GOLUMNS

Practical Perl Tools
So Long and Thanks for All the Fish

DAVID N. BLANK-EDELMAN

David has over 30 years of

experience in the systems

administration/DevOps/SRE
field in large multiplatform

i environments. He is the
curator/editor of the O'Reilly Book Seeking
SRE: Conversations on Running Production
Systems at Scale and author of the O'Reilly
Otter Book (Automating Systems Administration
with Perl). He is a co-founder of the wildly
popular SREcon conferences hosted globally by
USENIX. David currently works for Microsoft
as a senior cloud advocate focusing on site
reliability engineering.

42 :login: SPRING 2019

VOL. 44, NO. 1

fter 12 continuous years of writing this column with only one missed
month, it is time for this column to shuffle off this mortal coil and
leave room in ;login: for a different column.

I am so, so grateful to:

¢ You, the reader. It's been a thrill to be able to talk with you each issue about something
interesting in the land of Perl.

¢ USENIX, who gave me the challenge to stretch myself each issue to find that interesting
topic.

¢ The countless authors and contributors in the Perl world that I've had the pleasure of
writing about.

You may (or may not) be wondering: just how many Practical Perl Tools columns have been
published in that 12-year span? I know I was. I thought it might be fitting to show you one last
Perl program that I wrote to help me find all of the previous columns and also answer this
question. Ready for one last dance?

For this code, we return to an old friend that has appeared in this column before,
WWW::Mechanize. This module makes it easy to fetch web pages and parse them for specific
links. The first part of the code sets up where we are going to pull the information from and
grabs the first page.

use strict;
use WWW::Mechanize;

use open gw(:std :utf8); # quash warnings due to UTF-8 chars

where are the issues found?

my $start = 'https://www.usenix.org/publications/login’;

for finding my articles

my $name = 'blank-edelmanlpractical-perl-tools’;

my $mech = WWW::Mechanize->new;

fetch the issues page
$mech->get($start);

That page is both a listing of all of the issues and the root for all of the subsequent pages we
will want to fetch. In the code we're going to see, we are careful to only retrieve URLs that
start with this prefix.

Now let’s find all of the issues we will want to check for an article:

WwWWw.usenix.org

COLUMNS

Practical Perl Tools: So Long and Thanks for All the Fish

my @issues = $mech->find_all_Llinks(

tag => "a",

url_abs_regex =>
qr/$start\/La-z-1+20(0L6-9111L0-81)/,
text_regex => qr/.+/,

);

The find_all_Llinks() method is doing all of the heavy lifting, but
we should explain the arguments it is receiving. The “tag” argu-
ment is pretty easy to guess: we're only looking for the anchor
HTML tag, things of the form text.
The next two arguments are a little more obtuse.

The first, url_abs_regex, is aregular expression meant to only
find certain links on the page. It serves two purposes in this
case: only select links that begin with $start, and also limit
which years will be selected. I happen to know I began writing
the column in 20086, so it only finds 2006-2009 and 2010-2018.

The text_regex deals with a quirk in the source of the issues
page. Each issue actually has two anchor tabs, one for the picture
of the cover, the second is the link for the text name (e.g., “Sum-
mer”). This regex makes sure we only grab one of the two, the
one that has any characters in the text portion of the URL. This
means we choose:

Spring
instead of:

<img
src="https://www.usenix.org/sites/default/files/styles/login
_thumbnail/public/login/covers/1801_login_cover_170x221
png?itok=VBVKImFO” width="100px” height="130" alt="" />

The end result of the callto find _all_Llinks is alist of
WWW::Mechanize::Link objects that will point to all of the possible
issues we’ll want to scan for this column.

Now let’s iterate over all of the issue links we found:

my $issue_count = 0;

foreach my $issue (@issues){
$mech->get($issue->url_absO);

my $article_link = $mech->find_link(
url_regex=>qr/$name/,
);

if (defined $article_link){
print $article_link->text() .
ANt
$article_link->url_abs(),"\n\n";

$issue_count++;

}

print "$issue_count issues in total!\n";

WWWw.usenix.org

For each issue link we have, we fetch the contents of that link,
then look for links in that page which could be my column. If we
find one, we print the name of the column and its URL.

It would be pretty simple to grab the actual PDF of the column at
this point if we wanted to create an archive of the content. This
would consist of another get(), find_Llink() to locate the PDF on
the page, get() that URL, and finally a call to save_content()

to write it to a file. Permit me one last “exercise for the reader” if
you will.

The output of our code looks like this:

Practical Perl Tools: Top of the Charts:
https://www.usenix.org/publications/login/spring2018

/blank-edelman

Practical Perl Tools: It's a Relationship Thing:
https://www.usenix.org/publications/login/summer2018

/blank-edelman

Practical Perl Tools: GraphQL Is Pretty Good Anyway:
https://www.usenix.org/publications/login/fall-2018
-vol-43-no-2/blank-edelman

Practical Perl Tools: Off the Charts:
https://www.usenix.org/publications/login/spring2017

/practical-perl-tools-charts

Practical Perl Tools: Perl on a Plane:
https://www.usenix.org/publications/login/summer2017
/blank-edelman

66 issues in total!

And there’s the answer. Thank you, dear reader, for being with
me for 66 columns.

Take care.

;login: SPRING 2019 VOL. 44, NO.1 43

