
www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 11

PROGRAMMING

Fuzzing Code with AFL
P E T E R G U T M A N N

Most programs are only ever used in fairly stereotyped ways on ste-
reotyped input and will often crash in the presence of unexpected
input. Test suites designed by humans, assuming there even is a

test suite, are only as good as the people creating them and often only exer-
cise the common code paths. This problem is where fuzzing comes in, the
creation of input that exercises as many different code paths as possible in
order to show up problems in the code. Until recently fuzzing has been a com-
plex and tedious process, but with the appearance of instrumentation-guided
fuzzers like AFL the task has become much easier. This article looks at how
you can apply AFL to your code.

Fuzzing Software with AFL
Most software is pretty buggy. The reason why it works a lot of the time is that we use it in
ways that don’t trigger the bugs, either because the bugs are in obscure parts of the code that
never get exercised or because they’re in commonly used parts of the code but we know about
them and avoid triggering them. Since most programs are used in stereotyped ways that
exercise only a tiny portion of the total number of code paths, removing obvious problems
from these areas will be enough to keep the majority of users happy. This was shown up in
one study of software faults which found that one-third of all faults resulted in a mean time
to failure (MTTF) of more than 5,000 years, with somewhat less than another third having a
MTTF of more than 1,500 years [1].

On the other hand, when you feed unexpected input to these programs, meaning you exer-
cise all the code paths that are normally left alone, you reduce the MTTF to zero. A study [2]
that looked at the reliability of UNIX utilities in the presence of unexpected input, and later
became famous for creating the field of fuzz-testing or fuzzing, found that one-quarter to
one-third of all utilities on every UNIX system that the evaluators could get their hands on
would crash in the presence of random input.

Unfortunately, when the study was repeated five years later [3] the same general level of
faults was still evident.

Windows was no better. A study that looked at 30 different Windows applications [4]—
including Acrobat Reader, Calculator, Ghostscript, Internet Explorer, MS Office, Netscape,
Notepad, Paintshop, Solitaire, Visual Studio, and Wordpad, coming from a mix of commer-
cial and non-commercial vendors—found that 21% of programs crashed and 24% hung when
sent random mouse and keyboard input, and every single application crashed or hung when
sent random Windows event messages.

Before the Apple fans get too smug about these results, OS X applications, including Acrobat
Reader, Apple Mail, Firefox, iChat, iTunes, MS Office, Opera, and Xcode, were even worse
than the Windows ones [5].

So what can we do about this?

Peter Gutmann is a Researcher
in the Department of Computer
Science at the University of
Auckland working on design
and analysis of cryptographic

security architectures and security usability.
He helped write the popular PGP encryption
package, has authored a number of papers
and RFCs on security and encryption, and is
the author of the open source cryptlib security
toolkit Cryptographic Security Architecture:
Design and Verification (Springer, 2003) and an
upcoming book on security engineering. In his
spare time he pokes holes in whatever security
systems and mechanisms catch his attention
and grumbles about the lack of consideration
of human factors in designing security
systems. pgut001@cs.auckland.ac.nz

http://www.usenix.org
mailto:pgut001@cs.auckland.ac.nz

12  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMING
Fuzzing Code with AFL

Fuzz Testing
The answer to the question posed in the previous section is to
test your app with random input through fuzz testing before
someone else, possibly with less than good intentions, does it for
you. Until now this has been quite a pain to deal with since the
tools were under-documented and required a large amount of
manual intervention to do their job. The process would typically
involve downloading a fuzzer, staring at the extensive half-page-
long manual for a while, and then settling down to trying to
figure out whatever arcane scripting language the fuzzer used to
get it to generate input for your app.

Even if you got that far, it was often a case of trial and error with
a code profiler to determine whether you were getting any useful
code coverage from the fuzzing or just wasting CPU cycles.

Eventually, with a large amount of effort and more than a little
luck, you could start fuzzing your code.

All of this changed a few years ago with the introduction of
instrumentation-guided fuzzers. These compile the code being
fuzzed with a custom build tool that instruments the code being
compiled and tries to ensure that the fuzzer generates input
that exercises all of the different code paths. As a result, the
fuzzer doesn’t spend forever randomly generating test cases that
exercise the same paths over and over, but generates cases that
exercise as many different paths as possible. In addition it can
prune the test cases to eliminate ones that are covered by other
cases, minimizing the amount of effort expended in trying to
find problems.

This strategy produces some truly impressive results. The fuzzer
I’ll be talking about here, American Fuzzy Lop (named after a
breed of rabbit), or AFL, managed to produce valid JPEG files
recognized by djpeg starting from a text file containing the
string “hello” [6]. The files didn’t necessarily decode to produce a
photo of the Eiffel Tower but did produce valid if rather abstract-
looking JPEG images.

When I ran it on my code, I was somewhat surprised to find
myself stepping through PGP keyring code when I’d started with
a PKCS #15 key file, which has a completely different format.
The input file sample for fuzzing that AFL had started with was:

00000000 30 82 04 BA 06 0A 2A 86 48 86 F7 0D 01 0F 03 01

00000010 A0 82 04 AA 30 82 04 A6 02 01 00 30 82 04 9F A0

00000020 82 01 96 A0 82 01 92 A0 82 01 8E 30 18 0C 16 54

00000030 65 73 74 20 45 43 44 53 41 20 73 69 67 6E 69 6E

What AFL mutated this into over time was:

00000000 99 01 A2 04 37 38 F7 27 11 04 00 97 AB 53 62 04

00000010 7F 8C BB 1A 25 0A 58 CA 63 20 9D 43 D4 8D 50 15

00000020 70 68 E3 76 3D 7B C2 76 78 28 23 B6 9A 40 BC CF

00000030 14 88 A3 80 47 3B 5F 17 5F 73 72 5A 60 1F D3 1B

Like the JPEGs that started as the text string “hello,” it was
a syntactically valid PGP keyring, although semantically
meaningless.

Building AFL
Using AFL requires AFL itself [7], a compiler, and a compiler tool
called Address Sanitizer [8], or ASAN, that’s used to detect code
excursions. ASAN requires a fairly recent compiler, quite possibly
a more recent one than whatever crusty old version your OS ships
with, so don’t use the version you find in some repository but
build it yourself so that you know it’ll be done right. You can use
either gcc or clang; if you value your sanity I’d recommend clang.

Start by getting the various pieces of the compiler suite that
you’ll need (clang is part of the LLVM toolset):

svn co https://llvm.org/svn/llvm-project/llvm/trunk LLVM

svn co https://llvm.org/svn/llvm-project/cfe/trunk LLVM/tools

 /clang

svn co https://llvm.org/svn/llvm-project/compiler-rt/trunk

 LLVM/projects/compiler-rt

Then build clang and the related tools:

cd LLVM

mkdir build

cd build

export MAKEFLAGS=”-j`getconf _NPROCESSORS_ONLN`”

cmake -DCMAKE_BUILD_TYPE=RELEASE ~/LLVM

cmake --build .

If you don’t have CMake installed, then either get it from your
favorite repository or build it from source [9].

The clang build process will take an awfully long time even
spread across multiple CPUs (which is what the MAKEFLAGS line
does), so you can go away and find something else to do for a
while. If you run out of virtual memory during the build process,
decrease the -j argument, which spreads the load across fewer
processors and uses less resources.

Eventually, the whole thing will be built and you’ll have the nec-
essary binaries present in the LLVM/build directory tree.

Now that you’ve got the tools that you need to build AFL, you can
build AFL itself:

wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

tar xvfz afl-latest.tgz

rm afl-latest.tgz

cd `find . -maxdepth 1 -type d -print | sort -r | head -1`

export PATH=~/LLVM/build/bin:~/LLVM/tools/clang/tools

 /scan-build:$PATH

make

cd llvm_mode

make

After all that, you’ve finally got the AFL tools ready to go.

http://www.usenix.org
https://llvm.org/svn/llvm-project/llvm/trunk
https://llvm.org/svn/llvm-project/cfe/trunk
https://llvm.org/svn/llvm-project/compiler-rt/trunk
http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 13

PROGRAMMING
Fuzzing Code with AFL

Building Your App
Now you need to build your app. First, you need to modify it to
take as input the data generated by AFL. If your app is something
that takes a filename on the command line, as the djpeg example
mentioned earlier does, this is pretty straightforward. If the
app is a bit more complex than that, for example a GUI app, then
you’ll need to modify your code to allow the test data to be fed in.
In my code I use a custom build that no-ops out a lot of the code
that isn’t relevant to the fuzzing and allows the test data to be
injected directly into the data-processing code.

If you’re fuzzing a network app then things get a bit more compli-
cated. There’s ongoing work to add support for fuzzing programs
that take input over network sockets, one example being [10],
but since it’s work-in-progress it could well be superseded by the
time you read this. A much easier option is to modify your code
to take input from a file instead of a network socket, which also
avoids the overhead of dealing with a pile of networking opera-
tions just to get the test data into your app.

Finally, if your app has a relatively high startup overhead, then
AFL provides additional support for dealing with this, which I’ll
describe later in the section on optimizing AFL use.

Once you’ve got your code set up to take input from AFL, you can
build it as you normally would, specifying the use of the AFL
tools instead of the usual ones. For example, if you build your app
using a makefile, you’d use:

export AFL_HARDEN=1 ; export AFL_USE_ASAN=1 ;

make CC=afl-clang-fast CFLAGS=-fsanitize=address

which builds the code with instrumentation and ASAN support.
afl-clang-fast is the AFL-customized version of clang that adds
the necessary instrumentation needed by the fuzzing. As the
code is built, you’ll see status reports about the instrumentation
that’s being applied.

One thing that you need to make sure of is that your app actu-
ally crashes on invalid input, either explicitly by calling abort()
(typically via an assertion) or implicitly with an out-of-bounds
memory access or something similar that ASAN can detect.
ASAN inserts guard areas around variables and can detect out-
of-bounds and other normally undetectable errors. But if your
program simply continues on its way with invalid input, then
AFL can’t detect a problem. The easiest way to ensure an AFL-
detectable exit is to sprinkle as many sanity-check assertions as
possible throughout your code, which means that if any pre- or
post-condition or invariant is violated by the input that AFL
generates, it can be detected.

Fuzzing Your App
Now you’re finally ready to fuzz your app. To do this, run the
fuzzer as afl-fuzz, giving it an input directory to take sample
files from and an output directory telling it where to store statis-
tics and copies of files that produce crashes. If your app was built
as a.out, you’d use:

afl-fuzz -i in -o out ./a.out @@

The @@ is a placeholder that afl-fuzz replaces with the path to
the fuzzed data files that it generates.

When the fuzzer is running, the results will be displayed on an
annoying screen-hogging live status page that prevents you from
running more than one copy on multicore systems. To deal with
this, use nohup to get rid of the full-screen output. The AFL tools
have built-in support for running across multiple cores or serv-
ers but the details are a bit too complex to go into here and have
evolved over time; see the AFL Web pages for more information.

Alongside the status screen, stats are written to a file fuzzer_

stats in the fuzzer output directory. The important values are
execs_per_sec, which indicate how fast you’re going; execs_

done, how far you’ve got; unique_crashes and unique_hangs,
which are pretty self-explanatory (although the hangs aren’t
terribly useful unless you set the threshold fairly high; they’ll be
mostly false positives due to timing glitches like page faults and
I/O); and finally cycles_done, the number of full sets of muta-
tions exercised. Depending on the complexity of your input data,
it can take days or even weeks to complete a cycle. There’s a tool
afl-tmin that tries to help you minimize the size of the test cases;
again, see the AFL Web page for details.

For each crash or hang, AFL will write the input that caused it to
the crashes or hangs subdirectories in the output directory. You
can then take the files and feed them to your app running under
your debugger of choice to see what’s going on.

If you’re running AFL on someone else’s machine, you’re going to
make yourself somewhat unpopular with it. It uses 100% of the
CPU per AFL task, and if you maximize the overall utilization
with one task per ‘getconf _NPROCESSORS_ONLN’ you’re going to
also have a load average of ‘getconf _NPROCESSORS_ONLN’.

In addition, ASAN uses quite a bit of virtual memory, around
20 terabytes on x64. Yes, that’s 20,000,000 megabytes, which
it uses as shadow memory to detect out-of-bounds accesses.
While this may seem like a gratuitous stress test of your server’s
VM subsystem, when I ran it on someone else’s Linux box it ran
without any problems. Just be aware that you’re going to really
hammer anything that you run this on.

http://www.usenix.org

14  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMING
Fuzzing Code with AFL

the input processing before the AFL fork-server call, then you’ll
be reusing a copy of the same input on each fuzzing run rather
than reading new input each time.

Beyond that there are various other tweaks that you can apply,
which you can also find on the AFL Web page.

So that’s how you can test your code’s behavior on unexpected
input. Using fuzzing may seem like a lot of work to set up ini-
tially, but once it’s done you can roll it into an automated test
system that both identifies existing problems in your code and
later checks that you haven’t introduced new ones in any updates
you make.

Optimizing the Fuzzing
Many applications have a high startup overhead. As part of its
operation AFL uses a fork server in which it preloads the app
once rather than reloading it on each run [11], but this still trig-
gers the startup overhead. The way to avoid this is to defer the
forking until the startup has completed and tell AFL to fork after
that point. So if your app has a code flow that’s a bit like:

 init_app();

 process_input();

then you’d insert a call to the function __afl_manual_init()
between the two:

 init_app();

 __afl_manual_init();

 process_input();

which defers the forking until that point. This means the startup
code is run once and then the initialized in-memory image is
cloned on each fuzzing run, which can greatly speed up the
fuzzing process. If you use this optimization, make sure that you
insert the call at the right place. If, for example, you do some of

References
[1] Edward Adams, “Optimizing Preventive Service of Software
Products,” IBM Journal of Research and Development, vol. 28,
no. 1 (January 1984), pp. 2–14.

[2] Barton Miller, Lars Fredriksen, and Bryan So, “An Empiri-
cal Study of the Reliability of UNIX Utilities,” Communications
of the ACM, vol. 33, no. 12 (December 1990), pp. 32–44: http://
ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf.

[3] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan and Jeff Steidl,
“Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services,” University of Wisconsin—Madison
 Computer Sciences Technical Report, #1268, April 1995: ftp://
ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf.

[4] Justin Forrester and Barton Miller, “An Empirical Study of
the Robustness of Windows NT Applications Using Random
Testing,” Proceedings of the 4th USENIX Windows Systems
Symposium (WinSys ‘00), August 2000, p. 59: https://www
.usenix.org/legacy/events/usenix-win2000/full_papers
/forrester/forrester.pdf.

[5] Barton Miller, Gregory Cooksey, and Fredrick Moore, “An
Empirical Study of the Robustness of MacOS Applications
Using Random Testing,” SIGOPS Operating Systems Review,
vol. 41, no. 1 (January 2007), pp. 78–86: ftp://ftp.cs.wisc.edu
/paradyn/technical_papers/fuzz-nt.pdf.

[6] Michal Zalewski, “Pulling JPEGs Out of Thin Air,” Novem-
ber 7, 2014: http://lcamtuf.blogspot.co.nz/2014/11/pulling-
jpegs-out-of-thin-air.html.

[7] Michal Zalewski, “American Fuzzy Lop”: http://lcamtuf
.coredump.cx/afl/.

[8] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov, “AddressSanitizer: A Fast
Address Sanity Checker,” in Proceedings of the 2012 USENIX
Annual Technical Conference, June 2012, p. 309: https://www
.usenix.org/system/files/conference/atc12/atc12-final39.pdf.

[9] “CMake”: http://www.cmake.org/.

[10] Hanno Böck, “Network Fuzzing with American Fuzzy
Lop,” October 27, 2015: https://blog.fuzzing-project.org
/27-Network-fuzzing-with-american-fuzzy-lop.html.

[11] Michal Zalewski, “Fuzzing Random Programs without
execve(),” October 14, 2014: http://lcamtuf.blogspot.co.nz
/2014/10/fuzzing-binaries-without-execve.html.

http://www.usenix.org
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
https://www.usenix.org/legacy/events/usenix-win2000/full_papers/forrester/forrester.pdf
ftp://ftp.cs.wisc.edu
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
http://www.cmake.org/
https://blog.fuzzing-project.org/27-Network-fuzzing-with-american-fuzzy-lop.html
https://lcamtuf.blogspot.co.nz/2014/10/fuzzing-binaries-without-execve.html
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-nt.pdf
https://lcamtuf.blogspot.co.nz/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.co.nz/2014/11/pulling-jpegs-out-of-thin-air.html
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://blog.fuzzing-project.org/27-Network-fuzzing-with-american-fuzzy-lop.html
https://lcamtuf.blogspot.co.nz/2014/10/fuzzing-binaries-without-execve.html
https://www.usenix.org/legacy/events/usenix-win2000/full_papers/forrester/forrester.pdf
https://www.usenix.org/legacy/events/usenix-win2000/full_papers/forrester/forrester.pdf

It’s time for the security community to take a step back and get a fresh perspective on threat

assessment and attacks. This is why in 2016 the USENIX Association launched Enigma,

a new security conference geared towards those working in both industry and research.

Enigma will return in 2017 to keep pushing the community forward.

Expect three full days of high-quality speakers, content, and engagement

for which USENIX events are known.

JAN 30–FEB 1 2017
OA K L A ND, C A LIF OR NI A , USA

enigma.usenix.org
The Call for Participation will be available soon.

MORE TO DECIPHER

enigma.usenix.org

