
66    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNS

iVoyeur
OpenTracing

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

As I write this, I am just back from KubeCon and CloudNativeCon [1],
where process isolation is a business plan and all your friends work
 for Microsoft. I freely admit: it was a confusing conference for me

in many ways; in fact, trying to get it all down on paper now, I even find the
ways in which it was confusing, confusing. Rarely do I find myself so con-
fused that I must engage in the process of attempting to categorize my own
confusion, but this is definitely one of those times, so let’s see what we can
do here.

I suppose the best place to begin is with the ecosystem, which is currently undergoing so
rapid an explosion of growth that the Cloud Native Computing Foundation (CNCF) orga-
nizers literally had posters on the wall to remind everyone just what the CNCF actually
consisted of. Each CNCF project was also given its own space in the keynotes wherein it
introduced itself to the user-base, which gave one the sense that a great deal of the current
organizational structure had only recently been ironed out. There were also 20 (!) keynotes,
covering project updates on 14 CNCF core projects (many of which I was hearing about for
the first time). That’s ignoring, of course, the parallel explosion of Kubernetes-related start-
ups outside the CNCF, all fighting for mind-share, whose founders seem invariably to happen
to be former Google employees.

To be clear, I’m making that observation without my tinfoil hat on. To be sure, one might
be tempted to infer from the founders homogeneity of pedigree, some greater and possibly
diabolical plan, but if such a plan existed I feel like there would be a lot less redundancy
among them. Currently there are, for example, 10 competing container-runtimes (at least):
Docker, rkt, containerd, CRI-O, LXC, OpenVZ, systemd-nspawn, machinectl, lkvm, and Kata
containers. (That’s not counting the proprietary container runtimes used by the platform
behemoths like AWS, Google Compute Engine, and Azure.)

Speaking of Azure, remember Microsoft? The company that stole all their core products and
then spun off BSA [2] to sue everyone for copyright infringement? Remember? They were the
ones who anti-competitively buried everyone they couldn’t buy, and then sent SCO to assas-
sinate Linux with a copyright lawsuit?

All totally so five minutes ago. At KubeCon, Microsoft is that low-key, tastefully appointed
booth toward the back, where a well-spoken, highly tattooed twenty-something is speaking
to passersby earnestly and excitedly about the future of open source while handing out rad
Golang stickers. As for the other vendors on the floor, I only recognized half a dozen or so. It
was like walking the vendor expo in a parallel dimension where Disney is an evil media syn-
dicate hell-bent on owning everything, and Microsoft a benevolent open-source cheerleader
and funder of hacky experimental Google code.

And speaking of anti-competitiveness, despite the myriad overlap in functionality between
so many of the tools, I never came away with the sense that any of them were serious
competitors. I mean, it’s pretty obvious you’re in competition if you are currently one of 10

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  67

COLUMNS
iVoyeur: OpenTracing

possible mutually exclusive container-runtimes for Kubernetes,
but having been in the room with them at the runtime salon, I
can tell you, the lack of competitive tension between them was,
well, confusing.

One thing there could be no confusion about was the CNCF’s
choice of monitoring tool, emphatically Prometheus [3]. And
while, yes, we should talk about that eventually, right now my
heart pulls me in another direction: namely, the OpenTracing
API [4] project.

Have you read the Dapper [5] paper? Published in 2010, it describes
Google’s production distributed systems tracing infrastructure.
I bring it up because OpenTracing owes its lineage directly to
Dapper, so if you really want to sink your teeth in, that paper is
probably the best place to start. It’s also just a really good read.

I can hear you asking “Really, Dave?! Distributed tracing?!” I
know, I know; talk about confusing. First of all, it isn’t even mon-
itoring, it’s application performance debugging or something like
that. And second, it’s basically made of magic and impossible
for laymen to comprehend, and anyway all the tracing stuff out
there is proprietary and expensive. Also, I heard sampling is
involved, and anyone who has read anything about monitoring in
the last 10 years obviously knows that nothing but raw, unsam-
pled, nanosecond-resolution metrics can solve production issues
in the real world. MONITOR EVERYTHING HOOYA!

Hear me out for a second, though; I’ve been doing this for a while,
and one thing I’ve seen quite a bit of is abstraction layers that
make monitoring irrelevant. VPNs and tunneling protocols
breaking SNMP traps, JVMs breaking systems memory moni-
toring, VMs breaking process monitoring, containers breaking
VM monitoring, and on and on. If the Fundamental Theorem of
Software Engineering [6] states all problems can be solved with
one additional layer of abstraction, I propose this corollary: every
monitoring system can be made irrelevant with one additional
layer of abstraction.

Here’s a heads-up from yours truly, even if Kubernetes isn’t the
inevitable future of computing everyone says it is; we’re in for
a drastic increase in the use of abstraction layers in the next 10
years. This is an important reason I’m such a big fan of StatsD
and the process emitter/reporter pattern [7], wherein we move
our monitoring up the stack into the process itself and let the
processes we care about emit metrics directly to a monitoring
system rather than trying to infer “badness” from system-level
metrics. It’s difficult for anything to break your monitoring
when the programs you care about carry their monitoring
around inside them, but even the process-emitter pattern
has some abstraction to worry about—namely, microservices
infrastructure.

The services design pattern reduces the amount of work that a
given process performs. A service is the smallest useful piece of
software that can be defined simply and deployed independently
(a program that does one thing and does it well), and therefore
the metrics it emits are smaller in scope. Instead of, say, one pro-
cess emitting 10 metrics that expose the entire inner workings
of a given job, we now have one metric each from 10 different
processes.

Maybe that’s fine. If we have a problem that’s endemic to one
service, it should be easy to pinpoint, but if our problem is the
result of a particular call-path or the accumulated latency of
many calls to multiple problematic services, we have a correla-
tion problem on our hands. To solve problems with requests
moving between multiple processes, we need to know which
metric measurements relate to the same individual request.

In many ways, I think distributed tracing acts like a multi-
process-aware metrics emitter. Tracing is monitoring; it’s just
scoped a little differently. Instead of monitoring a host, or a
daemon, or an application, we are monitoring requests.

But how do we monitor a request, Dave? Requests are ephemeral.
We can’t put our hands on them.

Hogwash. Ops has been doing it for decades. Think of the
Received: header in an SMTP request. Each mail server that
has a hand in message delivery knows to unpack and add its own
Received: line to the email headers. Using those lines, we can
dissect the path an email took from sender to recipient, as well
as using the date/time stamps to derive latency metrics between
hops. Distributed tracing does the same thing to propagate ad
hoc metrics between hops by way of the HTTP headers, or what-
ever other transport is being used.

All we need is a standard that describes the structure of that
header, and a collection of language APIs that implement the
standard so services can search for, unpack, modify, and repack-
age the header regardless of the language they were written in
or the architecture they run on. SMTP’s Received: header, along
with the rest of the email headers, doesn’t work by magic; they’ve
been implemented and reimplemented in every language on
every architecture that has ever needed to send an email.

Another interesting aspect of SMTP’s Received: header is that
anything can consume it at any time. The implementation is
indifferent with respect to its consumers; rather than being pur-
posefully designed for this or that sort of introspection system, it
can use anything that knows how to unpack and parse it.

Like SMTP’s Received: header, the OpenTracing project pro-
vides a consumer-agnostic means of tracing individual requests
through large, high-volume distributed systems. It’s imple-
mented as a header that piggy-backs along as a request makes

68    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

COLUMNS
iVoyeur: OpenTracing

its way through a distributed application. OpenTracing provides
APIs in nine languages, which makes it trivial for you to unpack,
modify, and repackage the header without having to worry about
the wire-protocol details.

Unlike SMTP, distributed application requests aren’t linear by
nature. Your request to /foo/events might spawn subsequent
requests to /foo/user-events and /foo/app-events, for exam-
ple, along with one or more database requests to look up user-IDs
or authorize your request. When one request begets another that
it depends on, OpenTracing describes that relationship in terms
of parents and children. When a request begets another that it
doesn’t depend on (say a non-blocking callout to a logging ser-
vice or a cache-write), OpenTracing describes the relationship
as a “FollowsFrom” relationship. Each individual request (or
operation) is described by a span struct, while the relationships
between individual spans are maintained by a SpanContext.

Your job as a user of the API is to instrument your code to create
a span roughly at each process boundary (wherever a request is
sent or received and at exit). Within each span, you can create
tags to track metrics like wait times or log process details.

My mention of database calls in the paragraphs above was
intentional. How can we hope to meaningfully trace requests
that cross process boundaries into binary monoliths like MySQL
or Cassandra? To be sure, we can time our DB interactions from
the client-side, but everything happening inside the DB is a black
box to us.

The good news is, given that OpenTracing is an API, support for
it is slowly being proliferated into web-frameworks like Flask,
RPC-layers like gRPC, databases like Cassandra, and even web-
servers like Nginx. These tools all fully support existing Open-
Tracing SpanContexts today, automatically unpacking them and
adding new spans to provide a uniform source of insight into
critical processes that have historically required vastly different
monitoring strategies.

Confusingly (but on-message with respect to the greater Kuber-
netes community), there are nine (!) different tracer implemen-
tations that can be used to inspect OpenTracing data: Zipkin,
Jaeger, Appdash, Lightstep, Hawkular, Instana, sky-walking,
inspectIT, and stagemonitor. Some of these are language specific
and others proprietary. Jaeger, Zipkin, and Lightstep are all good
places to start for generalists.

I’m kind of in love with the OpenTracing project’s goal and
implementation, and I hope I’ve done both of those justice in this
introduction. Tracing is monitoring, and it’s not made of magic,
though it is somewhat magical. I’m really looking forward to API
support in tools like Ruby-Rails and Node, and if I can get things
arranged to be able to afford the time, they’re on the top of my list
for OSS contributions in the new year.

Take it easy!

References
[1] KubeCon + CloudNativeCon: https://events​
.linuxfoundation.org/events/kubecon-cloudnativecon-north​
-america-2018/.

[2] The Business Software Alliance: http://www.bsa.org/.

[3] Prometheus monitoring software: https://prometheus.io/.

[4] OpenTracing API: http://opentracing.io.

[5] Dapper paper: https://research.google.com/pubs/pub36356​
.html.

[6] FTSE: https://en.wikipedia.org/wiki/Fundamental​
_theorem_of_software_engineering.

[7] Process emitter/reporter pattern: http://blog.librato.com​
/posts/collector-patterns.

https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
http://www.bsa.org/
https://prometheus.io/
http://opentracing.io
https://research.google.com/pubs/pub36356.html
https://research.google.com/pubs/pub36356.html
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
http://blog.librato.com/posts/collector-patterns
http://blog.librato.com/posts/collector-patterns

