
44    S P R I N G 20 19   VO L .  4 4 ,  N O.  1 	 www.usenix.org

COLUMNS

Executing Other Programs in Go
C H R I S  ( M A C )  M C E N I R Y

If you have come to the Go world from bash or another shell language, one 
of the most critical tasks that you will be trying to replicate is calling out 
to other programs. Go has mechanisms in the standard library to accom-

plish this—the os/exec library.

When running an external program, you have to decide how to interact with this. These 
interactions tend to fall into several patterns:

1.	 Fire and Wait: Run another program, send its output to the terminal, and wait for it to finish.

2.	 Fire and Forget: Run another program, send its output to the terminal, and do not wait for it.

3.	 Pipe In: Feed data into the program.

4.	 Check Out: Check the output or exit code of the program.

5.	 Replace: Perform some setup, and then replace the current process with the other program.

6.	 Interact: Start another program and interact back and forth with it.

Each of these patterns is a combination of:

1.	 What to do with input for the other program?

2.	 What to do with the other program’s output?

3.	 Do we need to block until the other program is done or not?

In this article, we’re going to examine each of these interactions in turn with a focus on 
which patterns they use.

Note: These examples are very UNIX and bash focused. As such, the examples will only work 
on limited environments.

The code for these examples can be found at https://github.com/cmceniry/login/ in the 
exec directory. Each example is its own appropriately named subdirectory so that it can be 
executed directly with go run $EXAMPLE.

Fire and Wait
This is the simplest interaction with another process. In this pattern, the input and output 
are of little concern, but we do want to wait until the other program is complete. Its profile 
looks like:

1.	 Input: supply none (attaches automatically to /dev/null or equivalent)

2.	 Output: provide back to the attached terminal

3.	 Block till completion: yes

We begin much like any other Go program—the package declaration, imports, and our main 
func: the main library to include here is the standard library’s os and os/exec components.

Chris (Mac) McEniry is a 
practicing sysadmin responsible 
for running a large e-commerce 
and gaming service. He’s been 
working and developing in 

an operational capacity for 15 years. In his 
free time, he builds tools and thinks about 
efficiency. cmceniry@mit.edu



www.usenix.org	   S P R I N G 20 19   VO L .  4 4 ,  N O.  1  45

COLUMNS
Executing Other Programs in Go

firenwait.go: setup.

    package main

    import (

        “os”

        “os/exec”

    )

    func main() {

To begin with the meat of our program, we first invoke the  
exec.Command func. This accepts the invocation of the other 
program as arguments. Go performs standard PATH resolution to 
find the program by name, but in our case, we’re going to invoke 
the /bin/ls command. In addition, we pass exec.Command any 
arguments. For this example, we just want to list out the current 
directory’s outputs.

As a result, we receive back an *exec.Cmd struct which will 
handle all interactions with our called program.

firenwait.go: command.

        c := exec.Command(“/bin/ls”, “.”)

Since we want to display the output of the ls command, we need 
to connect the output of that command with our display. This is 
done by associating the Stdout member of our *exec.Cmd with 
the main Stdout from our current program. The main Stdout is 
available from the main os package.

Note: Stdout, and its accompanying Stderr for error output, is 
an io.Writer interface. Input is covered under Stdin, which is an 
io.Reader interface. If they are not specified by setting Stdout or 
Stdin, they default to nil and will be connected to the /dev 

/null equivalent. We’ll explore using other items that satisfy the 
Reader/Writer interfaces later.

firenwait.go: connectoutput.

        c.Stdout = os.Stdout

With all of the initialization complete, we can Run our pro-
gram. Run will block until the child process completes or fails. 
It returns an error if it is unable to run the other program or if 
the other program fails during execution (gets a non-zero exit 
code). For the example case, we panic for that, or exit normally 
otherwise.

firenwait.go: run.

        err := c.Run()

        if err != nil {

            panic(err)

        }

    }

We can now run our example with go run and see the current 
directory. In this example, we are using $GOPATH/src/github.

com/cmceniry/login as our starting point.

    $ go run exec/firenwait/firenwait.go

    README.md   exec        gofs        hardcode    useldap

Fire and Forget
The second example handles the case where we run a program but 
do not check for what happens to it. This follows the patterns for:

1.	 Input: supply none

2.	 Output: provide back to terminal

3.	 Block till completion: no

This is very similar to the first example. It includes the same 
libraries—plus time for the example. It creates the command the 
same way, and it associates the output in the same way. There 
are only two primary differences.

The first is the specific start of the command -- c.Start() 
instead of c.Run(). Start will begin the other process but will 
return as soon as it begins instead of waiting for it to complete.  
If there’s an issue starting the other process—e.g., command is 
not found—then it will show up as the returned error to Start.

firenforget.go: start.

        err := c.Start()

The second is to reap the child when it exits. Although we’re not 
doing anything with the output, we still need to handle the child 
when it exits. Otherwise, the child can hang around as a zombie 
process. It’s not complete fire and forget—only mostly fire and 
forget.

firenforget.go: wait.

        go func() {

            err := c.Wait()

            if err != nil {

                panic(err)

            }

        }()

The last part is that we hold our program from finishing up for a 
couple of seconds. We want to make sure that our program exits 
after the other program exits. In most cases, there would be some 
other work that would be going on, so we simulate that with just 
a simple Sleep:

firenforget.go: work.

        // Do some other work...

        time.Sleep(2 * time.Second)



46    S P R I N G 20 19   VO L .  4 4 ,  N O.  1 	 www.usenix.org

COLUMNS
Executing Other Programs in Go

Pipe In
Our next example shows how to provide input to a program. 
As mentioned in the first example, Stdin is an io.Reader, so 
anything that satisfies that interface will work. In this example, 
we’ll use the patterns from our first example—only “Input” is 
different:

1.	 Input: supplied

2.	 Output: provide back to terminal

3.	 Block till completion: yes

The goal of this example is to have the calculating program dc 
perform some arithmetic for us. We’ll be using a strings.Reader 
to provide dc with data. With the following input, dc will calcu-
late the sum of 1 plus 2, print the output, and quit.

    1

    2

    +

    p

    q

The initialization is the same as previous programs, except for 
the addition of the strings package from the standard library.

As with the previous examples, we begin with getting an  
exec.Cmd struct. In this case, we invoke the dc command and 
supply no arguments.

pipein.go: command.

        c := exec.Command(“/usr/bin/dc”)

Next, we connect the inputs and outputs. strings.Reader imple-
ments the io.Reader interface, so we can use it to send a static 
string in as our input. We connect this with the Stdin of our 
command. As before, we connect Stdout of our command with 
the existing terminal Stdout.

pipein.go: io.

        c.Stdin = strings.NewReader(“1\n2\n+\np\nq\n”)

        c.Stdout = os.Stdout

And now we can run dc.

pipein.go: run.

        err := c.Run()

If all works out, we will see the sum as the result:

    $ go run exec/pipein/pipein.go

    3

Check Out
Normally, just running a command and expecting it to behave 
is wishful thinking. We can get some information if there’s an 
issue starting the command, or with Run we can see whether the 
program exited with a non-zero exit code. However, sometimes 
it’s important to know what that return code is or what the pro-
gram returns as output.

In those cases, we need to check the ProcessState after our 
command runs. ProcessState is a very generic struct which 
mainly indicates whether the process is still running or not. For 
detailed information, it has a Sys() member method that returns 
an empty interface whose concrete implementation is very much 
operating system dependent. On UNIX, Sys() returns a syscall 

.WaitStatus that includes the detailed exit code that we’re 
looking for.

In this example, we’re going to run a command and check its exit 
code. It follows the pattern of:

1.	 Input: supply none

2.	 Output: discard except for the exit code

3.	 Block till completion: yes

The initialization is the same except that, in this case, we must 
include the syscall package of the standard library. We are even 
calling the command in the same way.

checkout.go: command.

        c := exec.Command(“/usr/bin/false”)

        err := c.Run()

Since we expect the failure to return an error, we must handle 
it. We check to see whether it is of the exec.ExitError type and 
handle that separately. Otherwise, we will panic on any other 
error, since that indicates something really unexpected hap-
pened, or exit normally on no error.

checkout.go: result.

        switch err.(type) {

        case *exec.ExitError:

            ws := c.ProcessState.Sys().(syscall.WaitStatus)

            fmt.Printf(“Exited %d\n”, ws.ExitStatus())

        case nil:

            fmt.Printf(“Exited normally\n”)

        default:

            panic(err)

        }

If all goes well, we can see the expected result of an exit code of 1:

    $ go run exec/checkout/checkout.go

    Exited 1



www.usenix.org	   S P R I N G 20 19   VO L .  4 4 ,  N O.  1  47

COLUMNS
Executing Other Programs in Go

You can see alternate behaviors by changing the command to 
execute. Try:

◆◆ /usr/bin/true

◆◆ /usr/bin/notfound

Replace
In the Replace interaction, we are largely using the Go program 
as a wrapper. The wrapper will perform some setup and then 
transfer control over to another program. Some examples of use-
ful setups:

◆◆ Set environment variables—configuration parameters

◆◆ Set up file-system structures—working directory, lock files, etc.

◆◆ Check other dependencies—backend database or service—be-
fore starting up the application process

This follows the patterns:

1.	 Input: handed off

2.	 Output: handed off

3.	 Block till completion: no, handed off

Since process replacement is extremely operating system depen-
dent, we’re going to use the syscall package in the standard 
library—same as the previous example. This makes the program 
setup match the last exercise.

From there, we need to make any modifications as part of our 
wrapping action. In this example, we’ll add a single environment 
variable.

replace.go: env.

        env := append(

            os.Environ(),

            “USENIXLOGIN=true”,

        )

From there, instead of using the higher level os/exec package, 
we use the syscall.Exec function directly. For this example, we 
want to spawn a shell with the manipulated environment.

replace.go: handoff.

        syscall.Exec(“/bin/bash”, []string{}, env)

For wrappers as simple as environment manipulations, that is 
the extent of it. We can now use the updated environment.

    $ echo $USENIXLOGIN

    $ go run exec/replace/replace.go

    bash$ echo $USENIXLOGIN

    true

Interact
The last example that we’re going to take a look at involves inter-
acting with the other program. This can be used if you need to 
programmatically interact with other command-line or termi-
nal-based tools. Typically, you will be looking for data or errors 
and responding back into them.

Since this is before the process has exited, we’re going to focus 
our time on manipulating the input and output of the process.

Specifically, in this example, we’re going to:

◆◆ start with the letter “a”,

◆◆ feed it into cat,

◆◆ read the output cat back out,

◆◆ append “b” to the output,

◆◆ feed that back into the same cat process, and

◆◆ repeat for “c”, “d”, and “e”.

Each time through, we’re going to build on the letters that have 
already been supplied, unless we’re finally presented with the 
full string “abcde”.

So far, we’ve been working with the io.Reader and io.Writer 
interfaces of Stdin and Stdout. To be able to provide the continu-
ous feeds, Go provides a way to get pipes for each of these: (*Cmd) 
StdinPipe() and (*Cmd) StdoutPipe(). We’re going to use these 
in this example to aid us.

For the start of our main section, we need to initialize our data 
and our command.

interact.go: vars.

        feed := []string{“a”, “b”, “c”, “d”, “e”, “”}

        c := exec.Command(“/bin/cat”)

After that, we grab the pipes for Stdin and Stdout.

interact.go: stdin,stdout.

        cin, err := c.StdinPipe()

        cout, err := c.StdoutPipe()

We’re going to rely on the bufio package of the standard library 
to more easily support the line and string manipulation that 
works well with cat. To do so, we need to wrap our io.Reader and 
io.Writer with bufio.Scanner and bufio.Writer, respectively.

interact.go: buffer.

        bin := bufio.NewWriter(cin)

        bout := bufio.NewScanner(cout)

With all of the prep work out of the way, we can get the ball roll-
ing with cat. To do so, we need to prime the input with a newline 
and start cat.



48    S P R I N G 20 19   VO L .  4 4 ,  N O.  1 	 www.usenix.org

COLUMNS
Executing Other Programs in Go

interact.go: prime.

        bin.WriteString(“\n”)

        bin.Flush()

        c.Start()

Next, we’re going to iterate through our data. For each piece, we 
want to gather the cat output and then write back the output 
with our addition.

interact.go: addnprint.

        for _, addition := range feed {

            if !bout.Scan() {

                panic(“ended early”)

            }

            if bout.Text() != “” {

                fmt.Printf(“%s\n”, bout.Text())

            }

            bin.WriteString(bout.Text() + addition + “\n”)

            bin.Flush()

        }

At the end, we want to clean up. Much like with the Fire and For-
get example, we still need to wait for the other process to finish. 
However, since cat will not finish until its input is finished, we 
must first close that.

interact.go: cleanup.

        cin.Close()

        c.Wait()

Now, we can run our program much like the others, and we 
should see our five-letter output:

    $ go run exec/interact/interact.go

    a

    ab

    abc

    abcd

    abcde

Conclusion
One of the most basic functions of any script is to build on other 
programs. It is crucial to be able to both trigger other programs 
with various inputs and to respond to the results of those other 
programs. Although the invocation of these other programs has a 
few more steps in Go versus traditional scripting languages, Go 
allows you to more readily tap into a large corpus of software for 
processing inputs and outputs.

I hope this article has given you confidence to use Go when it is 
appropriate to handle these process interactions, and some ideas 
for how to readily do so.

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Two Sigma • VMware

USENIX Partners
BestVPN.com • Cisco Meraki • Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ




