwq, so the subsequent unlock of &gcwq->lock 
will unlock the last_gcwq lock because they are the same.

Calling Blocking Function with Interrupts Disabled or 
Spinlock Held
Blocking with interrupts disabled or a spinlock held can lead to 
deadlock. Basic memory allocation functions, such as the kernel 
function kmalloc, often take as their argument the constant GFP_

KERNEL when kmalloc is allowed to block until a page becomes 
available. Thus, a function that contains a call with GFP_KERNEL 
as an argument may block.

However, blocking with interrupts turned off is not necessar-
ily a fault, and indeed core Linux scheduling functions, such as 
interruptible_sleep_on, call “schedule” with their interrupts 
turned off. This issue was taken into account when checking for 
false positives.

This fault type checked for locks around possibly blocking 
functions.

Figure 4 shows that the birth and death of the Lock bug type had 
a fall. The slight increase in the introduction with Linux 3.19 is 
explained below.

In Linux 3.19, in the file drivers/staging/emxx_udc/emxx_udc.c 
at line 2797, inside the function nbu2ss_ep_queue(), GFP_KER-

NEL is used when calling dma_alloc_coherent. GFP_KERNEL was 
replaced with GFP_ATOMIC with a patch, as the latter will fail if 
the heap doesn’t have enough free pages but will not sleep and 
hence avoids deadlock.

Wrong Use of krealloc
This fault type checked for a wrong use of krealloc. krealloc 
reallocates memory, while the contents of the memory remain 
unchanged. If krealloc()’ returns NULL, it doesn’t free the 
original pointer, which was pointing to the memory allocated. 
So any code of the form foo = krealloc(foo, ...); is certainly a 
bug. krealloc should use a temporary pointer for allocations and 
check the temporary pointer returned against NULL too.

For krealloc type reports, all reports were bugs and none were 
FPs in the case for 3.x versions. The most recent was in Linux-
3.16 in the file drivers/pinctrl/sunxi/pinctrl-sunxi.c at line 740:

pctl->functions = krealloc(pctl->functions,

	 pctl->nfunctions * sizeof(*pctl->functions),

	 GFP_KERNEL);

If reallocation fails, krealloc will return NULL to pctl-

>functions without freeing the memory previously pointed to  
by pctl->functions.

Interrupts Turned Off but Not Turned On Again
Calling the local_irq_save function disables interrupts on the 
current processor and saves current interrupt state as flags 
(passed to this function). local_irq_restore function enables 
interrupts and restores state using the flags. In early versions of 
Linux, locks and interrupts were managed separately: typically 
interrupts were disabled and reenabled using cli and sti, respec-
tively, while locks were managed using operations on spinlocks 
or semaphores. This fault type checked for the case where inter-
rupts were turned off using the functions local_irq_save or 
save_and_cli but were not turned on again.

Figure 5 shows that in Linux kernel 3.17, this bug type had new 
introductions as well as eliminations. By Linux 3.19 both intro-
duction and elimination reached zero.

I found a total of four bugs of this type. One was in Linux 3.17 in 
the file arch/mips/kvm/tlb.c at line number 206, inside method 
kvm_mips_host_tlb_write()’:

local_irq_save(flags);

Figure 3: Birth and death of LockIntr Figure 4: Birth and death of Lock
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The interrupt state is saved so that it should reinstate the inter-
rupts again, but, in this case, after the above call to local_irq_

save(), there is no call to local_irq_restore().

Using Freed Memory
kfree frees previously allocated memory. Using freed memory 
can cause the kernel to crash, can lead to a write-what-where 
condition, and can have consequences like corruption of valid 
data and the execution of arbitrary code. I checked for cases 
where there was a use after kfree and after a function that 
directly or indirectly calls kfree. The false positives were mostly 
when the variable freed was accessed only after a null check.

There were a lot of cases where goto was being used immediately 
after the kfree, which doesn’t allow the statement to execute 
when using the freed memory. There were also many cases where 
an immediate return was done after kfree, and thus the state-
ment where a variable accessed after kfree was not executed. 
There were cases where a check on the variable just freed (inside 
an if) was being done, hence avoiding a buggy situation.

Allocating Large Arrays on the Stack
All the local variables in the function are allocated on the stack. 
If too much memory is allocated on the stack, the kernel might 
run out of stack memory because the Linux kernel stack has a 
fixed size.

This fault type checked for instances where large arrays were 
allocated on the stack. I considered an array to be large if it con-
tained more than 1023 bytes. Anything below that was marked 
as a false positive, and anything greater than that was consid-
ered a bug.

No new bugs of this bug type were introduced with Linux kernel 
version > 3.11. I found one FP of type var in Linux 3.11 in the file 
drivers/staging/lustre/lnet/klnds/socklnd/socklnd_cb.c at line 
1034:

static char ksocknal_slop_buffer[4096];

In this case it was a global static variable, only visible in one 
function and not declared on the stack, so this was an FP.

Using Value Taken from User as Array Bounds and 
Loop Index without Check
Values taken from userspace should be checked for limits before 
using these values. A value could be huge, or it could be negative 
if the type of the field is not unsigned. copy_from_user is used to 
copy a block of data from userspace to kernel space. It then returns 
the number of bytes that could not be copied. On success, this will 
be zero. If some data could not be copied, this function will pad the 
copied data to the requested size using zero bytes. get_user is 
used to get a simple variable from userspace. This macro copies a 
single simple variable from userspace to kernel space.

This fault type checked for the case where unchecked values 
were obtained from the user level through copy_from_user and  
copy_from_user may be used as an array index or loop bound.

The Linux kernel from versions 3.0 to 3.19 had very few instances 
of introduction of this bug type. The Linux kernel 3.19 had no 
new user-value bug type introductions. 

I found one copy_from_user type bug in Linux 3.12, in the file fs/
btrfs/ioctl.c at line number 2736, inside the function btrfs 

_ioctl_file_extent_same(); copy_from_user is done using the 
same structure. same->logical_offset is then assigned to off, 
and same->length is assigned to len. The len variable is then 
checked for the maximum value it can have; if it exceeds that, 
it is assigned the maximum it can take. But later, the loop uses 
same->dest_count and not len.

I found one bug of type get_user in Linux 3.14 in fs/btrfs/ioctl.c 
at line number 2759, inside the function btrfs_ioctl_file 

_extent_same()’. No checks were done on count, and later it was 
used as an array index.

Wrong Assumption about Size of Object Being 
Allocated Memory
There were a total of 25 bugs relating to size type, all in <= 3.9 
versions of the Linux kernel. A very simple way to identify this 
bug was in Linux 3.5 in the file drivers/net/wireless/mwifiex 
/ie.c at line 166. The two structures mwifiex_ie_list and 
mwifies_ie are different, which makes this usage buggy.

Using Floating Point Values
When a userspace process uses floating-point instructions, the 
kernel catches a trap for a floating-point instruction and then 
initiates the transition from integer to floating-point mode. 
This varies by architecture. In a kernel space process, the kernel 
cannot trap itself to support floating point. This is supported 
by manually saving and restoring the floating-point registers, 
among other chores. Saving and restoring floating point register 
state also makes floating-point operations slower than integer 
operations. People have always been advised not to use floating-
point operations in the kernel.

Figure 5: Birth and death of interrupt-related bugs
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This fault type checked for floating-point usages in kernel code. 
There was only one report for this case. Most false positives 
occur when the computation can be simplified at compile time 
to an integer. The checker only reports a floating-point con-
stant that is not a subterm of an arithmetic operation involving 
another constant, and hence may end up in the compiled kernel 
code. Examples of false positive occurred where values like 1.6 * 
1000 * 10 were being used.

The Overall Results
The total number of reports generated using the tools described 
in the Methodology section were 4114. This number constitutes 
the results generated by both 2.6.x and 3.x correlated reports. 
There were 1074 reports belonging only to 3.x, out of which 
567 were bugs and 506 were false positives. We marked one as 
unknown. This table breaks down the numbers per each fault 
type. The second line in each cell breaks down the total into the 
numbers from 2.x and 3.x versions.

Overall Birth and Death of Faults
This graph indicates the number of each type of bug introduced 
in the 3.x versions and the number of bugs introduced and 
removed in each version.

All of the six fault types have decreased over the period of 2012 
to 2015, with the greatest decrease being for the IsNull bug type. 
The Intr bug type, which was once zero, increased with the 3.10 
version but has remained flat up to Linux 3.19. Figure 6 also sug-
gests that these bug types did not reach zero until 2015.

Type Reports Bugs Unknown
Kfree 304 138 1

180 + 124 111 + 27 1 + 0

isNull 152 122 0

108 + 44 80 + 42 

NullRef 1813 1578 24

1313 + 500 1169 + 
409

23 + 1

LockIntr 252 103 2

186 + 66 89 + 14 2 + 0

Intr 35 23 0

25 + 10 19 + 4

Krealloc 25 21 0

14 + 11 10 + 11

Lock 674 230 4

454 + 220 198 + 32 4 + 0

var 66 36 0

51 + 15 35 + 1

copy_from_user 5 5 0 

4 + 1 4 + 1

get_user 25 19 1

24 + 1 18 + 1 1 + 0

Float 549 46 0

532 + 17 46 + 0

size 214 52 0

149 + 65 27 + 25

Table 1: Number of bugs in Linux 2.6.x and 3.x versions. The first number 
in each row shows the total bugs for both 2.6.x and 3.x, and the pairs of 
numbers following are for 2.6.x first and 3.x second.

Figure 6: Overall birth and death of six fault types

Figure 7 : Faults introduced with version 3.0 and after

Figure 8: Count of bugs of NullRef type
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Faults Introduced in 3.0 or After
Figure 7 shows the overall number of all the faults. The slope 
of the faults increases with newer Linux kernel versions, with 
NullRef being the highest (see Figure 8).

Future Work
Julia Lawall, Nicolas Palix, and I plan to study these fault types 
for Linux kernel 4.x. 
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