
22    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

SECURITY

Using OpenSCAP
M A R T I N P R E I S L E R

Security best practices dictate that we do not run any software with
known and exploitable vulnerabilities, but achieving this is difficult.
While vulnerability databases do exist, they are not in formats useful

for scanning file systems, much less for examining VM images and contain-
ers. I work on OpenSCAP, a tool that uses information extracted from the
National Vulnerability Database [1] and security policies, and checks for
vulnerabilities. oscap can also remediate, or suggest remediations, for con-
figurations that don’t meet established policies. In this article, I explain how
OpenSCAP works, how to use both its GUI and command-line versions, and
how you can use oscap to improve your site’s security.

Ensuring proper configuration and no vulnerabilities in your production environment has
become an essential part of proactive security. In the past it used to be possible to manually
go over a single golden image and then deploy it en masse, but that has changed radically.
Typical business deployments are now much larger than they used to be and are no longer
run just using physical machines. Modern deployments are using virtual machines and
containers and tend to deploy many different images. This brings new challenges to both vul-
nerability assessment and configuration management.

Finding Vulnerabilities
Let us say we have a deployed installation. How do we figure out whether it has any vulner-
abilities? We could look at the National Vulnerability Database [1] and go over the vulnerabil-
ities one by one, comparing affected versions with the versions of software we have installed.
Unfortunately, there are two major issues with this approach. First of all, we would go crazy
very soon, as this approach does not scale to even one machine let alone an infrastructure.
Secondly, we would not get accurate results on most enterprise Linux operating systems
such as Red Hat Enterprise Linux or SUSE Enterprise Linux. The vendors of those operat-
ing systems backport fixes for vulnerabilities into older versions of the software. This way
they minimize the differences between consecutive versions of the operating systems, which
is something their users really appreciate. On the other hand, this makes checking version
ranges for CVEs more complex because the versions no longer match the upstream original
versions.

So how do we deal with this? We need to get a vulnerability database with these backports
recorded. Fortunately, vendors of enterprise operating systems are increasingly supplying a
so-called “CVE feed” with corrected affected versions for each vulnerability. Still, going over
them manually is a lost battle; we need an automated approach.

OpenSCAP can load the CVE feed and go over all vulnerabilities for you, detecting which
vulnerabilities are in your systems.

Martin Preisler works as a
Software Engineer at Red Hat,
Inc. He works in the Identity
Management and Platform
Security team, focusing on

security compliance using Security Content
Automation Protocol. He is the principal author
of SCAP Workbench, a frequent contributor
to OpenSCAP and SCAP Security Guide,
and a contributor to the SCAP standard
specifications. Outside of Red Hat, he likes to
work on open source projects related to real-
time 3D rendering and game development.
mpreisle@redhat.com

http://www.usenix.org
mailto:mpreisle@redhat.com

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  23

SECURITY
Using OpenSCAP

Scanning a Physical Machine for Vulnerabilities
So how does OpenSCAP perform the scanning? First, Open-
SCAP loads the given CVE database which has information
about security advisories from the vendor. Then it goes over
every CVE item in that database, checking the package and
affected version ranges to see whether we have a version in that
range and thus are affected. This works very well for official,
signed packages from the vendors. The vulnerability check itself
does not check checksums of the RPMs; instead most security
policies check checksums of every package installed from an
official source. The reasoning is that we need to check all the
checksums anyway because attackers might have injected into
any package with any vulnerability. To save time this is done in
one go as part of the “verify RPM signatures” rule in security
policies. The rule does something very similar to “rpm -Va”—it
verifies that properties of installed files match package meta-
data. We will touch on security policies later. The criteria for
determining whether we are vulnerable usually look like this:

<criteria operator=”AND”>

 <criterion comment=”openssl is earlier than 0:1.0.1e-30

.el6_6.2” test_ref=”oval:com.redhat.rhsa:tst:20141652019”/>

 <criterion comment=”openssl is signed with Red Hat

redhatrelease2 key” test_ref=”oval:com.redhat.rhsa:tst

:20140679006”/>

</criteria>

In the example above we are checking whether openssl is
installed, and if it is, whether it is the Red Hat signed version and
also whether it’s an earlier version than the one that contains the
fix for the specific vulnerability. In some cases the criteria get
more complex because sometimes a vulnerability gets intro-
duced in some version and then gets fixed in another. In this case
we are checking that a package is installed, is signed by Red Hat,
and is either greater than some version or earlier than another
version.

Let us first show how to do a vulnerability scan on a physical
machine. We will assume Red Hat Enterprise Linux 6 in our
example. Each vendor publishes their CVE feed at a different
location; in the case of Red Hat it is https://www.redhat.com
/security/data/oval/. For Red Hat Enterprise Linux 6 specifi-
cally, we need to choose Red_Hat_Enterprise_Linux_6.xml in
that directory.

yum install openscap-utils

wget

https://www.redhat.com/security/data/oval/Red_Hat

	 _Enterprise_Linux_6.xml

oscap oval eval --results results.xml --report report.html

	 Red_Hat_Enterprise_Linux_6.xml

As oscap is executed we will see lines of each of the vulnerabili-
ties being scanned. If the line says “false”, that means we are not
vulnerable. The output will look like the following:

Definition oval:com.redhat.rhsa:def:20160286: false

Definition oval:com.redhat.rhsa:def:20160258: false

…

After the scan finishes we can either look at results.xml, the
machine readable results, or report.html, the human-readable
HTML report. Covering the machine-readable results is outside
the scope of this article. Let us instead discuss the HTML
report. The report will contain several rows, one for each Red
Hat Security Advisory that is being checked. The green rows
are the rows we do not need to be concerned about; we are not
vulnerable to the CVEs in them. The rows that are highlighted
orange are the ones that our infrastructure is vulnerable to. It is
important to realize that each RHSA can fix one or more CVEs,
that there is no direct 1:1 mapping.

Suppose we have a vulnerability in the kernel in our infrastruc-
ture. What can we do about that? To fix the situation, we should
get all the latest updates installed with yum update. Then we
need to remove the vulnerable kernels to prevent them from
being booted by accident. As long as there is at least one vulner-
able kernel installed, OpenSCAP will report the vulnerability
being in the infrastructure.

Scanning a Container for Vulnerabilities with
oscap-docker
We could scan a container by installing the tools and security
policies inside it and then running oscap. But that is impractical
and goes against best practices of container deployment. Instead
we want to scan containers from the host without affecting them.

There are two ways of scanning a container with OpenSCAP. Let
us start with oscap-docker, which is a command-line tool wrap-
ping the functionality of oscap. It has the same command-line
arguments as oscap with the exception of the first two argu-
ments—the mode of operation and the container or image ID.
Before we can use it we need to install it; on Red Hat Enterprise
Linux 7.2 it is part of the openscap-utils package.

After it is installed we can use it if we have root privileges. There
are two subcommands: container-cve scans a running con-
tainer, while image-cve scans a container image.

oscap-docker container-cve $TARGET_ID

oscap-docker image-cve $TARGET_ID

To start, we can scan a single container image: for example, the
rhel7 base image.

https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
http://www.usenix.org
https://www.redhat.com/security/data/oval/
https://www.redhat.com/security/data/oval/
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml

24  S U M M ER 20 16  VO L . 41 , N O. 2 www.usenix.org

SECURITY
Using OpenSCAP

docker pull rhel7

oscap-docker image-cve rhel7

2016-02-25 12:07:58

URL:http://www.redhat.com/security/data/oval/com.redhat.rhsa

-all.xml.bz2 [1863765/1863765] -> “docker.6xTkgY/cve-oval.xml

.bz2” [1]

Definition oval:com.redhat.rhsa:def:20160286: false

Definition oval:com.redhat.rhsa:def:20160258: false

…

The lines ending with “false” are telling us that we are not
vulnerable to CVEs listed in the respective Red Hat Security
Advisories. If any of the lines end with “true” we are in trouble
and need to update our image.

Scanning a Container for Vulnerabilities with
Atomic
In case you are using Atomic for container management, you
can use the atomic scan functionality instead. The advantage is
that it is easier to use since it automatically manages the CVE
feeds for the user. The tool makes sure you are using the right
CVE feed and that it is up-to-date. If you are running Red Hat
Enterprise Linux 7 and do not have the atomic command-line
tool installed you need to run:

yum install atomic

If you are on Atomic Host, the atomic command should already
be available. After the atomic command is installed, you need
the OpenSCAP-daemon to perform the scans. You can install it
directly on the host and run it or you can download a super-privi-
leged container (SPC) image that provides it. We will go with the
SPC image in this section because it is a little bit simpler to set
up. For the SPC image, we will be using the Fedora 23 Open-
SCAP-daemon container image. There may be other images
available in the future.

atomic install openscap/openscap-daemon-f23

atomic run openscap/openscap-daemon-f23

When the SPC is in place and running we can issue atomic scan
commands.

Let us now look at an example of atomic scan. This time we will
use a custom Red Hat Enterprise Linux 7.2 image that I created
that actually has vulnerabilities. It will help us demonstrate
features of the atomic scan.

atomic scan 6c3a84d798dc

Container/Image	 Cri	 Imp	 Med	 Low

--------------------	 --- --- --- ---

6c3a84d798dc 0 0 2 0

As we can see, container image 6c3a84d798dc has two medium-
severity vulnerabilities. How do we list them? We need to use the
--detail argument.

atomic scan --detail 6c3a84d798dc

6c3a84d798dc

 OS	 : Red Hat Enterprise Linux Server release 7.2 (Maipo)

 Moderate	: 2

 CVE	 : RHSA-2016:0008: openssl security update (Moderate)

 CVE URL	 : https://access.redhat.com/security/cve/CVE-2015-7575

 RHSA ID	 : RHSA-2016:0008-00

 RHSA URL	: https://rhn.redhat.com/errata/RHSA-2016-0008.html

 CVE	 : RHSA-2916:0007: nss security update (Moderate)

 CVE URL	 : https://access.redhat.com/security/cve/CVE-2015-7575

 RHSA ID	 : RHSA-2016:0007-00

 RHSA URL	: https://rhn.redhat.com/errata/RHSA-2016-0007.html

If we need to scan a container instead of an image, we just need
to replace the ID with an ID of the container. Atomic scan also
allows scanning all images, all containers, or both with a single
command—--images, --containers, and --all, respectively.

Vulnerability Scanning for Virtual Machines
Scanning for vulnerabilities on virtual machines is technically
very similar to scanning containers, but the commands are dif-
ferent. Instead of using oscap-docker, we can use oscap-vm to
scan virtual machines. Keep in mind that the oscap-vm com-
mand is fairly new. It is available on Fedora but still not available
on Red Hat Enterprise Linux 7 at the time of this writing. It is
part of the openscap-utils package we have installed previously.

oscap-vm allows us to scan running or shut down virtual
machines, or raw storage images. Let us look at an example:

wget https://www.redhat.com/security/data/oval/Red_Hat

	 _Enterprise_Linux_6.xml

oscap-vm domain rhel6vm oval eval --results results.xml

--report report.html Red_Hat_Enterprise_Linux_6.xml

Here, we are testing a Red Hat Enterprise Linux 6 virtual
machine called “rhel6vm” running on the host.

Checking Configuration with OpenSCAP
So far we have only talked about vulnerabilities. We also need to
make sure our infrastructure is set up in a secure way, that we
have hardening in place. To do that we first need to choose a set
of rules—a so-called security policy. A security policy is usually
a list of rules in PDF or even printed out. Each rule usually has
a description, rationale, identifiers, and some steps to check and
fix the machines. The workflow with these security policies is
that the auditors carry them in big binders and manually check
the machines for compliance. This may be fine for small infra-
structures, but it does not scale and is not cost effective.

Let us explore how to use OpenSCAP for fully automated secu-
rity compliance. OpenSCAP is what has searched vulnerabili-
ties in the first section of this article, but it was hidden under a
few layers of abstraction. Now we need to interact with it more

https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
http://www.usenix.org
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
https://access.redhat.com/security/cve/CVE-2015-7575
https://rhn.redhat.com/errata/RHSA-2016-0008.html
https://access.redhat.com/security/cve/CVE-2015-7575
https://rhn.redhat.com/errata/RHSA-2016-0007.html
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  25

SECURITY
Using OpenSCAP

directly so it makes sense to introduce it. OpenSCAP is an open-
source implementation of SCAP 1.2, the standard for automated
security compliance. You can read more about OpenSCAP at
https://www.open-scap.org/. We will start by choosing a suitable
security policy and profile. For the purposes of this article let
us use PCI-DSS profile from SCAP Security Guide for Red Hat
Enterprise Linux 7. SCAP Security Guide, or SSG, is another
open-source project we will be using. SSG provides SCAP secu-
rity policies for various products like Red Hat Enterprise Linux
6, 7, Fedora, CentOS, Firefox, and others. We will again start by
scanning a physical machine before moving to containers. Let us
log into the machine and install the necessary packages—scap-
workbench and scap-security-guide. You might think that using
such tools as SCAP Workbench, a graphical user interface, feels
out of place in system administration. Keep in mind that SCAP
Workbench lets you prepare the customized policies for a fully
automated deployment in the future.

After installation has finished, we can start SCAP Workbench
by clicking its icon in Applications → System Tools.

SCAP Workbench will start and ask us which content to select.
Since we installed SCAP Security Guide in the previous step, we
have the option to select ssg-rhel7-ds.xml in /usr/share/xml

/scap/ssg/content. We will discuss how to scan using the com-
mand line only later in the article.

Once the content is loaded we will be presented with the main
window of SCAP Workbench, which lists the rules that will be
applied to the system. Let us select the PCI-DSS profile from the
profile combo box.

After selecting the PCI-DSS profile we are all set to perform the
initial scan. The only thing we need to do is click Scan, elevate
privileges by typing the password, and wait a few minutes. On a
default Red Hat Enterprise Linux 7.2 installation at the time of
writing, the results were 31 passes and 43 fails. If we click Show
Report we can see more details about our system.

At this point we can make customizations to the security policy
by clicking “Customize.” For example, we may want our infra-
structure to be set up more strictly than PCI-DSS requires.
In that case we can select additional rules to check and even
increase minimum password length or other values. After we
are done with the customization, we can choose File → Save as
RPM, which gives us a package with our customized security
policy ready-made to be deployed using Satellite 6.

What we have achieved above can be done using the command
line only, with the exception of the customization.

oscap xccdf eval --profile xccdf_org.ssgproject.content

	 profile_pci-dss --results /tmp/results.xml --report

	 /tmp/report.html /usr/share/xml/scap/ssg/content/

	 ssg-rhel7-ds.xml

The snippet above will scan the local machine for compliance
with PCI-DSS and will store results and report in /tmp/results.

xml and /tmp/report.html, respectively.

Changing the Configuration to Be Compliant with
OpenSCAP
If we want to change configuration of the machine to make more
rules pass, we need to check the Remediate checkbox in SCAP
Workbench and click Scan again. If remediation is enabled,
SCAP Workbench will go over the rules figuring out which are
passing and which are failing.

Then for each failing rule it will run a so-called remediation—
code that automatically fixes the configuration—and then check
the rule again. In case the rule is now passing, SCAP Workbench
will declare the rule as fixed. If everything worked smoothly, our
Red Hat Enterprise Linux 7 installation should report no failed
rules.

If we cannot use the GUI, we can do the above using the com-
mand line only:

oscap xccdf eval --profile xccdf_org.ssgproject.content

	 _profile_pci-dss --remediate --results /tmp/results.xml

	 --report /tmp/report.html /usr/share/xml/scap/ssg/content

	 /ssg-rhel7-ds.xml

The important difference from scanning is the --remediate
option. This instructs oscap to run remediation scripts on every
failed check.

Keep in mind that automated remediations can be dangerous
and cannot be undone! They can break some of the functionality
of deployed infrastructure! We recommend testing remediations
on nonproduction machines before deployment.

Very likely you are running a configuration management system,
such as Puppet, Chef, or Ansible. In this case the remediations
will still work but the configuration management systems may
override them, putting your systems out of compliance! Instead
of running the remediations, it may be more valuable to see their
code and adapt the settings of the configuration systems accord-
ingly. To generate a list of fixes instead of running them, run the
following:

$ oscap xccdf generate fix --result-id xccdf_org.open-scap

	 _testresult_xccdf_org.ssgproject.content_profile_pci

	 _dss /tmp/results.xml

The result-id will be correct if you ran the PCI-DSS evaluation
we have just discussed. In case you used a different profile, look
into the /tmp/results.xml file, find the <TestResult> element,
and use its id attribute.

http://www.usenix.org
https://www.open-scap.org/

26    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

SECURITY
Using OpenSCAP

The above will output a shell script into stdout with all the
changes OpenSCAP would make to your system if you ran the
remediation.

Container Security Compliance
Now we can scan the configuration of local and remote
machines, but how do we deal with containers? We could scan
them as a remote machine but that would require installing SSH
and openscap-scanner inside, which is impractical. Instead, let
us look at how to scan containers from the host. We will need the
oscap-docker tool, which is part of the openscap-utils package.

We recommend running oscap-docker --help to explore its
capabilities. It can operate in four different modes. We have
already seen how it can scan containers for vulnerabilities, so
we will skip over the image-cve and container-cve modes in
this section. Instead we will scan a container image for security
compliance.

oscap-docker image $IMAGE_ID xccdf eval --profile

	 xccdf_org.ssgproject.content_profile_common

	 --results /tmp/results.xml --report /tmp/report.html

	 /usr/share/xml/scap/ssg/content/ssg-rhel7-ds.xml

These command-line arguments should look familiar. Apart
from the first two, we are using the same command-line argu-
ments as with the oscap tool. Instead of using the PCI-DSS pro-
file in this section, we will use a new profile called the common
profile. It is less focused on the financial industry and contains
rules checking common security practices instead.

With the command-line snippet above we are doing roughly the
same thing as with SCAP Workbench and oscap earlier in this
article; we have scanned a container image with the common
profile with content coming from the SCAP Security Guide
project for Red Hat Enterprise Linux 7. The results are stored
in /tmp/results.xml, and the HTML report is stored in /tmp/

report.html.

Virtual Machine Security Compliance
As is the case with vulnerability assessment, scanning for secu-
rity compliance is very similar between containers and virtual
machines. Instead of using the oscap-docker command, we need
to use oscap-vm.

oscap-vm domain rhel7vm xccdf eval --profile

	 xccdf_org.ssgproject.content_profile_common --results

	 /tmp/results.xml --report /tmp/report.html

	 /usr/share/xml/scap/ssg/content/ssg-rhel7-ds.xml

The semantics are the same between oscap-vm and oscap-

docker. The key difference is under the hood. oscap-vm uses
guestmount to inspect virtual machines instead of the atomic
mount mechanism inside oscap-docker.

Offline Evaluation Advantages and Limitations
What we have used in the previous two sections is called
offline SCAP evaluation. When we are scanning local or remote
machines, we are using the normal online evaluation. When
scanning containers and virtual machines from the host, we
are using the offline evaluation. The difference between offline
and online evaluation is that the latter has access to all run-
ning processes and can do runtime checks. That means that it
can, for example, ask systemd about information about a unit.
Offline scanning does not have access to the running system;
it is exploring the file system mounted somewhere in read-only
mode.

This has advantages and disadvantages. One advantage of
offline scanning is that we can scan a running container or
virtual machine without any risk of affecting them. On the other
hand, we cannot perform some of the runtime checks like check-
ing which processes are running. We also cannot fix systems in
the offline evaluation mode since the file systems are mounted
read-only. That is not a limitation of the offline mode but rather
its implementation in OpenSCAP. There is an outstanding fea-
ture request to fix this [2].

Conclusion
Using OpenSCAP helps businesses prevent vulnerabilities and
insecure configuration settings in their infrastructure. In this
article we have explored how to use OpenSCAP for physical
machines as well as for virtual machines and containers. Mixing
automated SCAP remediations with configuration management
systems proved difficult but can be handled by going through the
remediation steps and adapting configuration systems accord-
ingly. Using SCAP for containers and virtual machines requires
a new approach called offline evaluation. While limited and
fairly new, it is proving useful for practical container and virtual
machine evaluation.

Acknowledgments
I would like to thank Jan Černý, Rik Farrow, Yoana Ruseva, and
anonymous reviewers for helping me with this article.

References
[1] National Vulnerability Database: https://nvd.nist.gov/.

[2] Feature request to add offline mode repair: https://
fedorahosted.org/openscap/ticket/467.

http://www.usenix.org
https://nvd.nist.gov/
https://fedorahosted.org/openscap/ticket/467
https://fedorahosted.org/openscap/ticket/467

