
www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  49

COLUMNS

iVoyeur
Flow 3

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

If you take any sort of guided tour of Paris, you are likely to hear refer-
ences to “The Great Flood of 1910,” wherein the Seine rose to a depth of
eight meters above its normal height, buried the city in water, and shut

down critical infrastructure like freshwater and heating-oil delivery for a
month.

Rivers have backed up and flooded cities since time out of mind, but this flood makes for
particularly great data-engineering metaphor fodder because the water never managed to
overflow the tops of the quay walls lining the river itself. In other words, primary queue car-
dinality was within threshold.

Instead, the city was flooded from below by way of the recently enlarged and fortified sewer
system that ran from every direction into the Seine. I suppose you could say that the hotpath
bypassed the queue. Ironically, the infrastructure most prized by city planners, like train sta-
tions and hospitals, which had the best-engineered sewer access, were hit the worst. Their
basement grates spewed water like the geysers of Yellowstone, rapidly flooding and spilling
into the streets until the streets themselves became waterways.

In some areas of the city, firefighters used boats to rescue stranded people from second-story
windows, as engineers constructed a city-wide series of wooden catwalks to enable residents
to reach shelters and sources of food and fresh water.

Here’s the thing: if you’ve never read anything about the history of Paris, the city was sup-
posedly an untenable mess, until Napoleon III put it into the hands of a gentleman named
Georges-Eugène Haussmann. “Baron Haussmann” would spend 20 years becoming the most
unpopular guy in France as he demolished the medieval firetrap the city had been in order to
singlehandedly re-architect it into the city we more or less recognize as Paris today.

The “grand rearchitecture” of the city included a herculean refactoring of the dense labyrinth
of pipes, sewers, and tunnels beneath the streets into the most modern and robust sewer sys-
tem in the world. The system provided the city’s freshwater supply, steam heat, and oil pipes
to power the streetlights, as it simultaneously swept away rainwater and waste. The sewers
were such a source of pride that bureaucrats of the time used their own pet euphemisms to
make them sound less like sewers and more like re-election.

Haussmann himself compared them to bodily organs. “The underground galleries,” he said,
“are an organ of the great city, functioning like an organ of the human body, without seeing
the light of day; clean and fresh water, light and heat circulate like the various fluids whose
movement and maintenance serves the life of the body; the secretions are taken away mys-
teriously and don’t disturb the good functioning of the city and without spoiling its beautiful
exterior.”

It’s fortunate Haussmann died before his miraculous “underground galleries” buried the
city chest-deep in human waste and river water. Had he been there to see it, I’m sure it would
have been the facepalm heard around the world.

50    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

COLUMNS
iVoyeur: Flow 3

I suspect that anyone who has seriously worked with data
pipelines or distributed systems can probably relate; an over-
abundance of input can have extreme and unforeseen effects
on asynchronous processing systems.

The Flow, Part Three
This is the third article in my series about our API-query data
pipeline, so you, dear reader, could certainly be forgiven not
knowing just what the heck I’m going on about. Let’s pause,
therefore, for a moment of reflection. In Figure 1 you can see the
pipeline in its entirety.

In my last article, we spoke about the first data transformation,
which takes place inside Fluentd, to change raw log data into
structured JSON. We learned about how tags and message rout-
ing works inside Fluentd and about Fluentd’s buffered output
plugins. I also mentioned that we were using the Prometheus
plugin to extract some metrics from Fluentd and shared some
cardinality graphs from our production monitoring system,
Circonus.

Merely enabling Prometheus in your tdagent.conf, along with
its outputmonitor plugin, gives you all the visibility you need to
detect backups inside Fluentd of the sort tour guides in Paris are
still talking about a century later.

<source>

 @type prometheus

</source>

<source>

 @type prometheus_output_monitor

</source>

Upon restarting td-agent (the Fluentd demon), a wget http://

localhost:24231/metrics will yield myriad stats on every regis-
tered output plugin, like these two counters of messages emitted
per output plugin (sns and firehose for us):

fluentd_output_status_emit_count{plugin_id=”object:3f86dc5b

80cc”,type=”amazon_sns”} 570277.0

fluentd_output_status_emit_count{plugin_id=”object:3f86d983

3444”,type=”kinesis_firehose”} 10109263509

Fluentd also has a filter type Prometheus plugin, which you can
use in your routing configuration to extract metrics directly
from the data as it passes through. We use this to break down the
cardinality of the various types of API calls that are occurring
within our Nginx data. Here’s the configuration blurb:

<filter firehose_parsed.**>

 @type prometheus

 <metric>

 name outgoing_msg

 type counter

 desc Outgoing messages

 </metric>

 <labels>

 type ${type}

 </labels>

</filter>

This filter catches all messages tagged with “firehose_parsed”
and increments a counter metric named “outgoing_msg”
that—crucially—is labeled with the value of the message’s type
attribute. In other words, as each message is routed through this
filter, Fluentd literally uses the value of msg.type to create the

Figure 1: Sparkpost’s “Internal Event Hose” data pipeline

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  51

COLUMNS
iVoyeur: Flow 3

Prometheus metric label. Hence, when we wget the reporting
socket, we get output metrics that break down the cardinality of
each type of API call our customers are currently making:

...

outgoing_msg{type=”get_sending-domains”} 31190473.0

outgoing_msg{type=”get_subaccounts”} 33089429.0

outgoing_msg{type=”get_webhooks”} 527765630.0

outgoing_msg{type=”auth_request”} 58139133.0

outgoing_msg{type=”get_users”} 144456173.0

outgoing_msg{type=”4xx_error”} 193923362.0

...

In a proper Prometheus shop, we’d be using the Prometheus
server to slurp up all of these metrics and report on them, but for
better or worse, our monitoring solution of choice lies in another
direction, so I wrote a small shell script that performs the polling
and reformatting. Omitting the error handling, it’s really just
two lines...

INPUT=$(curl -k -ss -m “${TIMEOUT}” “${URL}”)

echo “${INPUT}” | grep -v ‘^#’ | sed -e ‘s/{.*=”/ /̀’ -e ‘s/”} //’

-e ‘s/ //g’ -e ‘s/^fluentd_//’ -e ‘s/`\([^̀]\+\)$/ n \1/’

If you squint at it hard enough you’ll see it transforms the output
into backtick separated lines of the style: outgoing_msg`get

_sending-domains̀ 31190473.0. I know. Backtick separation.
Don’t get me started.

When we first architected this data pipeline we carefully read
up on the various AWS streaming event services, compared their
limits and tradeoffs against our workload, and decided that SNS
was the best fit for us. We installed the most popular version of
the SNS Fluentd plugin, gave it our configuration particulars,
and watched everything collapse and fail in a Parisian-esque
epic flood of traffic.

We eventually discovered two overlapping problems. The first,
which I mentioned in my last article, was the SNS Fluentd plugin
we found didn’t support buffered output, meaning, among other
bad things, that it didn’t support threading and completely
blocked the entire Fluentd process as it tried to f lush 11,000
messages to SNS every second.

The second problem was that the SNS service itself doesn’t have
a bulk-send endpoint, so every message emitted equates to a
single HTTP connection. It’s surprisingly easy for little details
like this to be obscured by frameworks and plugins and abstrac-
tion. Engineers who know AWS very well are fond of saying things
like there are no limits to SNS, and asking around, I heard myriad
utopian tales of shops pushing hundreds of thousands of 140-
byte messages per second into SNS without breaking a sweat.

Well, it turns out, the real-world limit on SNS is the number of
HTTP connections you can reliably make per second from your
sending instance’s ENI. I’m not really sure what that number is
(it no doubt varies by instance type), but I’m here to tell you, for
us, it was smaller than 11,000 divided by three instances.

Rather than attempting to scale up or out, we took a look at AWS
Kinesis Firehose, which has a bulk-send endpoint capable of
ingesting batches of over 100 messages in a single HTTP call.
This was a WAY more efficient and reliable means of feeding
data into AWS. Bonus, the Fluentd Kinesis plugin is well sup-
ported, buffered, and supports threading.

We experimented with lambdas attached to our firehose to
transform the JSON log data directly in to Parquet but eventu-
ally decided that we wanted a copy of the data in both JSON and
Parquet, so we pointed the firehose directly at an S3 bucket.
Kinesis automatically partitions this data up for us into minute-
sized chunks, ready for Athena to parse through them.

To make the final hop into columnar data format, we rely on a
combination of custom-written code, Apache Spark, and AWS
Glue. Spark’s PySpark (http://spark.apache.org/docs/latest/api/
python/index.html) library makes it simple to sqlContext.read.

json() our JSON data from S3 into a Spark DataFrame (https://
spark.apache.org/docs/latest/sql-programming-guide.html),
and from there df.write.parquet() it back out to a new S3 bucket
in Parquet format. We use AWS Glue to schedule our PySpark
code as an ETL job that runs hourly (five minutes after the hour,
to give firehose a sufficient buffer of time).

I find it difficult to articulate the extent to which this data has
enriched my life as an engineer, but I’ll give you an example
from last week, wherein someone noticed that we appeared to be
bouncing an order of magnitude more email than normal, which
everyone found…worrisome.

I first checked whether there was a pattern of increased bounces
for our top-tier receivers. This sort of thing has happened in the
past when Gmail, for example, implemented some new, aggres-
sive, and ill-conceived filtering technology.

select dt, count_if(routing_domain=’gmail.com’) as google,

count_if(routing_domain=’yahoo.com’) as yahoo,

count_if(routing_domain=’hotmail.com’) as hotmail

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21

AND dt >= ‘2018-09-01’

group by 1;

52    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

COLUMNS
iVoyeur: Flow 3

With this Athena query, I was able to get a day-by-day break-
down since September 1 of email we bounced to the top three
providers and verify that we were NOT in fact bouncing more
mail than normal. This query took three minutes to complete
and scanned around 100 GB of data (Athena queries cost $5
per TB scanned).

What, then, could account for the increase in bounce traffic?

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt between ‘2018-10-01’ and

‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

select count(dt),raw_reason

from “glue-data-lake-usw2-prd”.eventlog_parquet

WHERE bounce_class=21 and dt > ‘2018-10-21’

group by raw_reason

order by count(td)

LIMIT 10;

With these two queries I was able to enumerate the top 10 reasons
that email bounced in the period before the change was noted,
and then again in the period after the change was noted. I dis-
covered that there was indeed a difference between these two
lists. The first looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.4 [internal] Domain Lookup Failed

“550-Requested action not taken: mailbox unavailable

550 invalid DNS MX or A/AAAA resource record”

451 Your domain is not configured to use this MX host.

While the second looked like:

454 4.4.4 [internal] no MX or A for domain

554 5.4.7 [internal] message timeout (exceeded max time, last

	 transfail: 454 4.4.4 [internal] no MX or A for domain)

554 5.4.4 [internal] Domain Lookup Failed

554 5.4.7 [internal] exceeded max time without delivery

As you can see, some new, timeout-related error messages have
overtaken the first and fourth most common error message in
the logs. As it turns out, our engineering teams had implemented
a new suite of error detection code and had miss-classified these
timeout messages as bounce-class messages, which in turn
caused a reporting error.

While this particular example turned out to be a false-alarm
rather than a flood, I think it serves to illustrate how capable our
new log data pipeline is at helping us deal with the deluge.

I think that pretty much wraps up my series on our Data Pipeline
at Sparkpost, and along with it, my overspilling (sorry) of river-
related metaphor. Until next time.

XKCD xkcd.com

