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Before the advent of Big Data, the largest storage systems in the world 
were found almost exclusively within high performance computing 
centers such as those found at US Department of Energy national lab-

oratories. However, these systems are now dwarfed by large datacenters such 
as those run by Google and Amazon. Although HPC storage systems are no 
longer the largest in terms of total capacity, they do exhibit the largest degree 
of concurrent write access to shared data. In this article, we will explain why 
HPC applications must necessarily exhibit this degree of concurrency and 
the unique HPC storage architectures required to support them.

Computing for Scientific Discovery
High performance computing (HPC) has radically altered how the scientific method is used 
to aid in scientific discovery and has enabled the development of scientific theories that 
were previously unimaginable. Difficult to observe phenomena, such as galaxy collisions and 
quantum particle interactions, are now routinely simulated on the world’s largest supercom-
puters, and large-scale scientific simulation has dramatically decreased the time between 
hypothesis and experimental analysis. As scientists increasingly use simulation for discov-
ery in emerging fields such as climatology and nuclear fusion, demand is driving the growth 
of HPC platforms capable of supporting ever-increasing levels of fidelity and accuracy. 
Extreme-scale HPC platforms (i.e., supercomputers), such as Oak Ridge National Labora-
tory’s Titan or Los Alamos National Laboratory’s Trinity, incorporate tens of thousands 
of processors, memory modules, and storage devices into a single system to better support 
simulation science. Researchers at universities and national laboratories are continuously 
striving to develop algorithms to fully utilize these increasingly powerful and complex 
supercomputers.

Figure 1: Adaptive Mesh Refinement. An example of adaptive mesh refinement for a two-dimensional grid 
in which the most turbulent areas of the mesh have been highly refined (from https://convergecfd.com 
/applications/gas-turbines/).
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A simulation is typically performed by decomposing a physical 
region of interest into a collection of cells called a mesh and then 
calculating how the properties of the elements within each cell 
change over time. The mesh cells are distributed across a set of 
processes running across the many compute nodes within the 
supercomputer. Contiguous regions of cells are assigned to each 
process, and processes must frequently communicate to exchange 
boundary conditions between neighboring cells split across pro-
cesses. Although replicated cells, called ghost cells, are sometimes 
used to reduce the frequency of communication, processes still 
typically exchange messages dozens of times per second. 

Additional communication occurs during a load-leveling phase. 
Complex areas of the mesh that contain a large number of dif-
ferent types of elements are more difficult to simulate with high 
fidelity. Accordingly, simulations will often subdivide these 
areas into smaller cells as shown in Figure 1. This process of 
adaptive mesh refinement causes work imbalance as some pro-
cesses within the parallel application will suddenly be responsi-
ble for a larger number of cells than their siblings. Therefore the 
simulation will rebalance the assignment of cells to processes 
following these refinements. 

Due to the frequency of communication, the processes must run 
in parallel and avoid performance deviations to minimize the 
time spent waiting on messages. This method, tightly coupled 
bulk synchronous computation, is a primary differentiator 
between HPC and Big Data analytics. 

Another primary differentiator is that the memory of each pro-
cess is constantly overwritten as the properties of the mesh are 
updated. The total amount of this distributed memory has grown 
rapidly. For example, an astrophysics simulation on LANL’s 
Trinity system may require up to 1.5 PB of RAM to represent 
regions of space with sufficient detail. Memory is one of the most 
precious resources in a supercomputer; most large-scale simula-
tions expand to use all available memory. The large memory 
requirements coupled with the large amount of time required to 
simulate complex physical interactions leads to a problem for the 
users of large-scale computing systems. 

The Need for Checkpointing
How can one ensure the successful completion of a simulation that 
takes days of calculation using tens of thousands of tightly coupled 
computers with petabytes of constantly overwritten memory?

The answer to that question has been checkpoint-restart. Stor-
ing the program state into a reliable storage system allows a 
failed simulation to restart from the most recently stored state. 

Seemingly a trivial problem in the abstract, checkpoint-restart 
in practice is highly challenging because the actual writes in a 
checkpoint are extremely chaotic. One, the amount of data stored 
by each process is unlikely to match any meaningful block size 

in the storage system and is thus unaligned. Two, the writes are 
to shared data sets and thus incur either metadata or data bottle-
necks [3, 8]. Three, the writes are bursty in that they all occur 
concurrently during the application checkpoint phase following 
a large period of storage idleness during the application compute 
phase. Four, the required bandwidth is very high; supercomputer 
designers face pressure to ensure 90% efficiency such that the 
checkpoint-restart of massive amounts of memory must com-
plete quickly enough that no more than 10% of supercomputer 
lifetime is used.

Although many techniques have been developed to reduce this 
chaos [4], they are typically not available in practice. Incremen-
tal checkpointing reduces the size of the checkpoint but does 
not help when the memories are constantly overwritten. Uncoor-
dinated checkpointing reduces burstiness but is not amenable to 
bulk synchronous computation. Two-phase I/O improves perfor-
mance by reorganizing chaotic writes into larger aligned writes. 
Checkpointing into neighbor memory improves performance by 
eliminating media latencies. However, neither of these latter two 
is possible when all of available memory is used by the application.

Thus, HPC storage workloads, lacking common ground with 
read-intensive cloud workloads or IOPS-intensive enterprise 
workloads, have led to the creation of parallel file systems, 
such as BeeGFS, Ceph, GPFS, Lustre, OrangeFS, and PanFS, 
designed to handle bursty and chaotic checkpointing.

Storage for Scientific Discovery
From the teraflop to the petaflop era, the basic supercomputer 
architecture was remarkably consistent, and parallel file sys-
tems were the primary building block of its storage architecture. 
Successive supercomputers were largely copied from the same 
blueprint because the speed of processors and the capacities of 
memory and disk all grew proportionally to each other following 
Moore’s Law. Horizontal arrows in Table 1 show how these basic 

FLOPS / RAM ()

RAM / core +

MTTF per component ()

MTTI per application +

Impact of performance deviations *

Drive spindles for capacity ()

Drive spindles for bandwidth *

Tape cassettes for capacity ()

Tape drives for bandwidth *

Storage clients / servers *

Table 1: Supercomputer Trends Affecting Storage. Horizontal lines do not 
necessarily indicate no growth in absolute numbers but rather that the 
trend follows the relative overall growth in the machine.
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architectural elements scaled proportionally. However, recent 
inflection points, shown with the vertical arrows, require a rede-
sign of both the supercomputer and its storage architecture.

Era: 2002–2015. The storage architecture for the teraflop 
and petaflop eras is shown in Figure 2a. Large tightly coupled 
applications ran on large clusters of mostly homogeneous 
components. Forward progress, despite inevitable application 
interruptions, was ensured via checkpoint-restart. Tape-based 
archives stored cold data permanently, and disk-based parallel 
file systems satisfied the storage requirements for hot data. 

These storage requirements are easily quantifiable for each 
supercomputer. An optimal checkpoint frequency is derived 
from the MTTI. The checkpoint size is typically no larger than 
80% of the memory of the system, and HPC sites typically desire 
an efficiency of at least 90%. Given a checkpoint frequency and 
a checkpoint size, the required checkpoint bandwidth must be 
sufficient such that the total time spent checkpointing (and 
restarting and recomputing any lost work) is less than 10% of a 
system’s operational time. The storage system also includes a 
capacity requirement derived from the needs of the system users 
and typically results in a capacity requirement between 30 and 
40 times the size of the system memory. 

As an example, imagine an exascale computer with 32 PB of 
memory and a checkpoint frequency of one hour. Ignoring restart 
and recompute, a checkpoint can take no more than six minutes, 
and therefore the required storage bandwidth must be at least 72 
TB/s. The required storage capacity must be at least 960 PB.

An important characteristic of supercomputers within this 
era was that the minimum number of disks required for capac-
ity was larger than the minimum number of disks required for 
bandwidth. This ensured that the simple model of a storage tier 
for performance and a second tier for capacity was economically 
optimal throughout this era.

During this era, total transistor counts continued to double 
approximately every 24 months. However, in the second half of 
this era, they did so horizontally by adding more compute nodes 
with larger core counts as opposed to merely increasing transis-
tors within cores. This has had important implications which 
affect the storage stack: (1) although component reliability is 
little changed, large-scale systems built with increasing num-
bers of components are experiencing much shorter mean times 
to failure; (2) the amount of private memory available to each 
process is decreasing; (3) the number of processes participating 
in checkpoint-restart is growing; and (4) since larger supercom-
puters are more sensitive to performance deviations across their 
components, programming models which rely on bulk synchro-
nous computing are less efficient. 

Although petascale systems such as LANL’s Roadrunner and 
ORNL’s Jaguar began to stress the existing storage model in 
2008, it survived until 2015.

Era: 2015–2016. In this era the inflection point in Table 1 not-
ing the growth in the number of disk spindles required to meet 
checkpoint bandwidth requirements becomes a limitation. Until 
2013, the system capacity requirement ensured sufficient disks 
to simultaneously satisfy the performance requirement. How-
ever, as disks have gotten relatively slower (as compared to their 
growth in capacity), a larger number of spindles is required to 
meet the bandwidth demand. A flash-only storage system could 
easily satisfy performance but would be prohibitively expensive 
for capacity: thus the introduction of a small performance tier 
situated between the application and the disk-based parallel file 
system as shown in Figure 2b. This tier is commonly referred 
to as a burst buffer [1, 7] because it is provisioned with enough 
bandwidth to meet the temporary bandwidth requirement but 
not sufficient capacity to meet the overall system demands. 
The bursty nature of the checkpoint-restart workload allows 
sufficient time to drain the data to a larger-capacity disk-based 
system. Initial burst buffer systems have been built on TACC’s 
Wrangler, NERSC’s Cori, and LANL’s Trinity supercomputers.

Figure 2: From 2 to 4 and back again. Static for over a decade, the HPC storage stack has now entered a period of rapid change.

(a) 2002–2015 (b) 2015–2016 (c) 2016–2020 (d) 2020–
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Era: 2016–2020. A similar shift to that which motivated burst 
buffers now has occurred in the economic ratio between tape 
and disk. Although tape’s primary requirement is to satisfy long-
term capacity, it also has a performance requirement which is 
becoming increasingly expensive due to unique characteristics 
of tape. Specifically, tape capacity and performance are pur-
chased separately, whereas, for disk and flash, they are pur-
chased together; for example, a typical disk might provide a TB of 
capacity, 100 MBs of bandwidth, and 100 IOPS. Conversely, tape 
capacity is purchased in inexpensive cassettes, bandwidth in 
expensive drives, and IOPS in very expensive robots to connect 
the two. Analysis has shown that a hybrid disk-tape system was 
the correct economic choice for archival HPC storage as early as 
2015 [6], as shown in Figure 2c. The emergence of efficient era-
sure coded object storage software has enabled the development 
of MarFS [5], the first instance of a disk-based archival storage 
system for HPC data that can provide the minimal bandwidth 
and extreme levels of data protection required for long-term data 
retention. For reference, the four storage tiers of LANL’s 2016 
Trinity supercomputer are shown in Table 2.

For future supercomputers of this era, we also expect that the 
physical location of the flash memory burst buffers will change. 
Instead of being in dedicated external nodes accessible to all of 
the compute nodes, flash memory will begin appearing within 
the supercomputer (e.g., node-local storage). Despite this change, 
this era will continue to be defined by the presence of a parallel 
file system.

Era: 2020 Onward. The four storage tiers shown in Figure 2c 
are an unnecessary burden on system integrators, administra-
tors, and users. Therefore, as shown in Figure 2d, we predict a 
return to two-tier storage architectures for HPC systems. Also 

in this era, we predict the emergence of new storage interfaces to 
better utilize node-local storage.

Return to Two Tiers. Parallel file systems were created to 
handle chaotic, complex, and unpredictable streams of I/O as 
shown in Figure 2a. Figure 2b shows that burst buffers now 
absorb that chaos, leaving parallel file systems serving only 
orderly streams of I/O issued by system utilities. When burst 
buffers were first introduced, the possibility that these orderly 
streams might go directly to the tape archive was discussed. And 
while this was feasible for writes, reads would have experienced 
unacceptable latency. However, the move to disk-based object 
stores as shown in Figure 2c does provide sufficient perfor-
mance for both reads and writes issued from the burst buffer. 
Thus, a separate parallel file system is no longer needed. The top 
two storage tiers in Figure 2c will combine, and the burst buffer 
will subsume the parallel file system.

Similarly, the bottom two tiers will merge. The erasure codes 
used in object storage present a much richer approach to reliabil-
ity and data durability than modern tape archives. As the costs 
of an object store fall below those of a tape archive [6], the role of 
tape will increasingly be filled by the disk-based object store.

Early prototypes of a return to a two-tier HPC storage system 
are EMC’s eponymous 2 Tiers™ and CMU’s BatchFS [9]. Both 
expose a file system interface to the application, store hot data in 
a burst buffer, and can store cold data in an object store.

New Storage Interfaces. Although the burst buffer will 
subsume the parallel file system, over time it will decreasingly 
resemble current systems. Many bottlenecks within parallel file 
systems are due to the legacy POSIX semantics that are typically 
unnecessary for HPC applications. That vendors have provided 
POSIX is not surprising given that parallel file systems are also 
used by enterprise (i.e., non-HPC) customers who require more 
rigorous semantics.

However, as burst buffers will begin appearing as local stor-
age within each compute node, these bottlenecks will finally 
become intractable. Maintaining POSIX semantics for a global 

Figure 3: HPC Storage System Costs. This graph shows the media costs 
required to satisfy the checkpoint bandwidth and capacity requirement 
for 90% forward progression. We can see that in 2013, storage systems 
composed of one media type (disks or flash) are not as economical as a 
storage system that uses flash to meet bandwidth requirements and disks 
to meet capacity requirements.

Size Bandwidth Lifetime

Memory 2.1 PB 1–2 PB/s milliseconds

Burst Buffer 3.7 PB 4–6 TB/s hours

Parallel FS 78 PB 1–2 TB/s weeks

Object Store 30 PB 100–300 GB/s months

Tape Archive 50+ PB 10 GB/s forever

Table 2: The Four Tiers of Trinity Storage. LANL’s Trinity supercomputer 
uses Cray’s DataWarp as a burst buffer, Lustre as a parallel file system, 
MarFS as a file system interface over an object store, and HPSS for the 
tape archive. The sizes above reflect the sizes at installation; the object 
store and the tape archive will grow over the lifetime of the machine.
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namespace across distributed local burst buffers destroys the 
low latency of node-local storage since data access requires 
higher latency communications with a remote centralized 
metadata service. Thus, emerging systems like DeltaFS [10] and 
Intel’s DAOS-M employ relaxed semantics to allow HPC applica-
tions with less rigorous storage requirements to achieve higher 
performance. We expect that these, or similar storage services, 
will increasingly appear as user-space libraries utilizing OS-
bypass for low-latency access to local storage with eventual 
namespace reconciliation as first developed in Coda.

Further, the increased sensitivity to system noise is diminishing 
the efficiency of bulk synchronous computing models. Accord-
ingly, programming models such as Stanford’s Legion and asyn-
chronous MPI will become attractive alternatives, but they will 
require asynchronous checkpointing models, such as uncoordi-
nated checkpointing using message logging [4] or asynchronous 
transactions [2] with relaxed consistency semantics.

Conclusion
Unique properties of scientific simulations require unique stor-
age architectures. Static for over a decade, HPC storage systems 
have now entered a period of rapid development. The opportunity 
for innovation in HPC storage is currently immense. We urge 
interested readers to join us in building new storage technolo-
gies for exascale computing.
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