
www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  11

SYSTEMS

Pocket
Elastic Ephemeral Storage for Serverless Analytics

A N A K L I M O V I C , Y A W E N W A N G , P A T R I C K S T U E D I , A N I M E S H T R I V E D I ,
J O N A S P F E F F E R L E , A N D C H R I S T O S K O Z Y R A K I S

Serverless computing platforms are increasingly being used to exploit
massive parallelism and fine-grained billing for interactive analytics
jobs [1–3]. A key challenge is exchanging intermediate data efficiently

between tasks, as serverless tasks are short-lived and stateless. The systems
commonly used to store and exchange intermediate data in serverless jobs
today do not meet the performance, cost, and elasticity requirements of
interactive analytics applications. We present Pocket, a fast, elastic, fully
managed cloud storage service designed for efficient data sharing in server-
less analytics applications. To achieve high performance and cost efficiency,
Pocket leverages multiple storage technologies, right sizes resource alloca-
tions for jobs, and automatically scales cluster resources based on utilization.
The system achieves similar performance to Redis, an in-memory datastore,
while offering automatic, fine-grained scaling and significantly lower cost
for serverless analytics jobs. Pocket is open source software [4].

Serverless Analytics
Serverless platforms like AWS Lambda, Google Cloud Functions, and Azure Functions
enable users to quickly launch thousands of lightweight tasks, as opposed to entire virtual
machines. Cloud providers automatically scale the number of serverless tasks based on
application demands, and users pay only for the resources their tasks consume, at sub-sec-
ond time granularity.

Though serverless computing was initially used for web microservices and IoT applications,
its high elasticity and fine-grain billing make serverless computing appealing for more
complex jobs, such as interactive analytics [1–3]. Analytics jobs typically consist of multiple
stages of execution and require tasks in different stages to exchange data. We refer to the
intermediate data shared between tasks as ephemeral (i.e., short-lived) data. We distinguish
ephemeral data from the initial input and final output data of analytics jobs, which typically
have longer lifetimes.

Traditional analytics frameworks (e.g., Spark) implement ephemeral data sharing with long-
running framework agents buffering data in local storage on each node. In contrast, tasks in
serverless deployments are short-lived, and any data that a task stores locally is lost when a
task exits. Thus, direct communication between tasks is difficult, and the natural approach
to share data is to use remote storage.

For instance, serverless analytics frameworks use object stores (e.g., S3), databases (e.g.,
CouchDB), or distributed caches (e.g., Redis).

Ana Klimovic is a PhD student
at Stanford University advised
by Professor Christos Kozyrakis.
Her research interests are
in computer systems and

computer architecture. She is particularly
interested in improving performance and
resource efficiency for cloud computing. Ana
is a Microsoft Research PhD Fellow, Stanford
Graduate Fellow, and Accel Innovation Scholar.
anakli@stanford.edu

Yawen Wang is a second-
year PhD student advised by
Professor Christos Kozyrakis
at Stanford University. She is
broadly interested in computer

systems and cloud computing. Her current
research focuses on leveraging machine
learning to manage cloud resources more
efficiently. yawenw@stanford.edu

Patrick Stuedi is a researcher
at IBM Research Zurich.
His research interests are
in distributed systems,
networking, and operating

systems. Patrick graduated with a PhD from
ETH Zurich in 2008 and spent two years
(2008–10) as a postdoc at Microsoft Research
Silicon Valley. His work explores how modern
networking and storage hardware can be
exploited in distributed systems. Patrick is the
creator of several open source projects such
as DiSNI (RDMA for Java) and DaRPC (low
latency RPC) and is co-founder of Apache Crail
(Incubating). stu@zurich.ibm.com

12    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

However, existing storage services are not a good fit for sharing ephemeral data in server-
less applications [5]. Popular fully managed cloud storage services, such as Amazon S3, are
designed to store data with high durability and are not optimized for low latency or high elas-
ticity. Distributed key-value stores offer good performance but burden users with managing
the configuration and scale of a storage cluster. Selecting storage resource configurations
for jobs is difficult yet critical for performance and cost efficiency [6]. Figure 1 shows an
example of the performance-cost tradeoff for a serverless video analytics application using
an ephemeral storage cluster configured with different storage technologies (DRAM, Flash,
and disk), number of nodes, compute resources per node, and network bandwidth. Finding
the minimum cost storage cluster configuration that provides optimal performance (e.g., the
bold point in Figure 1) is nontrivial and gets even more difficult with multiple jobs.

Ephemeral Storage Requirements for Serverless Analytics
We study the ephemeral storage requirements of three different types of serverless analyt-
ics applications: distributed software compilation, video object recognition, and MapReduce
sort. Figure 2 shows that ephemeral object size varies from 100s of bytes to 100s of mega-
bytes. Hence, serverless analytics applications require both low latency, which is important
for small object accesses, and high throughput, which is important for large object accesses.
As serverless computing platforms elastically scale the number of tasks based on load, the
ephemeral datastore must also be able to scale up and down automatically to meet dynamic
I/O requirements while minimizing cost. In addition to rightsizing storage cluster resources
based on current load, the system must place data on the right type of storage technology
for each job by taking into account the latency, throughput, and cost tradeoffs of different
technologies.

On the other hand, fault tolerance is not a high requirement for the ephemeral datastore as
the data is short-lived, and application frameworks typically have built-in mechanisms, such
as lineage tracking, that can be used to regenerate ephemeral data. Figure 3 shows the object
lifetime CDF for the three serverless analytics jobs we study. Most ephemeral data objects
only need to be stored for less than 30 seconds.

Animesh Trivedi is a researcher
at IBM Research Zurich. His
interests are in anything
and everything related to
performance, ranging from

multi-core CPUs to distributed environments.
Currently, he is investigating how modern
high-performance network and storage
devices can be leveraged in large-scale data-
processing systems such as Spark, Tensorflow,
and serverless workloads. He is one of the
founding members of the Apache Crail
(Incubating) project. atr@zurich.ibm.com

Jonas Pfefferle is a Software
Engineer at IBM Research
Zurich in the Cloud Storage and
Analytics group. His research
interests are in virtualized

distributed systems and datacenters,
specifically in state-of-the-art network and
storage technologies. Currently, he is working
on exploiting high performance I/O devices
with the focus on remote direct memory
access (RDMA) and non-volatile memory
(NVM) in data processing frameworks like
Spark. Jonas holds a master’s degree in
computer science from ETH Zurich (2014).
jpf@zurich.ibm.com

Christos Kozyrakis is a
Professor in the Departments
of Electrical Engineering and
Computer Science at Stanford
University. His research

interests include resource-efficient cloud
computing, energy-efficient computing and
memory systems for emerging workloads, and
scalable operating systems. Kozyrakis has a
PhD in computer science from the University
of California, Berkeley. He is a Fellow of the
IEEE and ACM. kozyraki@stanford.edu

Figure 1: Example of the performance-cost tradeoff space for a serverless video analytics job using differ-
ent storage technologies and VM types in Amazon EC2 for the ephemeral storage cluster. Data points of
the same storage type represent applications using different numbers of nodes, compute resources, and
network bandwidth.

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  13

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

Ephemeral Storage as a Service
We introduce Pocket, an elastic storage service for ephemeral
data sharing. The system provides high I/O performance while
minimizing cost by leveraging multiple storage technologies
with different performance-cost tradeoffs, rightsizing resource
allocations for jobs, and automatically scaling cluster resources
based on utilization. Pocket is a distributed /tmp for the cloud.

Pocket splits responsibilities across three separate planes: a
control plane that determines data placement policies for jobs,
a metadata plane that manages distributed data placement, and
a metadata-oblivious data plane responsible for storing data.
Pocket scales all three planes independently at fine granularity
based on the current load. The system leverages optional hints
about job characteristics, which can be provided by applica-
tion frameworks or users via Pocket’s API, to allocate the right
storage technology, capacity, bandwidth, and CPU resources for
each job. We intend for cloud operators to run Pocket as a fully
managed storage service and charge users for only the storage
capacity and bandwidth that their tasks consume.

Figure 4 shows Pocket’s system architecture and how a job
interacts with Pocket. To use Pocket, a job starts by register-
ing with a logically centralized controller, which runs the
control plane logic for Pocket. The controller decides the storage
throughput, capacity, and type of storage technology to allocate
for the job, leveraging any optional hints provided about the job’s
characteristics, such as latency sensitivity and the peak number
of concurrent tasks. The controller decides on a data placement
policy for the job, spinning up additional storage or metadata
nodes if necessary to meet the job’s allocation. The controller
communicates the data-placement policy for the job to metadata
servers, which will enforce data placement by routing client
write requests. After registering with the controller, the job
launches serverless tasks (i.e., lambdas), which issue GET/PUT
requests using Pocket’s client library.

Metadata servers route I/O requests to the appropriate stor-
age nodes based on the job’s data-placement policy determined
upfront by the controller during job registration. By default, a
job’s ephemeral data is deleted when the job deregisters with the
controller. However, Pocket’s API accepts hints to manage data
lifetime. For example, since we find that most ephemeral data is
written and read only once, a user or application framework can
hint to Pocket that an object should be deleted immediately after
it is read, optimizing garbage collection.

In addition to rightsizing resource allocations across multiple
dimensions upfront when jobs register, the controller also con-
tinuously monitors resource utilization in the cluster. Pocket’s
controller adds/removes nodes to keep CPU, storage capacity,
and network bandwidth utilization within a target range. To
balance load in a cluster of changing size, Pocket leverages the
short-lived nature of ephemeral data and serverless jobs. We find
that ephemeral data objects in the serverless applications we
study typically only need to be stored for less than 30 seconds.
Hence, migrating this data to redistribute load when nodes are
added or removed would have high overhead. Instead, Pocket
focuses on steering data for incoming jobs across active and new
storage nodes in the cluster, while allowing nodes that the con-
troller wants to take down to be drained as their data is garbage
collected.

Implementation. Pocket’s implementation leverages several
open-source systems, and Pocket is also open source [4]. The
metadata and data planes are built on top of the Apache Crail
distributed datastore, which is designed for low latency, high
throughput access to data with low durability requirements
[7, 8]. Though Crail is originally designed to leverage RDMA
networks, the system’s modular architecture supports pluggable
RPC libraries and storage tiers. We implement a TCP-based
RPC library for Pocket. Our implementation of Pocket includes
three different storage tiers. The first is a DRAM tier that effi-
ciently serves client requests over TCP connections. The second
tier is an NVMe Flash storage tier. We implement this tier using

Figure 2: Ephemeral data object size CDF for three different serverless
analytics applications. Objects vary widely in size.

Figure 3: Ephemeral data objects have short lifetimes (seconds to
minutes).

14    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

ReFlex, a software system that enables fast, predictable access
to remote Flash storage over commodity Ethernet networks [9].
The third tier is a generic block storage tier that allows Pocket to
use any block device such as a hard-drive disk or SATA/SAS SSD
with a standard kernel block device driver. We deploy Pocket
storage and metadata servers inside of containers on AWS EC2
machines. We use Kubernetes to orchestrate the containers and
implement autoscaling.

Elastic and Automatic Resource Scaling with
Pocket
We evaluate Pocket with three different serverless analytics
applications: a video analytics application that does object recog-
nition, a MapReduce sort job, and a distributed compilation job
that compiles the source code for cmake. The applications differ
in their degree of parallelism, ephemeral object size distribu-
tion, and throughput requirements. We use AWS Lambda as our
serverless computing platform.

Figure 5 shows how Pocket elastically scales cluster resources
as multiple jobs register and deregister with the controller. In
this experiment, we assume Pocket receives hints about the
capacity and throughput requirements of each job. The first
job is a 10 GB sort requesting 3 GB/s throughput. The second
job does video object recognition, requesting 2.5 GB/s, and the
third job is a different invocation of a 10 GB sort also requesting
3 GB/s. Pocket quickly and automatically scales the allocated
storage bandwidth (dotted line) to meet application throughput
demands (solid line). Application throughput briefly surpasses
the total allocated throughput due to bursty EC2 VM network
bandwidth, which causes a storage node to provide greater than
the anticipated 1 GB/s bandwidth per node for a short period
of time. In this experiment, the controller is configured to
maintain a minimum cluster size of two storage nodes, which
provides 2 GB/s cumulative throughput.

Comparing Pocket to Amazon S3 and Redis
We compare Pocket to two popular storage systems used by
serverless analytics applications today. Amazon S3 is a fully
managed cloud storage service that offers a convenient “server-
less” storage abstraction and cost model in which users pay only
for the capacity and bandwidth their tasks consume. S3 offers
durable storage and is optimized for access to large objects. In
contrast, Redis is a popular key-value store that uses DRAM
to provide high performance. However, users need to manually
select and manage resource configurations for a Redis stor-
age cluster. Although Amazon and Azure offer managed Redis
clusters through their ElastiCache and Redis Cache services,
respectively, they do not automate storage management as
desired by serverless applications. Users must still select
instance types with the appropriate memory and compute and
network resources to match their application requirements.

We first compare job execution time when using Pocket versus
S3 and ElastiCache Redis as the ephemeral datastore. Figure
6 plots the per-task execution time breakdown for a 100 GB
MapReduce sort job, run with 250, 500, and 1000 concurrent
lambdas. The light-gray/orange bars show the time spent fetch-
ing original input data and writing final output data to long-term
S3 storage, while the darker-gray/blue bars compare the time
for ephemeral data I/O, comparing S3, Redis, and Pocket. S3
does not provide sufficient throughput for this I/O-intensive
job, hence in the 250 lambda experiment, each task spends over
three times longer shuffling data when using S3 compared to
Redis or Pocket. When the job is run with 500 or more lambdas,
S3 does not support sufficient request rates. The system returns
errors and advises to reduce the I/O rate. On the other hand,
Pocket provides similar throughput to Redis. In this experiment,
we assume Pocket receives a hint that the job is not sensitive
to latency—hence, Pocket uses NVMe Flash instead of DRAM.
Thus Pocket achieves similar performance to Redis while dra-
matically saving cost.

Figure 4: Pocket system architecture and the steps to register job C, issue
a PUT from a lambda, and deregister the job. The shaded/colored bars on
storage servers show used and allocated resources for all jobs in the cluster.

Figure 5: Pocket dynamically scales cluster resources to meet I/O require-
ments as jobs come and go.

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  15

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

To compare the cost of running jobs using Pocket versus S3
and ElastiCache Redis for ephemeral data sharing, we derive a
fine-grain resource cost model for Pocket based on Amazon EC2
pricing. Our minimum-size Pocket cluster, consisting of one
controller node, one metadata server, and two NVMe Flash stor-
age nodes, costs $1.63 per hour to run on Amazon EC2. How-
ever, Pocket’s fixed cost can be amortized because the system
is designed to support multiple concurrent jobs from one or more
tenants. We intend for Pocket to be operated by a cloud provider
and offered as a storage service with a pay-what-you-use cost
model for users, similar to the cost model of serverless comput-
ing platforms. Hence, for our cost analysis, we derive fine-grain
resource costs, such as the cost of a CPU core and the cost of
each storage technology per GB, based on the prices of various
EC2 instances.

Using this fine-grain resource pricing model for Pocket, we
compare the cost of running the 100 GB sort, video analytics,
and distributed compilation jobs with S3, ElastiCache Redis,
and Pocket. For S3, we assume its GB-month cost is charged
hourly. We base Redis costs on the price of entire VMs, not only
the resources consumed, since ElastiCache Redis clusters are
managed by individual users rather than cloud providers. Pocket
achieves the same performance as Redis for all three jobs while
saving 59% in cost. S3 is still orders of magnitude cheaper.
However, S3’s cloud provider-based cost is not a fair compari-
son to the cloud user-based cost model we use for Pocket and
Redis. Furthermore, while the distributed compilation job has
similar performance with all three ephemeral storage systems
because it saturates CPU resources on serverless tasks, the
execution time is 40 to 65% higher with S3 compared to Pocket
for the video analytics and MapReduce sort jobs. A more detailed
analysis of Pocket’s performance and cost can be found in our
OSDI ’18 paper [10].

Conclusion
General-purpose analytics on serverless infrastructure presents
unique opportunities and challenges for performance, elasticity,
and resource efficiency. We analyzed the challenges associated
with efficient data sharing and presented Pocket, a fully man-
aged ephemeral data storage service. Pocket provides a highly
elastic, cost-effective, and high performance storage solution
for analytics workloads. Pocket achieves these goals using a
strict separation of responsibilities for control, metadata, and
data management. Although we designed Pocket specifically to
enable efficient data sharing in serverless analytics applications,
more generally, Pocket is a distributed temporary datastore that
can be useful for a variety of different cloud applications.

Acknowledgments
We thank our OSDI shepherd, Hakim Weatherspoon, and the
anonymous reviewers for their helpful feedback. We thank
Qian Li, Francisco Romero, Sadjad Fouladi, and Nick Murphy
for insightful technical discussions. This work is supported by
the Stanford Platform Lab, Samsung, and Huawei. Ana Klimovic
is supported by a Stanford Graduate Fellowship. Yawen Wang
is supported by a Stanford Electrical Engineering Department
Fellowship.

Figure 6: Average execution-time breakdown of each task (lambda) in a
100 GB sort job, run with 250, 500, and 1000 concurrent tasks

16    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

SYSTEMS
Pocket: Elastic Ephemeral Storage for Serverless Analytics

References
[1] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubrama-
niam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K.
Winstein, “Encoding, Fast and Slow: Low-Latency Video Pro-
cessing Using Thousands of Tiny Threads,” in Proceedings of
the 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17), pp. 363–376: https://www.usenix
.org/system/files/conference/nsdi17/nsdi17-fouladi.pdf.

[2] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht,
“Occupy the Cloud: Distributed Computing for the 99%,” in
Proceedings of the Symposium on Cloud Computing (SOCC ’17),
pp. 445–451.

[3] Databricks Serverless, “Next Generation Resource Manage-
ment for Apache Spark”: https://databricks.com/blog/2017
/06/07/databricks-serverless-next-generation-resource
-management-for-apache-spark.html, 2017.

[4] Pocket: https://github.com/stanford-mast/pocket, 2018.

[5] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle,
and A. Trivedi, “Understanding Ephemeral Storage for Server-
less Analytics,” in Proceedings of the USENIX Annual Technical
Conference (ATC ’18), pp. 789–794: https://www.usenix.org
/system/files/conference/atc18/atc18-klimovic-serverless.pdf.

[6] A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta: Heteroge-
neous Cloud Storage Configuration for Data Analytics,” in Pro-
ceedings of the USENIX Annual Technical Conference (ATC ’18),
pp. 759–773: https://www.usenix.org/system/files/conference
/atc18/atc18-klimovic-selecta.pdf.

[7] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N.
Ioannou, and I. Koltsidas, “Crail: A High-Performance I/O
Architecture for Distributed Data Processing,” IEEE Data
Engineering Bulletin 40, pp. 38–49.

[8] Apache Crail (Incubating): https://crail.incubator.apache
.org, 2018.

[9] A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote
Flash ≈ Local Flash,” in Proceedings of the 22nd International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’17), pp. 345–359.

[10] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Serverless
Analytics,” in Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18),
pp. 427–444: https://www.usenix.org/system/files/osdi18
-klimovic.pdf.

