
74    S P R I N G 20 1 8  VO L . 4 3 , N O. 1 	 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

Fluent Python
Luciano Ramalho
O’Reilly Media, 2015, 474 pages
ISBN 978-1-491-9-46008

For a long time, I’ve told people I only need one book on Python:
David Beazley’s Python Essential Reference. I don’t need tutorials
any more—none of the references I’ve read does a better job than
Beazley of balancing completeness and compactness. In Fluent
Python, Ramalho has given me both a second book to keep close
and an archetype for a type of book that I would like to see
more of.

Ramalho sets out to teach not just what Python can do but how
it works. Python has a lot of history, and the feature set is
a mixed bag. It inherits from a lot of sources, and Ramalho is
familiar with them and talks about them where it adds to the
reader’s understanding.

The thing I really like about Fluent Python is that Ramalho talks
about the characteristics that make Python special, different,
and, especially, expressive and readable. He devotes a lot of space
to practical aspects and to idiom.

This isn’t a book for beginning programmers or even developers
just starting to learn Python. While there are echoes of the top-
ics you’d expect to see in a programming language book, they are
treated from the standpoint of internals and language-design
choices. In many cases, Ramalho addresses would-be language
purists on their own terms explaining why the language devel
opers made their choices and how those affect Python operation
and performance. One standout is how Python has adopted
functional programming concepts, and how the traditional con-
structs (filter, map, reduce), while they exist, are largely better
written using list comprehensions in Python. Ramalho explains
how comprehensions in Python are both more clearly expressive
and more efficiently implemented than a classic MapReduce
construct.

The author doesn’t shy away from what even he considers to be
warts on the language. Python’s syntax restricts the lambda
construct in ways that make anonymous functions nearly use-
less. He shows instead how to use regular functions, which,
while more verbose, are often clearer for the reader and devel-
oper trying to debug a set of deeply nested anonymous functions.
Developers coming from other scripting languages also face dif-
ficulties that arise when trying to extend built-in types. In this, I
agree with him that the seeming problem is, in the grand scheme,
a good thing, discouraging people from trying to do things which
lead to obscure or too-clever code.

I especially liked the sections on decorators and his coverage of
iterators and generators. I’ve often seen tutorials on the syntax
for creating and using both of these constructs, but Ramalho
discusses both the theory behind them (decorators are closures?
Oh!) and how they behave in operation. I find the under-the-hood
aspects to be useful when I’m deciding when to use constructs
like these.

At the end of each chapter, the author includes an extensive
references section and, my favorite, a “Soap-Box” section where
he talks about his preferences, biases, and impressions. These
give the reader both a sense of his background and some input
on topics that can be interpreted as opinion (or religion).

These days I mostly skim books and then set them aside. Fluent
Python is one I mean to revisit. It’s too meaty to completely
digest in one pass. Now I know where to look when I want to
learn more about Python’s more interesting possibilities.

Once Upon an Algorithm
Martin Erwig
Massachusetts Institute of Technology, 2017, 317 pages
ISBN 978-0-262-0-36603

I was both intrigued and dubious when I first picked up Erwig’s
book. I like the idea of using metaphor and, especially, storytell-
ing to make technical subjects accessible. I like to use them even
when talking to my peers since a good metaphor can often be a
shortcut to understanding. Presenting technical topics this way,
however, risks oversimplifying. Such a presentation can either
give a clear but incomplete treatment or bend metaphors so
badly in an attempt to be make them rigorous that they lose their
relevance. You can only push stories so far when applying them
to complex topics.

Erwig starts off simply enough: Hansel and Gretel mark their
path and then find their way home. They do it by following a
series of repeated steps, first marking their path with stones
and later bread and then following the markers back. This is
the kind of thing I’d expect in a popular treatment of algorithms.
The vocabulary and writing style is at odds with the simple story.
Erwig is using children’s stories, but he’s not telling one.

It turns out that Once Upon an Algorithm is aimed at neither
the purely technical nor the broad popular audience. Instead the
intended audience, one that I am part of, is outside the field of
computer science: the curious, dedicated lay reader.

The author organizes the book into two sections: “Algorithms”
and “Languages.” This works because, contrary to my expec-

www.usenix.org	   S P R I N G 20 1 8  VO L . 4 3 , N O. 1  75

BOOKS

tations, he’s not trying to explain algorithms by coding them.
He actually treats the Theory of Computation right from the
beginning, using the stories and the algorithms they illustrate
to introduce the deepest concepts of computation: abstraction,
representation, complexity, and computability.

As noted, in the first chapter, Erwig uses Hansel and Gretel to
conceptualize an algorithm as a set of steps that can be followed
to achieve some goal. In the second chapter, Sherlock Holmes is
used to illuminate modeling, data representation, and abstrac-
tion. In the third, Indiana Jones is the focus used to discuss
searching and sorting. In all three chapters, Erwig ends by talk-
ing about the deep questions that arise when trying to represent
the real world with mathematics, logic, and machines. The third
chapter closes with the best non-mathematical description I’ve
read about the meaning of P (the set of problems computable in
polynomial time), NP (problems where a given solution can be
tested in polynomial time), and why the idea that P = NP (or not)
is important for computation.

As if that’s not enough, the second half of the book covers the
theory of formal languages. Erwig uses the song “Somewhere
Over the Rainbow” and the example of musical notation to show
how ubiquitous “computation” is. In a very real sense, a musical

score is a “program” that can be converted into a result (a perfor-
mance) by a computer (the conductor and musicians). The movie
Groundhog Day serves to show how iteration and looping work
(and why terminating conditions are so important). Back to the
Future is the inspiration for a discussion of recursion, and Harry
Potter serves as the backdrop for the final chapters on the theory
of abstraction and types.

In the end, I found the discussion to be on-point and clear. Erwig
doesn’t condescend to the reader despite how easy that would be
given the thesis that common stories can illustrate the theory of
computation. He shows in this way how computation isn’t really
some strange esoteric field but is grounded in everyday ideas and
activities that anyone can relate to. The title of the book might
lead someone to expect a watered down popular “dummies”
treatment, but that would be a mistake. Erwig does indeed know
his audience and writes to them. That audience will be well
served by Once Upon an Algorithm.

