
58    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

BOOKSBook Reviews
R I K F A R R O W A N D M A R K L A M O U R I N E

The Site Reliability Workbook: Practical Ways to
Implement SRE
Niall Murphy, David Rensin, Betsy Beyer, Kent Kawahara,
and Stephen Thorne
O’Reilly Media, 2018, 512 pages
ISBN: 978-1-492-02950-2

Reviewed by Rik Farrow

When I think of a workbook, I expect something that contains
exercises and complements an existing book or course. The Site
Reliability Workbook fits the second part of that description.
The authors intended that TSRW expand upon the best-selling
Site Reliability Engineering, in part because of all the questions
raised by readers of the first book.

Today, you can find all of the SRE book online, and as TSRW
relies on that book, there are frequent references to chapters in
the earlier book, all as bit.ly-shortened URLs. While that’s use-
ful, there are often summaries to the material, and I found that
all I needed were the summaries to recall enough for the current
material to make sense.

And instead of exercises, you get examples, case studies, and
more in-depth descriptions. Right away I could see how use-
ful this was in making the principles described in SRE con-
crete. There is even a chapter on Non-Abstract Large System
Design, with tangible examples of what the authors, including
Salim Virji, were teaching during LISA tutorials, a step-by-
step approach to designing a reliable service for monitoring
AdWords.

There was criticism that SRE, both the practice and the book,
were something only Google, and a handful of companies like
it, could take good advantage of. TSRW attempts to dispel those
objections, largely by including authors outside of Google for
many of the sections.

You will often find that books written by many authors have
an uneven writing style. TSRW doesn’t read that way at all: the
writing remains clear, consistent, and easy-to-read throughout.

As to the argument that SRE is only for large organizations, I
found myself thinking many times as I read TSRW, “If only I had
known that 35 years ago.” In the chapter about On-Call, I read
about many practices that would have made my life easier in my
first Bay Area job and prevented burnout. I also encountered
some things I had tried to do, with partial success, in that long
ago era. In other words, even if you don’t consider yourself an
SRE, there are definitely things you can learn from this book.

Managing Kubernetes: Operating Kubernetes
Clusters in the Real World
Brendan Burns and Craig Tracey
O’Reilly Media, 2018, 188 pages
ISBN: 978-1-492-03391-2

Reviewed by Mark Lamourine

Often it seems that sysadmins are forgotten when people are
writing documentation. It is common to see books for service
users and for API developers. When it comes to managing ser-
vices, it feels like the first response is to try to write some kind
of GUI to smooth over the sharp bits and pretend they don’t exist.
This leaves the sysadmin needing to understand, manage, and
diagnose complex systems with little guidance but their own
wits and experience.

Managing Kubernetes won’t solve every sysadmin problem, but it
does go a long way toward illuminating the dark interior of one of
the hottest buzzword services of the last few years.

Brendan Burns is one of the three original authors of Kubernetes
and is still one of the top three contributors. With Craig Tracey,
he provides the clearest description I’ve seen of the moving parts
that, together, make a Kubernetes cluster.

Kubernetes is a distributed software container management ser-
vice. That’s quite a mouthful. If you’re not already familiar with
software containers, you should really start somewhere else. The
most well-known container runtime system is Docker. There
are others, but Docker is the BASIC programming language of
containers. You’ll be back quickly, because standalone contain-
ers have limited value. They come into their own when you start
combining single-purpose containers into complex applications.
How you combine them and then deploy them to make working
services is what Kubernetes is all about.

Kubernetes is itself a (mostly) containerized service, built up
of a number of cooperating service components. The hosts that
participate in the clusters are called nodes. All nodes must have a
container runtime environment such as Docker already installed
and running.

Some nodes, called head nodes, are special. These run the man-
agement components and provide the brains of the cluster. The
remainder of the nodes, called worker nodes, run components
that control local containers and provide network communica-
tions. All of these coordinate by communicating with an API
service that is distributed across the head nodes.

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  59

BOOKS

The arc of the book is a little different from most. Burns and
Tracey don’t have the reader attempt an installation until almost
halfway through, in Chapter 6. Ordinary users would want to get
started creating containers as soon as possible, but the sysadmin’s
purpose is to understand what is happening underneath when
normal users start their work. The authors devote the first half of
the book to describing the structure that installation will create.

In the second half of the book, the authors walk the reader
through common operational processes. Many of these are
concerned with providing and controlling access to the cluster.
Users interact with the cluster by making requests to the API
server. The next three chapters detail how user requests are
validated and accepted.

The authors provide one of the better explanations I’ve read of
the distinction between authentication, authorization, and what
they call admission, which I might have called policy. In each
case, they provide examples of the REST data structures that
implement the communication protocol. The examples dem-
onstrate the rationale and the structure, but none of them are
meant to be comprehensive. The authors know that the Kuber-
netes project documentation [1] provides detailed specifications,
though I do wish they had provided the appropriate links in-line
with the text.

The final three chapters cover additional operational concerns:
networking, monitoring, and disaster recovery. Again, the discus-
sion is meant to give the reader a starting point for understand-
ing what is possible and where to learn more. It is not a run-book
but, rather, is concerned with architecture and taxonomy. It
provides references to resources that the reader can use to learn
and plan for a deployment.

Rather than being an operator’s manual or a comprehensive
reference, Managing Kubernetes describes the purpose and basic
configuration of each component and gives the reader a sense
of the structure and dynamics of Kubernetes as a whole. I have
noted in other places that it is often very useful to understand
any technology at least one layer, and preferably two, beneath the
level where you mean to work. For both operators and architects
of Kubernetes services, Managing Kubernetes will provide the
peek beneath the covers.

Learn Git in a Month of Lunches
Rick Umali
Manning Publications, 2015, 352 pages
ISBN: 978-1-617292415

Reviewed by Mark Lamourine

Many authors can’t seem to decide whether they want to write a
reference or a tutorial, often making their book less than ideal for
either the beginner or the experienced reader. Rick Umali doesn’t
make this mistake. He knows he’s writing a book for beginners,
and Learn Git in a Month of Lunches is ideal for his audience.

Git is well suited to this kind of learning. It is a tool that is used
by software developers to organize and manage their work. It
allows them to share their work in a way that makes conflict
avoidable or at least manageable. It has one purpose and a well-
defined set of operations to accomplish that purpose. Tools like
this are often learned fitfully, by experience, looking up the sin-
gle solution to a single problem then going back to work. Umali
has offered a straightforward and complete path for learning to
use the most important capabilities of Git and the grounding to
explore and learn more.

Umali, to his credit, dodges several common problems that arise
from trying to present material in a narrative format. He avoids
creating a contrived straw-man project. Instead, each chapter
focuses on just one task or subcommand, and he discusses the
most common aspects of that task. He does interlace examples
for the three common platforms, Windows, Mac, and Linux, but
each example is clearly labeled and distinguished by graphical
conventions.

He also starts at the true learner’s beginning (after installation)
by creating an empty local repository. While most work in the
real world will involve a remote repository, Umali leaves that for
Chapter 12, well past the halfway point in the book. That first
half is dedicated to getting comfortable with Git and just manag-
ing files in a repository. I was reminded firmly that all of the
common operations, committing, cloning, branching, merging,
and viewing logs are local operations. In every case the pattern
for a file reference is first a local path that can then be extended
to a URL by adding a standard prefix.

That said, the next four chapters cover the details of working
with remote repositories; push, sync, rebase, and a chapter on
branching conventions and collaborative workflows.

He wraps up with chapters on third-party Git software, working
with GitHub, and configuration and tuning.

Reference
[1] Kubernetes REST API specification: https://kubernetes.io​
/docs/concepts/overview/kubernetes-api/.

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/

60    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

BOOKS

The “month of lunches” format limits the size of each chapter.
This is a good thing. Umali crafts each one so that it is complete
and self-contained. He encourages readers to spend a bounded
time reading and then to go away and think and practice on their
own. No chapter is longer than 20 pages. The longest ones are
those with a lot of graphics. They either showcase the GUI inter-
face or are concerned with the theory of revision control and so
use lots of drawings to show the workflow for the reader. I’m not
a good judge of GUI tools, but the base level introduction Umali
offers is comparable to the CLI capabilities, and for those who
like graphical tools it should serve well.

This is a beginner’s book, but I will pass it on with compliments.
I did pick up a number of tips and ideas that will stick with me.

Gamestorming: A Playbook for Innovators,
Rulebreakers, and Changemakers
Dave Gray, Sunni Brown, and James Macanufo
O’Reilly Media, 2010, 288 pages
ISBN 978-0596804176

Reviewed by Mark Lamourine

Brainstorming is a term in common use. To me it means going
somewhere different (even if only in my head), preferably with
a couple of my most trusted co-workers, presenting a problem I
have in its broadest terms and then throwing around ideas with-
out judgment or ego until something grabs all of our attention.
Then we play with a couple of the “best” ideas until we better
understand the problem, the challenges that remain, and, most
importantly, what we want to try next. This is a very unstruc-
tured concept, and other people will have a different vision of
what brainstorming is.

Gamestorming is a book that offers a lot of different ways to
structure that communal thinking process.

The main idea of Gamestorming is to use the framework of a
“game” to direct and focus the thinking and sharing process
in a way that suits the particular goals of the session. A game,
according to Gray, Brown, and Macanufo, is defined primarily
by a play space, a set of rules, and a goal. With this loose but clear
definition, they set out to give the reader a sense of how game

play in a working context can lead both to the results that might
elude more conventional planning sessions and to the relevant
tools to get those results.

Chapters 2 and 3 present that toolbox. A moderator’s job in these
kinds of planning meetings is to create an environment that will
promote participation and cooperation. There are any number of
ways the plan can be derailed. Chapter 2 enumerates 10 “essen-
tials” that are the material needs for a good session. In Chapter 3
the authors lay out the skills and tactics that a moderator should
have in order to be able to guide the participants and avoid rat-
holes and pitfalls.

The body of the book is four chapters that are a catalog of core
games, those for opening, closing, and for exploring an idea
space. The authors make a clear distinction between games
meant to start a session and generate lots of wild ideas and
those that are meant to refine and then focus on one concept
and come to a close. In longer planning sessions the games
might be chained together, or they can be played in separate
sessions over a longer period of time if needed.

You may have visions of whiteboards and flip charts and multi-
colored sticky notes, and you wouldn’t be wrong. Most of us won’t
use Gamestorming in day-to-day life as a software developer
or sysadmin. The subtitle of the book, “A Playbook for Innova-
tors, Rulebreakers, and Changemakers,” feels a bit grandiose to
me. Many of the games are fairly common in dramatic training,
especially those aimed at creating group coherence. I suspect
very little here would be surprising to professional moderators
or facilitators.

But we’re not that kind of professionals. I think, used judiciously,
the ideas here could be helpful to those of us who find ourselves
in that position despite our inclinations (or our best efforts).
Sometimes it might be a good thing to shake us out of the stale
format of our regular planning meetings, standups, or retrospec-
tives. In that case, Gamestorming would be a good resource for
getting ourselves into the mindset of a facilitator. For the hour or
so it takes, perhaps a game is a good way to engage a whole team
on a common problem and uncover a solution no one had thought
of or felt invited to voice.

