
56    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNSUsing gRPC with Go
C H R I S “ M A C ” M C E N I R Y

In the past few articles, we’ve used Go’s net/rpc library to build a simple
file metadata server. In this article, we’re going to look at using gRPC
(https://grpc.io) to fulfill the same purpose.

gRPC has many advantages over the built-in RPC library, namely:

◆◆ Fast and efficient network communication

◆◆ Ability to stream inputs and outputs

◆◆ Automatic transport encryption

◆◆ Ability to interact with other languages

◆◆ Ready extensions to support authentication and connection handling.

gRPC is typically boiled down to the description “Protobuf messages over HTTP/2.” This is
true to a first pass, but it also encompasses the libraries, middleware extensions, and inter-
actions with other languages.

For the sake of brevity, some sections of the code examples here are left out. The full code for
this example can be found at https://github.com/cmceniry/login-grpcls.

Getting Started
Our service building story goes a little something like this:

◆◆ First, we have to get the protobuf tools and gRPC Golang libraries.

◆◆ Next, we’ll create a language-independent protobuf definition for our service.

◆◆ With the protobuf definition in hand, we’ll generate Golang hooks.

◆◆ After that, we can fill in our interactions with those hooks.

◆◆ And finally, we can compile and run.

Getting the Tools
Building gRPC applications requires a couple of tools. The first is protoc which is the
language-independent protobuf compiler. The second is the protoc-gen-go plugin which is
used to generate Golang code for the data and interface types. In addition, we’re going to need
the Golang grpc library.

The installation for protoc depends on your platform. It is packaged up for various platforms
(rpm, brew, etc.), but when in doubt you can get it from the official release location: https://​
github.com/google/protobuf/releases.

For the Golang-specific items, you can grab these with the go get command.

 go get -u google.golang.org/grpc

 go get -u github.com/golang/protobuf/protoc-gen-go

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

https://grpc.io
https://github.com/cmceniry/login-grpcls
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
google.golang.org/grpc
github.com/golang/protobuf/protoc-gen-go

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  57

COLUMNS
Using gRPC with Go

The former is a library, and it is possible to alternatively vendor
it and manage it with dep. The latter produces the protoc-gen-

go executable, so it needs to be installed in such a way that that
is available, typically with a go get into the home workspace.
However you choose to install it, you will want to make sure that
its location is in your PATH since protoc will look there for it. For
the above, you can use

 export PATH=${PATH}:~/go/bin

Now that we have a good environment, we can move on to work-
ing on the code. If you’re following the go get commands from
above, you can grab the example code and change into that direc-
tory now. This is dependent on the TLS credentials generated by
the previous login-glss, so we’ll need to get that and create the
certificates first.

 go get -u github.com/cmceniry/login-glss

 go get -u github.com/cmceniry/login-grpcls

 cd ~/go/src/github.com/cmceniry/login-glss

 go run certs/generate_certs.go

 cd ../login-grpcls

The Protobuf Definition File
Like any protobuf protocol, gRPC starts with a .proto file. On
a first pass, this is a simplified description of the messages that
will be transported over the connection. Specifically for gRPC
(well, RPCs in general, but other implementations are rare), it is
also a description of the services and their interfaces, which use
these messages.

To determine what should be in our .proto file, we need to think
about what we’re passing back and forth between the client and
the server. To mirror glss, we will want to pass from the client to
the server the Path that we’re going to be using. From the server
to the client, the resulting File information blocks for the client-
supplied path. In addition, we want an RPC to call LS. The RPC
semantics in .proto also define a service, Lister, which encapsu-
lates several RPCs and properties.

So we’ll want to define the following four items in our .proto:
Path, File, LS, and Lister, for which we’ll need a bit of boiler-
plate. We are telling protobuf which version we’ll be using, and
we need to wrap our collection of services and messages into a
package.

 syntax = “proto3”;

 package directorycontents;

Next, we need to define what will be transporting over our
connections: Path and File. We will structure these as mes-

sage items that will be used in our remote calls. message is
the generic type for data passing between the client and server,
regardless of whether it is a parameter or return value. Each

message is a combination of a message type name and specific
typed fields that are of meaning in that message.

First, we’ll tackle Path, which just has a single field in it, string
name.

 message Path {

 string name = 1;

 }

The 1 associated with name is a field numeric ID to allow for
compatibility between clients and servers of different versions.
This allows for nonbreaking changes to the API without having
to upgrade every client and server out there. You can enable
new fields by appending to the end with a new number. You can
change existing fields by adding a new field with the appropri-
ate changes for the old field. You will end up populating both
fields for a period of time, but it does allow for newer servers and
clients to speak to both current and old versions of themselves.

Next, we’ll build out our File response. It also has a string name,
as well as size, mode, and modtime:

 message File {

 string name = 1;

 int64 size = 2;

 string mode = 3;

 string modtime = 4;

 }

Now that we have our two message definitions, we can move on
to our service definition. Since we’re providing a generalized
directory lister service, we’re going to call this Lister. As men-
tioned, this will contain our collection of RPC calls (in this case,
it’s just one). Each RPC has a list of inputs and outputs (in this
case, it’s just Path and File).

 service Lister {

 rpc LS (Path) returns (stream File) {}

 }

As mentioned in the introduction, gRPC allows us to stream
inputs and outputs. In this case, we’re going to call LS with a sin-
gle input item Path, but we’re going to get back a large list of File
blocks. For efficiency and demonstrative purposes, we’re going
to stream the File responses—hence the stream modifier in the
LS return values. We could have wrapped them all up in an array,
but this way we don’t need to maintain all of that in memory as
we go through it. As we’ll see in the application code, once a file
is found, it can immediately be sent back to the client.

Generating gRPC Code
Now that we have the data types and function-call semantics, we
want to put this language-independent form into something that

github.com/cmceniry/login-glss
github.com/cmceniry/login-grpcls
github.com/cmceniry/login-glss

58    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNS
Using gRPC with Go

we can use in Golang. This is where protoc and protoc-gen-go
come into play. From the root of our project:

 protoc --go_out=plugins=grpc:. \

	 directorycontents/directorycontents.proto

This invokes protoc and tells it to use the proto-gen-go with the
gRPC plugin to process our .proto file. This will produce direc-

torycontents/directorycontents.pb.go.

The full file is a bit much to go over in this article, but its key
contributions are:

◆◆ It defines Go native structs for Path and File:

 type Path struct {

 Name string protobuf:”bytes,1,opt,name=name”

json:”name,omitempty”

 }

 ...

 type File struct {

 Name string protobuf:”bytes,1,opt,name=name”

json:”name,omitempty”

 Size int64 protobuf:”varint,2,opt,name=size”

json:”size,omitempty”

 Mode string protobuf:”bytes,3,opt,name=mode”

json:”mode,omitempty”

 Modtime string protobuf:”bytes,4,opt,name=

 modtime”

json:”modtime,omitempty”

 }

◆◆ These each have some accessor functions to them, or you can
manipulate the struct field directly.

◆◆ It defines a ListerClient interface (with accompanying con-
structor func). This interface is how we’re going to call the
gRPC functions from our code. Specifically, we’re going to be
calling the LS function on the return ListerClient interface.

 type ListerClient interface {

 LS(ctx context.Context, in *Path, opts

...grpc.CallOption) (Lister_LSClient, error)

 }

 ...

 func NewListerClient(cc *grpc.ClientConn) ListerClient {

◆◆ It defines the ListerServer interface for the server side. We’re
going to build a struct that implements this interface as our
way of responding to gRPC calls. Related to this, it defines the
Lister_LSServer interface that is used specifically for our out-
let to send responses to the LS calls.

 type ListerServer interface {

 LS(*Path, Lister_LSServer) error

 }

 ...

 type Lister_LSServer interface {

 Send(*File) error

 ...

The Server Implementation
Now it’s time to focus on our application code, starting with the
server side. gRPC has presented us with an interface that we
need to implement. As mentioned in the last section, we’re going
to implement the ListerServer.

Since this is Golang code, let’s take care of the imports. Com-
mon practice is to import the generated .proto definitions with
the alias name of pb. In addition, we’re going to import the grpc
library itself, and the grpc/reflection library to support API
information sharing.

 import (

 pb “github.com/cmceniry/login-grpcls/directorycontents”

 “google.golang.org/grpc”

 “google.golang.org/grpc/credentials”

 “google.golang.org/grpc/reflection”

Next, we’ll divide the server into two parts. The first is the
actual remote procedure to be called LS. The second is wiring up
everything.

Since ListerServer is an interface, we need to set up two parts to
it: a struct and the supporting member methods.

 type server struct{}

 func (s *server) LS(p *pb.Path, fileInfoStream

pb.Lister_LSServer) error {

You can wrap this up with much more, but for this example, our
struct is as simple as can be. The func signature for LS must
match the one from directorycontents.pb.go. Note that the
gRPC response values are not a part of the return values from
the function. Since we’re going to stream the results back, we
will be working with the fileInfoStream value as our conduit to
send the data back while inside of our function.

The remainder of the func uses filepath.Walk just as the original
gls and glss servers did. It only has modifications to handle send-
ing the data directly back on the fileInfoStream.

 err := filepath.Walk(p.Name, func(path string, info

os.FileInfo, err error) error {

github.com/cmceniry/login-grpcls/directorycontents
google.golang.org/grpc
google.golang.org/grpc/credentials
google.golang.org/grpc/reflection

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  59

COLUMNS
Using gRPC with Go

 f := &pb.File{

 Name: info.Name(),

 Size: info.Size(),

 Mode: info.Mode().String(),

 Modtime: info.ModTime().Format(“Jan _2 15:04”),

 }

 err = fileInfoStream.Send(f)

In this, we’re converting every os.FileInfo we see as we receive
it. For it to go over the gRPC connection, it has to be in the form
of the messages from the .proto. Here, we convert it to pb.File,
which allows us to send it back using fileInfoStream.Send. To
reiterate, this is happening as we see every file, so we don’t have
to construct any intermediate arrays before sending them all
back.

Finally, on the server, we need to wire the network level up to our
ListerServer. We’ll start with a standard TCP network listener.

 func main() {

 l, err := net.Listen(“tcp”, “:4270”)

Since we want to enable TLS authentication, we need to prepare
that. The first part is to load in the certificates and keys. This is
identical to the way that we loaded them in login-glss.

 certificate, err := tls.LoadX509KeyPair(

 “../login-glss/certs/server.crt”,

 “../login-glss/certs/server.key”,

)

 if err != nil {

 log.Fatalf(“could not load client key pair: %s”, err)

 }

 caCert, err := ioutil.ReadFile(“../login-glss/certs/CA.crt”)

 if err != nil {

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

With the credentials loaded, we need to format these for gRPC
to use. This involves wrapping a typical tls.Config struct with
a grpc.credentials struct. It’s the latter that is used by the
gRPC services. Much like the glss server, we need to provide
our certificate and configure the pool and flag for client auth. In
addition, we need to ensure that our expected TLS ServerName
is supplied so that the client can validate against that.

 creds := credentials.NewTLS(&tls.Config{

 ServerName: “localhost”,

 Certificates: []tls.Certificate{certificate},

 ClientCAs: caCertPool,

 ClientAuth: tls.RequireAndVerifyClientCert,

 })

Next, we create a grpc.Server struct, then register a List-
erServer with it. When creating the grpc.Server, we indicate
that we’re using the TLS configuration that we just set up.

 s := grpc.NewServer(grpc.Creds(creds))

 pb.RegisterListerServer(s, &server{})

Next, we enable information on the service via the grpc/reflec-

tion library. This is an optional step that allows generic gRPC
clients to interact with our Lister service. You can inspect the
information exposed using the gRPC command line tool found at
https://github.com/grpc/grpc/blob/master/doc/command_line​
_tool.md.

 reflection.Register(s)

Finally, we can start the grpc.Server by telling it to act on our
tcp.Listener.

 err = s.Serve(l)

If all has gone well, we’ve successfully wired our server together.
Now, on to the client side. Other than the import, it consists
strictly of a main func. Like glss, it takes a single command line
argument, which is the directory to get the listing.

The Client Implementation
The new imports for the client all involve the gRPC libraries.
The client refers to the same .proto-generated definitions as the
server, so it will need to import them as well. And, obviously, it
needs to import the grpc library.

 import (

 pb “github.com/cmceniry/login-grpcls/directorycontents”

 “google.golang.org/grpc”

 “google.golang.org/grpc/credentials”

As the first part of our main function, we need to load our TLS
values.

Again, this is identical to how it is configured in glss.

 certificate, err := tls.LoadX509KeyPair(

 “../login-glss/certs/client.crt”,

 “../login-glss/certs/client.key”,

)

 if err != nil {

 log.Fatalf(“could not load client key pair: %s”, err)

 }

 caCert, err := ioutil.ReadFile(“../login-glss/certs/CA.crt”)

 if err != nil {

https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
github.com/cmceniry/login-grpcls/directorycontents
google.golang.org/grpc
google.golang.org/grpc/credentials

60    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNS
Using gRPC with Go

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

As with the server side, we need to wrap these as grpc.creden-

tials. Note that our TLS config only requires that we supply our
certificate and provide a RootCA pool against which to validate
the server.

 creds := credentials.NewTLS(&tls.Config{

 Certificates: []tls.Certificate{certificate},

 RootCAs: caCertPool,

 })

Next, we form our network connection. Unlike on the server side,
the grpc library has its own Dialer for the client side. We need to
supply this with the endpoint to connect to and our general gRPC
configuration—in this case, our credentials configuration.

 conn, err := grpc.Dial(“localhost:4270”,

grpc.WithTransportCredentials(creds))

At this point, we’ve only established a general gRPC connection.
There is nothing specific about our particular API, so we need to
remedy that. We accomplish this by wrapping the general gRPC
connection with a client that is specific to our Lister service.

 c := pb.NewListerClient(conn)

Now we can make our RPC call. This uses the context library for
handling timeouts and cancellations. In this example, we’re just
going to use the context.Background(), so we’re skipping over
additional context library handling of timeouts and cancella-
tions. Our actual argument to LS is the pb.Path wrapped value
from the command line.

 files, err := c.LS(context.Background(), &pb.Path{Name:

os.Args[1]})

Since the return value from LS is a protobuf stream, we need
to read each value from it. We do this by looping around files.

Recv(). If the stream is complete, LS returns the io.EOF sentry
error and allows us to break out of the loop. Otherwise, unless
there’s an error, we print out of the file information.

 for {

 f, err := files.Recv()

 if err == io.EOF {

 break

 }

 if err != nil {

 log.Fatalf(“LS file failure: %s”, err)

 }

 fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size,

f.Modtime, f.Name)

 }

Running It All
Now that we have the client and server, we can run it all together.

 login-grpcls$ go run server/main.go &

 [1] 11488

 login-grpcls$ 2017/12/16 21:44:17 Starting server

 login-grpcls$ go run client/main.go .

 drwxr-xr-x 204 Dec 6 21:27 .

 drwxr-xr-x 102 Dec 16 11:43 client

 drwxr-xr-x 136 Dec 13 19:16 directorycontents

 -rw-r--r-- 267 Dec 6 21:27 links

 drwxr-xr-x 102 Dec 16 11:32 server

Conclusion
This article has provided a brief introduction to using gRPC
with Golang. In addition, this series of articles has given us two
implementations for our LS service—one using the net/rpc from
Golang, and one using gRPC. I hope that you now feel comfort-
able enough to consider using gRPC in your work and, more
importantly, to be able to weigh the pros and cons of when to use
it or net/rpc as appropriate for your situation.

A few specific similarities and differences to remember between
the two:

◆◆ Both setups involve configuring a generalized RPC server and
then registering calls to it.

◆◆ Outside of some wrapping, both interact with TLS in the same
way. The underlying implementation at the TLS layer is the
same. Given the end-to-end principle, it should not be surpris-
ing to see the same behavior from a wrapping layer.

◆◆ With net/rpc, we’re handling Golang data structures. With
grpc, we’re handling more generic data structures (which can
be referenced by multiple languages). The net/rpc way is easier
to handle in Golang but does limit the interaction to Golang.
Which one you should use depends on the users of your API
and the contract you need or want to maintain.

◆◆ While we did not demonstrate it in this example, gRPC has
several middleware wrappers. These provide higher-level API
enrichments to help enable resiliency and visibility. Since there
are interface patterns, there is the possibility that the same
exists for net/rpc, but its goal has been to be a solid simple
standard library. It’s unlikely that these will exist for net/rpc.

Happy Going!

localhost:4270

