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If you take any sort of guided tour of Paris, you are likely to hear refer-
ences to “The Great Flood of 1910,” wherein the Seine rose to a depth of 
eight meters above its normal height, buried the city in water, and shut 

down critical infrastructure like freshwater and heating-oil delivery for a 
month.

Rivers have backed up and flooded cities since time out of mind, but this flood makes for 
particularly great data-engineering metaphor fodder because the water never managed to 
overflow the tops of the quay walls lining the river itself. In other words, primary queue car-
dinality was within threshold.

Instead, the city was flooded from below by way of the recently enlarged and fortified sewer 
system that ran from every direction into the Seine. I suppose you could say that the hotpath 
bypassed the queue. Ironically, the infrastructure most prized by city planners, like train sta-
tions and hospitals, which had the best-engineered sewer access, were hit the worst. Their 
basement grates spewed water like the geysers of Yellowstone, rapidly flooding and spilling 
into the streets until the streets themselves became waterways.

In some areas of the city, firefighters used boats to rescue stranded people from second-story 
windows, as engineers constructed a city-wide series of wooden catwalks to enable residents 
to reach shelters and sources of food and fresh water.

Here’s the thing: if you’ve never read anything about the history of Paris, the city was sup-
posedly an untenable mess, until Napoleon III put it into the hands of a gentleman named 
Georges-Eugène Haussmann. “Baron Haussmann” would spend 20 years becoming the most 
unpopular guy in France as he demolished the medieval firetrap the city had been in order to 
singlehandedly re-architect it into the city we more or less recognize as Paris today.

The “grand rearchitecture” of the city included a herculean refactoring of the dense labyrinth 
of pipes, sewers, and tunnels beneath the streets into the most modern and robust sewer sys-
tem in the world. The system provided the city’s freshwater supply, steam heat, and oil pipes 
to power the streetlights, as it simultaneously swept away rainwater and waste. The sewers 
were such a source of pride that bureaucrats of the time used their own pet euphemisms to 
make them sound less like sewers and more like re-election.

Haussmann himself compared them to bodily organs. “The underground galleries,” he said, 
“are an organ of the great city, functioning like an organ of the human body, without seeing 
the light of day; clean and fresh water, light and heat circulate like the various fluids whose 
movement and maintenance serves the life of the body; the secretions are taken away mys-
teriously and don’t disturb the good functioning of the city and without spoiling its beautiful 
exterior.”

It’s fortunate Haussmann died before his miraculous “underground galleries” buried the 
city chest-deep in human waste and river water. Had he been there to see it, I’m sure it would 
have been the facepalm heard around the world. 
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I suspect that anyone who has seriously worked with data 
pipelines or distributed systems can probably relate; an over-
abundance of input can have extreme and unforeseen effects  
on asynchronous processing systems.

The Flow, Part Three
This is the third article in my series about our API-query data 
pipeline, so you, dear reader, could certainly be forgiven not 
knowing just what the heck I’m going on about. Let’s pause, 
therefore, for a moment of reflection. In Figure 1 you can see the 
pipeline in its entirety. 

In my last article, we spoke about the first data transformation, 
which takes place inside Fluentd, to change raw log data into 
structured JSON. We learned about how tags and message rout-
ing works inside Fluentd and about Fluentd’s buffered output 
plugins. I also mentioned that we were using the Prometheus 
plugin to extract some metrics from Fluentd and shared some 
cardinality graphs from our production monitoring system, 
Circonus.

Merely enabling Prometheus in your tdagent.conf, along with 
its outputmonitor plugin, gives you all the visibility you need to 
detect backups inside Fluentd of the sort tour guides in Paris are 
still talking about a century later.

<source>

  @type prometheus

</source>

<source>

  @type prometheus_output_monitor

</source>

Upon restarting td-agent (the Fluentd demon), a wget http://

localhost:24231/metrics will yield myriad stats on every regis-
tered output plugin, like these two counters of messages emitted 
per output plugin (sns and firehose for us):

fluentd_output_status_emit_count{plugin_id=”object:3f86dc5b

80cc”,type=”amazon_sns”} 570277.0

fluentd_output_status_emit_count{plugin_id=”object:3f86d983

3444”,type=”kinesis_firehose”} 10109263509

Fluentd also has a filter type Prometheus plugin, which you can 
use in your routing configuration to extract metrics directly 
from the data as it passes through. We use this to break down the 
cardinality of the various types of API calls that are occurring 
within our Nginx data. Here’s the configuration blurb:

<filter firehose_parsed.**>

  @type prometheus

  <metric>

    name outgoing_msg

    type counter

    desc Outgoing messages

  </metric>

  <labels>

    type ${type}

  </labels>

</filter>

This filter catches all messages tagged with “firehose_parsed” 
and increments a counter metric named “outgoing_msg” 
that—crucially—is labeled with the value of the message’s type 
attribute. In other words, as each message is routed through this 
filter, Fluentd literally uses the value of msg.type to create the 

Figure 1: Sparkpost’s “Internal Event Hose” data pipeline
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Prometheus metric label. Hence, when we wget the reporting 
socket, we get output metrics that break down the cardinality of 
each type of API call our customers are currently making:

...

outgoing_msg{type=”get_sending-domains”} 31190473.0

outgoing_msg{type=”get_subaccounts”} 33089429.0

outgoing_msg{type=”get_webhooks”} 527765630.0

outgoing_msg{type=”auth_request”} 58139133.0

outgoing_msg{type=”get_users”} 144456173.0

outgoing_msg{type=”4xx_error”} 193923362.0

...

In a proper Prometheus shop, we’d be using the Prometheus 
server to slurp up all of these metrics and report on them, but for 
better or worse, our monitoring solution of choice lies in another 
direction, so I wrote a small shell script that performs the polling 
and reformatting. Omitting the error handling, it’s really just 
two lines...

INPUT=$(curl -k -ss -m “${TIMEOUT}” “${URL}”)

echo “${INPUT}” | grep -v ‘^#’ | sed -e ‘s/{.*=”/ /̀’ -e ‘s/”} //’ 

-e ‘s/ //g’ -e ‘s/^fluentd_//’ -e ‘s/`\([^̀ ]\+\)$/ n \1/’

If you squint at it hard enough you’ll see it transforms the output 
into backtick separated lines of the style: outgoing_msg`get 

_sending-domains̀ 31190473.0. I know. Backtick separation. 
Don’t get me started.

When we first architected this data pipeline we carefully read 
up on the various AWS streaming event services, compared their 
limits and tradeoffs against our workload, and decided that SNS 
was the best fit for us. We installed the most popular version of 
the SNS Fluentd plugin, gave it our configuration particulars, 
and watched everything collapse and fail in a Parisian-esque 
epic flood of traffic.

We eventually discovered two overlapping problems. The first, 
which I mentioned in my last article, was the SNS Fluentd plugin 
we found didn’t support buffered output, meaning, among other 
bad things, that it didn’t support threading and completely 
blocked the entire Fluentd process as it tried to f lush 11,000 
messages to SNS every second. 

The second problem was that the SNS service itself doesn’t have 
a bulk-send endpoint, so every message emitted equates to a 
single HTTP connection. It’s surprisingly easy for little details 
like this to be obscured by frameworks and plugins and abstrac-
tion. Engineers who know AWS very well are fond of saying things 
like there are no limits to SNS, and asking around, I heard myriad 
utopian tales of shops pushing hundreds of thousands of 140-
byte messages per second into SNS without breaking a sweat.

Well, it turns out, the real-world limit on SNS is the number of 
HTTP connections you can reliably make per second from your 
sending instance’s ENI. I’m not really sure what that number is 
(it no doubt varies by instance type), but I’m here to tell you, for 
us, it was smaller than 11,000 divided by three instances.

Rather than attempting to scale up or out, we took a look at AWS 
Kinesis Firehose, which has a bulk-send endpoint capable of 
ingesting batches of over 100 messages in a single HTTP call. 
This was a WAY more efficient and reliable means of feeding 
data into AWS. Bonus, the Fluentd Kinesis plugin is well sup-
ported, buffered, and supports threading.

We experimented with lambdas attached to our firehose to 
transform the JSON log data directly in to Parquet but eventu-
ally decided that we wanted a copy of the data in both JSON and 
Parquet, so we pointed the firehose directly at an S3 bucket. 
Kinesis automatically partitions this data up for us into minute-
sized chunks, ready for Athena to parse through them. 

To make the final hop into columnar data format, we rely on a 
combination of custom-written code, Apache Spark, and AWS 
Glue. Spark’s PySpark (http://spark.apache.org/docs/latest/api/
python/index.html) library makes it simple to sqlContext.read.

json() our JSON data from S3 into a Spark DataFrame (https://
spark.apache.org/docs/latest/sql-programming-guide.html), 
and from there df.write.parquet() it back out to a new S3 bucket 
in Parquet format. We use AWS Glue to schedule our PySpark 
code as an ETL job that runs hourly (five minutes after the hour, 
to give firehose a sufficient buffer of time).

I find it difficult to articulate the extent to which this data has 
enriched my life as an engineer, but I’ll give you an example 
from last week, wherein someone noticed that we appeared to be 
bouncing an order of magnitude more email than normal, which 
everyone found…worrisome.

I first checked whether there was a pattern of increased bounces 
for our top-tier receivers. This sort of thing has happened in the 
past when Gmail, for example, implemented some new, aggres-
sive, and ill-conceived filtering technology. 

select dt, count_if(routing_domain=’gmail.com’) as google,

count_if(routing_domain=’yahoo.com’) as yahoo, 

count_if(routing_domain=’hotmail.com’) as hotmail

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21

AND dt >= ‘2018-09-01’

group by 1;
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With this Athena query, I was able to get a day-by-day break-
down since September 1 of email we bounced to the top three 
providers and verify that we were NOT in fact bouncing more 
mail than normal. This query took three minutes to complete 
and scanned around 100 GB of data (Athena queries cost $5  
per TB scanned). 

What, then, could account for the increase in bounce traffic? 

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt between ‘2018-10-01’ and  

‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt > ‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

With these two queries I was able to enumerate the top 10 reasons 
that email bounced in the period before the change was noted, 
and then again in the period after the change was noted. I dis-
covered that there was indeed a difference between these two 
lists. The first looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.4 [internal] Domain Lookup Failed

“550-Requested action not taken: mailbox unavailable

550 invalid DNS MX or A/AAAA resource record”

451 Your domain is not configured to use this MX host.

While the second looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.7 [internal] message timeout (exceeded max time, last 

	 transfail: 454 4.4.4 [internal] no MX or A for domain)

554 5.4.4 [internal] Domain Lookup Failed

554 5.4.7 [internal] exceeded max time without delivery

As you can see, some new, timeout-related error messages have 
overtaken the first and fourth most common error message in 
the logs. As it turns out, our engineering teams had implemented 
a new suite of error detection code and had miss-classified these 
timeout messages as bounce-class messages, which in turn 
caused a reporting error.

While this particular example turned out to be a false-alarm 
rather than a flood, I think it serves to illustrate how capable our 
new log data pipeline is at helping us deal with the deluge. 

I think that pretty much wraps up my series on our Data Pipeline 
at Sparkpost, and along with it, my overspilling (sorry) of river-
related metaphor. Until next time. 

XKCD xkcd.com




