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Pocket
Elastic Ephemeral Storage for Serverless Analytics

A N A  K L I M O V I C ,  Y A W E N  W A N G ,  P A T R I C K  S T U E D I ,  A N I M E S H  T R I V E D I ,  
J O N A S  P F E F F E R L E ,  A N D  C H R I S T O S  K O Z Y R A K I S

Serverless computing platforms are increasingly being used to exploit 
massive parallelism and fine-grained billing for interactive analytics 
jobs [1–3]. A key challenge is exchanging intermediate data efficiently 

between tasks, as serverless tasks are short-lived and stateless. The systems 
commonly used to store and exchange intermediate data in serverless jobs 
today do not meet the performance, cost, and elasticity requirements of 
interactive analytics applications. We present Pocket, a fast, elastic, fully 
managed cloud storage service designed for efficient data sharing in server-
less analytics applications. To achieve high performance and cost efficiency, 
Pocket leverages multiple storage technologies, right sizes resource alloca-
tions for jobs, and automatically scales cluster resources based on utilization. 
The system achieves similar performance to Redis, an in-memory datastore, 
while offering automatic, fine-grained scaling and significantly lower cost 
for serverless analytics jobs. Pocket is open source software [4].

Serverless Analytics
Serverless platforms like AWS Lambda, Google Cloud Functions, and Azure Functions 
enable users to quickly launch thousands of lightweight tasks, as opposed to entire virtual 
machines. Cloud providers automatically scale the number of serverless tasks based on 
application demands, and users pay only for the resources their tasks consume, at sub-sec-
ond time granularity.

Though serverless computing was initially used for web microservices and IoT applications, 
its high elasticity and fine-grain billing make serverless computing appealing for more 
complex jobs, such as interactive analytics [1–3]. Analytics jobs typically consist of multiple 
stages of execution and require tasks in different stages to exchange data. We refer to the 
intermediate data shared between tasks as ephemeral (i.e., short-lived) data. We distinguish 
ephemeral data from the initial input and final output data of analytics jobs, which typically 
have longer lifetimes.

Traditional analytics frameworks (e.g., Spark) implement ephemeral data sharing with long-
running framework agents buffering data in local storage on each node. In contrast, tasks in 
serverless deployments are short-lived, and any data that a task stores locally is lost when a 
task exits. Thus, direct communication between tasks is difficult, and the natural approach 
to share data is to use remote storage.

For instance, serverless analytics frameworks use object stores (e.g., S3), databases (e.g., 
CouchDB), or distributed caches (e.g., Redis).
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However, existing storage services are not a good fit for sharing ephemeral data in server-
less applications [5]. Popular fully managed cloud storage services, such as Amazon S3, are 
designed to store data with high durability and are not optimized for low latency or high elas-
ticity. Distributed key-value stores offer good performance but burden users with managing 
the configuration and scale of a storage cluster. Selecting storage resource configurations 
for jobs is difficult yet critical for performance and cost efficiency [6]. Figure 1 shows an 
example of the performance-cost tradeoff for a serverless video analytics application using 
an ephemeral storage cluster configured with different storage technologies (DRAM, Flash, 
and disk), number of nodes, compute resources per node, and network bandwidth. Finding 
the minimum cost storage cluster configuration that provides optimal performance (e.g., the 
bold point in Figure 1) is nontrivial and gets even more difficult with multiple jobs.

Ephemeral Storage Requirements for Serverless Analytics
We study the ephemeral storage requirements of three different types of serverless analyt-
ics applications: distributed software compilation, video object recognition, and MapReduce 
sort. Figure 2 shows that ephemeral object size varies from 100s of bytes to 100s of mega-
bytes. Hence, serverless analytics applications require both low latency, which is important 
for small object accesses, and high throughput, which is important for large object accesses. 
As serverless computing platforms elastically scale the number of tasks based on load, the 
ephemeral datastore must also be able to scale up and down automatically to meet dynamic 
I/O requirements while minimizing cost. In addition to rightsizing storage cluster resources 
based on current load, the system must place data on the right type of storage technology 
for each job by taking into account the latency, throughput, and cost tradeoffs of different 
technologies.

On the other hand, fault tolerance is not a high requirement for the ephemeral datastore as 
the data is short-lived, and application frameworks typically have built-in mechanisms, such 
as lineage tracking, that can be used to regenerate ephemeral data. Figure 3 shows the object 
lifetime CDF for the three serverless analytics jobs we study. Most ephemeral data objects 
only need to be stored for less than 30 seconds.
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Figure 1: Example of the performance-cost tradeoff space for a serverless video analytics job using differ-
ent storage technologies and VM types in Amazon EC2 for the ephemeral storage cluster. Data points of 
the same storage type represent applications using different numbers of nodes, compute resources, and 
network bandwidth.



www.usenix.org	   S P R I N G 20 19   VO L .  4 4 ,  N O.  1  13

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

Ephemeral Storage as a Service
We introduce Pocket, an elastic storage service for ephemeral 
data sharing. The system provides high I/O performance while 
minimizing cost by leveraging multiple storage technologies 
with different performance-cost tradeoffs, rightsizing resource 
allocations for jobs, and automatically scaling cluster resources 
based on utilization. Pocket is a distributed /tmp for the cloud.

Pocket splits responsibilities across three separate planes: a 
control plane that determines data placement policies for jobs, 
a metadata plane that manages distributed data placement, and 
a metadata-oblivious data plane responsible for storing data. 
Pocket scales all three planes independently at fine granularity 
based on the current load. The system leverages optional hints 
about job characteristics, which can be provided by applica-
tion frameworks or users via Pocket’s API, to allocate the right 
storage technology, capacity, bandwidth, and CPU resources for 
each job. We intend for cloud operators to run Pocket as a fully 
managed storage service and charge users for only the storage 
capacity and bandwidth that their tasks consume.

Figure 4 shows Pocket’s system architecture and how a job 
interacts with Pocket. To use Pocket, a job starts by register-
ing with a logically centralized controller, which runs the 
control plane logic for Pocket. The controller decides the storage 
throughput, capacity, and type of storage technology to allocate 
for the job, leveraging any optional hints provided about the job’s 
characteristics, such as latency sensitivity and the peak number 
of concurrent tasks. The controller decides on a data placement 
policy for the job, spinning up additional storage or metadata 
nodes if necessary to meet the job’s allocation. The controller 
communicates the data-placement policy for the job to metadata 
servers, which will enforce data placement by routing client 
write requests. After registering with the controller, the job 
launches serverless tasks (i.e., lambdas), which issue GET/PUT 
requests using Pocket’s client library. 

Metadata servers route I/O requests to the appropriate stor-
age nodes based on the job’s data-placement policy determined 
upfront by the controller during job registration. By default, a 
job’s ephemeral data is deleted when the job deregisters with the 
controller. However, Pocket’s API accepts hints to manage data 
lifetime. For example, since we find that most ephemeral data is 
written and read only once, a user or application framework can 
hint to Pocket that an object should be deleted immediately after 
it is read, optimizing garbage collection.

In addition to rightsizing resource allocations across multiple 
dimensions upfront when jobs register, the controller also con-
tinuously monitors resource utilization in the cluster. Pocket’s 
controller adds/removes nodes to keep CPU, storage capacity, 
and network bandwidth utilization within a target range. To 
balance load in a cluster of changing size, Pocket leverages the 
short-lived nature of ephemeral data and serverless jobs. We find 
that ephemeral data objects in the serverless applications we 
study typically only need to be stored for less than 30 seconds. 
Hence, migrating this data to redistribute load when nodes are 
added or removed would have high overhead. Instead, Pocket 
focuses on steering data for incoming jobs across active and new 
storage nodes in the cluster, while allowing nodes that the con-
troller wants to take down to be drained as their data is garbage 
collected.

Implementation. Pocket’s implementation leverages several 
open-source systems, and Pocket is also open source [4]. The 
metadata and data planes are built on top of the Apache Crail 
distributed datastore, which is designed for low latency, high 
throughput access to data with low durability requirements 
[7, 8]. Though Crail is originally designed to leverage RDMA 
networks, the system’s modular architecture supports pluggable 
RPC libraries and storage tiers. We implement a TCP-based 
RPC library for Pocket. Our implementation of Pocket includes 
three different storage tiers. The first is a DRAM tier that effi-
ciently serves client requests over TCP connections. The second 
tier is an NVMe Flash storage tier. We implement this tier using 

Figure 2: Ephemeral data object size CDF for three different serverless 
analytics applications. Objects vary widely in size.

Figure 3: Ephemeral data objects have short lifetimes (seconds to 
minutes).



14    S P R I N G 20 19   VO L .  4 4 ,  N O.  1 	 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

ReFlex, a software system that enables fast, predictable access 
to remote Flash storage over commodity Ethernet networks [9]. 
The third tier is a generic block storage tier that allows Pocket to 
use any block device such as a hard-drive disk or SATA/SAS SSD 
with a standard kernel block device driver. We deploy Pocket 
storage and metadata servers inside of containers on AWS EC2 
machines. We use Kubernetes to orchestrate the containers and 
implement autoscaling.

Elastic and Automatic Resource Scaling with 
Pocket
We evaluate Pocket with three different serverless analytics 
applications: a video analytics application that does object recog-
nition, a MapReduce sort job, and a distributed compilation job 
that compiles the source code for cmake. The applications differ 
in their degree of parallelism, ephemeral object size distribu-
tion, and throughput requirements. We use AWS Lambda as our 
serverless computing platform.

Figure 5 shows how Pocket elastically scales cluster resources 
as multiple jobs register and deregister with the controller. In 
this experiment, we assume Pocket receives hints about the 
capacity and throughput requirements of each job. The first 
job is a 10 GB sort requesting 3 GB/s throughput. The second 
job does video object recognition, requesting 2.5 GB/s, and the 
third job is a different invocation of a 10 GB sort also requesting 
3 GB/s. Pocket quickly and automatically scales the allocated 
storage bandwidth (dotted line) to meet application throughput 
demands (solid line). Application throughput briefly surpasses 
the total allocated throughput due to bursty EC2 VM network 
bandwidth, which causes a storage node to provide greater than 
the anticipated 1 GB/s bandwidth per node for a short period 
of time. In this experiment, the controller is configured to 
maintain a minimum cluster size of two storage nodes, which 
provides 2 GB/s cumulative throughput.

Comparing Pocket to Amazon S3 and Redis
We compare Pocket to two popular storage systems used by 
serverless analytics applications today. Amazon S3 is a fully 
managed cloud storage service that offers a convenient “server-
less” storage abstraction and cost model in which users pay only 
for the capacity and bandwidth their tasks consume. S3 offers 
durable storage and is optimized for access to large objects. In 
contrast, Redis is a popular key-value store that uses DRAM 
to provide high performance. However, users need to manually 
select and manage resource configurations for a Redis stor-
age cluster. Although Amazon and Azure offer managed Redis 
clusters through their ElastiCache and Redis Cache services, 
respectively, they do not automate storage management as 
desired by serverless applications. Users must still select 
instance types with the appropriate memory and compute and 
network resources to match their application requirements.

We first compare job execution time when using Pocket versus 
S3 and ElastiCache Redis as the ephemeral datastore. Figure 
6 plots the per-task execution time breakdown for a 100 GB 
MapReduce sort job, run with 250, 500, and 1000 concurrent 
lambdas. The light-gray/orange bars show the time spent fetch-
ing original input data and writing final output data to long-term 
S3 storage, while the darker-gray/blue bars compare the time 
for ephemeral data I/O, comparing S3, Redis, and Pocket. S3 
does not provide sufficient throughput for this I/O-intensive 
job, hence in the 250 lambda experiment, each task spends over 
three times longer shuffling data when using S3 compared to 
Redis or Pocket. When the job is run with 500 or more lambdas, 
S3 does not support sufficient request rates. The system returns 
errors and advises to reduce the I/O rate. On the other hand, 
Pocket provides similar throughput to Redis. In this experiment, 
we assume Pocket receives a hint that the job is not sensitive 
to latency—hence, Pocket uses NVMe Flash instead of DRAM. 
Thus Pocket achieves similar performance to Redis while dra-
matically saving cost.

Figure 4: Pocket system architecture and the steps to register job C, issue 
a PUT from a lambda, and deregister the job. The shaded/colored bars on 
storage servers show used and allocated resources for all jobs in the cluster.

Figure 5: Pocket dynamically scales cluster resources to meet I/O require-
ments as jobs come and go.
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To compare the cost of running jobs using Pocket versus S3 
and ElastiCache Redis for ephemeral data sharing, we derive a 
fine-grain resource cost model for Pocket based on Amazon EC2 
pricing. Our minimum-size Pocket cluster, consisting of one 
controller node, one metadata server, and two NVMe Flash stor-
age nodes, costs $1.63 per hour to run on Amazon EC2. How-
ever, Pocket’s fixed cost can be amortized because the system 
is designed to support multiple concurrent jobs from one or more 
tenants. We intend for Pocket to be operated by a cloud provider 
and offered as a storage service with a pay-what-you-use cost 
model for users, similar to the cost model of serverless comput-
ing platforms. Hence, for our cost analysis, we derive fine-grain 
resource costs, such as the cost of a CPU core and the cost of 
each storage technology per GB, based on the prices of various 
EC2 instances.

Using this fine-grain resource pricing model for Pocket, we 
compare the cost of running the 100 GB sort, video analytics, 
and distributed compilation jobs with S3, ElastiCache Redis, 
and Pocket. For S3, we assume its GB-month cost is charged 
hourly. We base Redis costs on the price of entire VMs, not only 
the resources consumed, since ElastiCache Redis clusters are 
managed by individual users rather than cloud providers. Pocket 
achieves the same performance as Redis for all three jobs while 
saving 59% in cost. S3 is still orders of magnitude cheaper. 
However, S3’s cloud provider-based cost is not a fair compari-
son to the cloud user-based cost model we use for Pocket and 
Redis. Furthermore, while the distributed compilation job has 
similar performance with all three ephemeral storage systems 
because it saturates CPU resources on serverless tasks, the 
execution time is 40 to 65% higher with S3 compared to Pocket 
for the video analytics and MapReduce sort jobs. A more detailed 
analysis of Pocket’s performance and cost can be found in our 
OSDI ’18 paper [10].

Conclusion
General-purpose analytics on serverless infrastructure presents 
unique opportunities and challenges for performance, elasticity, 
and resource efficiency. We analyzed the challenges associated 
with efficient data sharing and presented Pocket, a fully man-
aged ephemeral data storage service. Pocket provides a highly 
elastic, cost-effective, and high performance storage solution 
for analytics workloads. Pocket achieves these goals using a 
strict separation of responsibilities for control, metadata, and 
data management. Although we designed Pocket specifically to 
enable efficient data sharing in serverless analytics applications, 
more generally, Pocket is a distributed temporary datastore that 
can be useful for a variety of different cloud applications.
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Figure 6: Average execution-time breakdown of each task (lambda) in a 
100 GB sort job, run with 250, 500, and 1000 concurrent tasks
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