
6    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

PROGRAMMINGcoz
This Is the Profiler You’re Looking For

C H A R L I E C U R T S I N G E R A N D E M E R Y D . B E R G E R

Charlie Curtsinger is a new
faculty member in the Com
puter Science Department at
Grinnell College. His research
interests include software

performance, security, and reliability with
an emphasis on probabilistic and statistical
techniques. curtsinger@grinnell.edu

Emery Berger is a Professor
in the College of Information
and Computer Sciences at the
University of Massachusetts
Amherst, where he co-directs

the PLASMA lab (Programming Languages and
Systems at Massachusetts) and is a regular
visiting researcher at Microsoft Research.
He is the creator of a number of influential
software systems including Hoard, DieHard,
and DieHarder, a secure memory manager that
was an inspiration for hardening changes made
to the Windows 8 heap. He is currently serving
as Program Chair for PLDI 2016.
emery@cs.umass.edu

Causal profiling is a new approach to software profiling that tells
developers which code is important for performance. Conventional
profilers report where programs spend their time running, but opti-

mizing long-running code may not improve program performance. Instead of
simply observing a program, a causal profiler conducts performance experi-
ments to predict the effect of speeding up many different parts of a program.
During each experiment, a causal profiler uses virtual speedup to create the
effect of optimizing part of the program, and progress points to measure any
change in program performance as a result of the virtual speedup. A causal
profile summarizes the results of many performance experiments, telling
developers exactly where performance tuning would be worthwhile. Using
COZ, a prototype causal profiler for Linux, we improve the performance of
Memcached by 9%, SQLite by 25%, and several PARSEC applications by as
much as 68%.

“Try running it with a profiler.” This suggestion inevitably comes up once all reasonable ideas
for improving a program’s performance are exhausted. The authors of thousands of lines of
code have been unable to come up with any explanation for the system’s poor performance,
so why do we expect a tool from 1982 to fare better [3]? Deep down, we’ve always known this
was true. Take the historically accurate space adventure game you were playing too late
last Tuesday as an example; how would a profiler know that the thread that plays lightsaber
crackling sounds was less important than the thread that controls the stormtrooper you were
battling? It wouldn’t. When we look at a software profile we aren’t looking for guidance, we’re
looking for surprises. And with parallel programs, practically everything is surprising. That’s
not to say that profilers aren’t informative. Any good software profiler can tell you, with great
accuracy, where a program spends its execution time. Unfortunately, this isn’t the informa-
tion we’re looking for.

Code that runs for a long time is not necessarily a good choice for performance tuning. Devel-
opers need to know which code is important—where successful performance tuning would
improve the program’s end-to-end performance. Consider a function that draws a “loading …”
animation while you wait for the next level of your game to load. The animation runs just as
long as the loading code, but we would never expect to speed up the program by making the
animation faster.

This problem is not limited to programs that perform I/O. Figure 1 shows a simple parallel
program with a similar issue. This program creates two threads, one to run the function a()
and another to run the function b(). The program exits once both threads have finished. A
conventional profiler like gprof, whose output for this program is shown in Figure 2, reports
that the program spends roughly equal time running a() and b(). While accurate, this
information is misleading; optimizing a() alone will speed the program up by just 4.5%, and
optimizing b() will have no effect on performance.

http://www.usenix.org
mailto:curtsinger@grinnell.edu
mailto:emery@cs.umass.edu

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  7

PROGRAMMING
coz: This Is the Profiler You’re Looking For

example.cpp

void a() { // ˜6.7 seconds

 for(volatile size_t x=0; x<2000000000; x++) {}

}

void b() { // ˜6.4 seconds

 for(volatile size_t y=0; y<1900000000; y++) {}

}

int main() {

 // Spawn both threads and wait for them.

 thread a_thread(a), b_thread(b);

 a_thread.join(); b_thread.join();

}

Figure 1: A simple multithreaded program that illustrates the shortcomings
of existing profilers. Optimizing a() will improve performance by no more
than 4.5%, while optimizing b() would have no effect on performance.

The key issue with conventional profilers is that they only
observe a program’s execution. Through observation alone, they
cannot tell you which code to optimize, because long-running
code is not necessarily important to program performance.
Speeding up a line of code might shorten an important path
through the program, or it may speed up a thread that does back-
ground work, increasing contention on a critical data structure,
which in turn hurts overall program performance.

	% time 	 cumulative	 self		 self	 total

		 seconds	 seconds	 calls	 Ts/call	 Ts/call	 name

	55.20	 7.20	 7.20	 1			 a()

	45.19	 13.09	 5.89	 1			 b()

	% time	 self	 children	 called	 name

					 <spontaneous>

	 55.0	 7.20	 0.00		 a()

					 <spontaneous>

	 45.0	 5.89	 0.00		 b()

Figure 2: A conventional profile for example.cpp collected with gprof

Causal Profiling
Causal profiling is a novel approach to profiling that identifies
code where optimizations will have the largest impact [2]. A
causal profiler is fundamentally different from a conventional
profiler; rather than simply observing program execution, a
causal profiler intentionally perturbs program performance to
conduct performance experiments. During a performance experi-
ment, a causal profiler creates the effect of speeding up some
piece of a program using virtual speedup (more on this later).
While virtually speeding up one piece of a program, a causal
profiler then measures program performance to determine the
effect of this speedup. Given enough performance experiments

with varying locations and sizes of virtual speedup, we can con-
struct a causal profile, which tells you both where optimizations
would have an effect and how large that effect would be.

Figure 3 shows a real causal profile for the program in Figure 1
collected with COZ, a prototype causal profiler for Linux. This
causal profile suggests that speeding up a() alone could improve
program performance by up to 5.0%, very close to the actual
4.5%. Beyond this point, the thread running b() becomes the
program’s critical path. The causal profile correctly indicates
that speeding up b() alone would have a negligible effect on
performance.

Producing a causal profile requires three key pieces: we need
a way to create the effect of an optimization, the profiler must
apply a virtual speedup for the duration of a performance experi-
ment, and we need a way to measure a program’s performance at
the end of each experiment.

Virtual Speedup
A causal profiler cannot magically speed up a part of a program
and measure the effect of that speedup; if this were possible,
we would just magically speed up the entire program. Instead,
a causal profiler creates the effect of speeding up one part of
a program by slowing everything else down. The amount that
other threads are slowed down determines the size of the virtual
speedup. The size of the virtual speedup can range from 0% (the
code’s runtime is unchanged) to 100% (the code’s runtime is
reduced to zero).

Figure 4 illustrates a virtual speedup in a simple parallel program.
Part (a) shows the original execution of two threads running
functions f() and g(), and part (b) shows the effect of actually
speeding up f() by 40%; the size of this speedup was chosen arbi-
trarily and could be any value from 0% to 100%. Finally, part (c)
shows the effect of virtually speeding up f() by 40%.

Each time f() runs in one thread, all other threads pause for 40%
of f’s original execution time. While virtual speedup does not
actually shorten the program’s runtime, the difference between
the program’s original runtime and its runtime with a virtual
speedup is known: it is just the number of times f() ran multi-
plied by the delay size. Given that we know both quantities, we

Figure 3: Causal profile for example.cpp

http://www.usenix.org

8    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

PROGRAMMING
coz: This Is the Profiler You’re Looking For

can adjust the baseline runtime by this extra time to predict the
effect of an actual speedup.

Instrumenting a program to track visits to f() and signaling
other threads to pause them every time it runs would be prohibi-
tively expensive. Instead, COZ uses sampling to approximate
this approach. Instead of pausing other threads each time f()
runs, COZ would delay other threads every time it sees a sample
in f(). The size of the delay is proportional to the sampling inter-
val rather than the execution time of a single call to f().

Performance Experiments
A causal profiler can use virtual speedup to test the effect of
a potential optimization, but how does it decide which code to
virtually speed up, and by how much? Coverage is particularly
important: given a large code base, we would like to find the one
line of code with the largest possible payoff from optimizations.
COZ applies virtual speedup at the granularity of source lines,
which means there are potentially tens of thousands of program
fragments that could be virtually sped up. Rather than choosing
uniformly from all source lines, COZ selects from the distribu-
tion of where a program spends its time running. While long-
running code may not be the best place for performance tuning,
code that never runs is certainly a bad place to focus our limited
energy. Once a COZ selects a line to virtually speed up, it selects
a speedup size between 0% and 100% in increments of 5%.

During a performance experiment, COZ applies the same fixed
virtual speedup to the selected line. All that is required to speed
up a specific line is to map program execution samples, which
are memory addresses of code, to source information. This is
a relatively straightforward process using DWARF debugging
information. While COZ currently uses source lines as the unit
of virtual speedup, any fragment of code that can be mapped to
addresses could be virtually sped up.

At the end of a performance experiment, COZ measures the pro-
gram’s performance with the virtual speedup in place. But how
can we measure performance in the middle of an execution or for
programs that run indefinitely? For the simple example in Fig-
ure 3, COZ runs a single performance experiment for the entire
execution of the program. While this approach works for small
programs, it does not scale well; large programs would require,
at minimum, thousands of runs to get reasonable coverage with
performance experiments. COZ solves this problem by allowing
developers to specify progress points.

Progress Points
A progress point is some point in a program that should happen
as frequently as possible, completing a user request, for example,
or processing a block of data. Developers mark one or more
progress points in their application by adding the COZ_PROGRESS
macro, which keeps a count of the visits to this point in the code.
COZ measures the rate of visits to a progress point as a proxy for
performance. This allows COZ to conduct many performance
experiments in a single run of a program or in programs where
end-to-end runtime is not meaningful such as servers and inter-
active applications.

This basic notion of progress points allows us to measure
throughput at some point in the code, but COZ can also use prog-
ress points to measure the latency between two points. Instead
of specifying a single point, developers mark the beginning and
end of a transaction using two macros, COZ_BEGIN and COZ_END.
COZ does not track individual transactions as they flow through
the system, but by measuring the rate of arrivals at the begin-
ning point and the number of outstanding requests, COZ can
use Little’s Law to compute the average latency between the two
points [4].

Using COZ
Running a program with COZ requires just three steps: (1) find
one or more places to add progress points that allow COZ to
measure the program’s performance; (2) run the program with
the command-line driver: coz run --- <program> <args>; and
(3) use COZ’s Web-based profile interface to plot the results and
rank lines by potential impact. Our SOSP 2015 paper on causal
profiling includes case studies where we use COZ to optimize
eight different applications, three of which are included below
[2]. These case studies include the compression program dedup,
where COZ led us to a degenerate hash function; the embedded
database SQLite, where COZ guided us to an inefficient coding
practice that prevented function inlining; and the in-memory
key-value store Memcached, where COZ identified unnecessary
contention on a shared lock. Fixing these issues led to whole-
program performance improvements of 9% for dedup, 25% for
SQLite, and 9% for Memcached.

Figure 4: An illustration of a program’s (a) original execution, (b) a real
speedup of function f() by 40%, and (c) a virtual speedup of f() by 40%

f

gt₂

t₁

t₂

t₁

t₂

t₁ f

f

f

g

g

g

f

f

fg

gg

f

f

g

g

g

f

(a) Original Program

(b) Actual Speedup

(c) Virtual Speedup

original runtime
+

nf · d

time

original runtime

… g

…

…

effect of optimizing by df

http://www.usenix.org

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  9

PROGRAMMING
coz: This Is the Profiler You’re Looking For

Case Study: dedup
The dedup application, part of the PARSEC suite, performs par-
allel file compression via deduplication [1]. We added a progress
point to dedup’s code just after a single block of data is com-
pressed (encoder.c:189).

COZ identifies the source line hashtable.c:217 as an opportu-
nity for optimization; Figure 5 shows the causal profile results
for this line. This plot shows that improving the performance of
the code that runs this line will result in a nearly one-to-one per-
formance improvement in program performance up to 20%, with
modest additional gains for performance improvements over
20%. This code is the top of the while loop in hashtable search
that traverses the linked list of entries that have been assigned
to the same hash bucket. This suggests that dedup’s shared hash
table has a significant number of collisions. Hash collisions
could be caused by two things: a hash table that is too small or a
hash function that does not evenly distribute elements through-
out the hash table. Increasing the hash table size had no effect on
performance, so the only remaining culprit is the hash function. It
turns out dedup’s hash function was mapping keys to just 2.3% of
the available hash table buckets; over 97% of hash buckets were
never used during the entire execution, and the 2.3% of buckets
that were used at all contained an average of 76.7 entries.

The original hash function adds characters of the hash table
key, which leads to virtually no high-order bits being set. The
resulting hash output is then passed to a bit-shifting procedure
intended to compensate for poor hash functions. Removing the
bit-shifting step increased hash table utilization to 54.4%, and
changing the hash function to use bitwise XOR on 32-bit chunks
of the key increased hash bucket utilization to 82.0%. This three-
line change resulted in an 8.95% ± 0.27% performance improve-
ment. Figure 6 shows the rate of bucket collisions of the original
hash function, the same hash function without the bit shifting
“improvement,” and our final hash function. The entire opti-
mization required changing just three lines of code. This entire
process, from profiling to a completed patch, took just two hours.

Case Study: SQLite
The SQLite database, which can be included as a single large C
file, is used for many applications—including Firefox, Chrome,
Safari, Opera, Skype, iTunes—and is a standard component
of Android, iOS, Blackberry 10 OS, and Windows Phone 8. We
evaluated SQLite’s performance using a simple write-intensive
parallel workload, where each thread rapidly inserts rows to its
own private table. While this benchmark is synthetic, it exposes
any scalability bottlenecks in the database engine itself because
all threads should theoretically operate independently. This
benchmark executes a progress point each time an insert to the
database is completed.

COZ identified three important optimization opportunities,
shown in Figure 7. Interestingly, the profile suggests that a small
improvement to these lines’ performance would speed up the
program, but large performance improvements could actually be
detrimental; this is evidence of contention elsewhere in the pro-
gram. While resolving contention did not play a role in optimiz-
ing SQLite, contention is a factor in the next case study, which
examines Memcached.

At startup, SQLite populates a large number of structs with
function pointers to implementation-specific functions, but
most of these functions are only ever given a default value deter-
mined by compile-time options. The three functions COZ identi-
fied unlock a standard pthread mutex, retrieve the next item
from a shared page cache, and get the size of an allocated object.
These simple functions do very little work, so the overhead of
the indirect function call is relatively high, particularly because

Figure 5: The causal profile for the source line hashtable.c:217 in
dedup shows the potential performance improvement of fixing a hash
bucket traversal bottleneck.

Figure 6: Hash collision rate before, during, and after performance tuning
for a subset of dedup’s hash buckets. Dashed black lines show the aver-
age number of items per utilized bucket. Note the different y-axes. Fixing
dedup’s hash function improved performance by 9%.

0

100

200

300

0
50

100
150
200

0.0

2.5

5.0

7.5

O
riginal

M
idpoint

O
ptim

ized

0 1000 2000 3000 4000
Bucket Index

K
ey

s A
ss

ig
ne

d
to

 B
uc

ke
t

http://www.usenix.org

10    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

PROGRAMMING
coz: This Is the Profiler You’re Looking For

these functions are all likely candidates for inlining. Replac-
ing these indirect calls with direct calls—which only required
changes to seven lines of SQLite code—resulted in a 25.60% ±
1.00% speedup.

Case Study: Memcached
Memcached is a widely used in-memory key-value store, typi-
cally used as a cache in front of a database server. To evaluate
Memcached’s performance, we ran a version of the Redis perfor-
mance benchmark ported to Memcached (available at https://
github.com/antirez/mc-benchmark). This program spawns
50 parallel clients that collectively issue 100,000 SET and GET
requests for a variety of keys. We added a progress point at the
end of the process_command function in Memcached, which
will execute after each client request is completed.

The vast majority of the source lines COZ profiles have virtually
no potential for performance impact; this is hardly surprising
given the level of performance tuning attention Memcached has
received [5]. Excluding lines with little or no potential perfor-
mance impact—which have a flat causal profile—most of the
lines COZ identifies are cases of contention with a characteristic
downward-sloping causal profile plot. This downward slope
shows that optimizing this particular line of code would hurt
rather than help program performance. If speeding up a line of
code would hurt program performance, then some action that
follows this line must contend with the program’s critical path.
One such line is at the start of the item_remove function, which
locks an item in the cache, decrements its reference count, and
frees the item if its reference count is zero.

To reduce lock-initialization overhead, Memcached uses a static
array of locks to protect items, where each item selects a lock
using a hash of its key. Consequently, locking any one item can
potentially contend with independent accesses to other items
whose keys happen to hash to the same lock index. However,
Memcached uses atomic increment and decrement operations
for reference counts; locking at this point is completely unneces-
sary. Resolving this issue along with two similar fixes required
changing just six lines of code and resulted in a 9.39% ± 0.95%
performance improvement.

Conclusion
Causal profiling is a radical departure from previous approaches
to software profiling. Conventional profilers simply observe a
program’s execution, leaving developers to apply some intuition
or a performance model to decide which parts of the program are
important for performance. With a causal profiler, the program
is the performance model. Instead of simply observing a pro-
gram while attempting to minimize changes to that program’s
performance, a causal profiler intentionally alters program
performance to conduct performance experiments. By care-
fully coordinating delays across a program’s execution, a causal
profiler can create the effect of optimizing a specific code frag-
ment. By directly measuring the effect of a performance change,
a causal profiler can tell developers exactly where optimizations
will make a difference.

COZ is available at http://coz-profiler.org.

References
[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li, “The PARSEC Benchmark Suite: Characteriza-
tion and Architectural Implications,” in Proceedings of the 17th
International Conference on Parallel Architecture and Compu-
tation Techniques (PACT 2008), pp. 72–81: http://parsec.cs
.princeton.edu/doc/parsec-report.pdf.

[2] Charlie Curtsinger and Emery D. Berger, “COZ: Finding
Code that Counts with Causal Profiling,” in Proceedings of the
25th Symposium on Operating Systems Principles (SOSP 2015),
pp. 184–197: http://dx.doi.org/10.1145/2815400.2815409.

[3] Susan L. Graham, Peter B. Kessler, and Marshall K. McKu-
sick, “gprof: a Call Graph Execution Profiler,” in Proceedings
of the SIGPLAN ’82 Symposium on Compiler Construction,
SIGPLAN Notices, vol. 17, no. 6, pp. 120–126: http://dx.doi.org
/10.1145/989393.989401.

[4] John D. C. Little, “A Proof for the Queueing Formula:
L = λW,” Operations Research, vol. 9, no. 3 (1961), pp. 383–387.

[5] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike
Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,
and Venkateshwaran Venkataramani, “Scaling Memcache at
Facebook,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’13),
pp. 385–398: https://www.usenix.org/system/files
/conference/nsdi13/nsdi13-final170_update.pdf.

Figure 7: COZ’s output for SQLite before optimizations

http://www.usenix.org
https://github.com/antirez/mc-benchmark
https://github.com/antirez/mc-benchmark
http://coz-profiler.org
http://parsec.cs.princeton.edu/doc/parsec-report.pdf
http://dx.doi.org/10.1145/2815400.2815409
http://dx.doi.org/10.1145/989393.989401
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf
http://parsec.cs.princeton.edu/doc/parsec-report.pdf
http://dl.acm.org/citation.cfm?doid=989393.989401
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf

