
34    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

STORAGEServing Data to the Lunatic Fringe
The Evolution of HPC Storage

J O H N B E N T , B R A D S E T T L E M Y E R , A N D G A R Y G R I D E R

John Bent. Making super
computers superer for over a
decade. At Seagate Government
Solutions.
john.bent@seagategov.com.

John Bent.

Brad Settlemyer is a Storage
Systems Researcher and
Systems Programmer
specializing in high performance
computing. He works as a

research scientist in Los Alamos National
Laboratory’s Systems Integration group. He
has published papers on emerging storage
systems, long distance data movement,
network modeling, and storage system
algorithms. bws@lanl.gov

As Division Leader of the High
Performance Computing (HPC)
Division at Los Alamos National
Laboratory, Gary Grider is
responsible for all aspects of

high performance computing technologies
and deployment at Los Alamos. Gary is
also the US Department of Energy Exascale
Storage, I/O, and Data Management National
Co-Coordinator. Gary has 30 active patents/
applications in the data storage area and has
been working in HPC and HPC-related storage
since 1984. ggrider@lanl.gov

Before the advent of Big Data, the largest storage systems in the world
were found almost exclusively within high performance computing
centers such as those found at US Department of Energy national lab-

oratories. However, these systems are now dwarfed by large datacenters such
as those run by Google and Amazon. Although HPC storage systems are no
longer the largest in terms of total capacity, they do exhibit the largest degree
of concurrent write access to shared data. In this article, we will explain why
HPC applications must necessarily exhibit this degree of concurrency and
the unique HPC storage architectures required to support them.

Computing for Scientific Discovery
High performance computing (HPC) has radically altered how the scientific method is used
to aid in scientific discovery and has enabled the development of scientific theories that
were previously unimaginable. Difficult to observe phenomena, such as galaxy collisions and
quantum particle interactions, are now routinely simulated on the world’s largest supercom-
puters, and large-scale scientific simulation has dramatically decreased the time between
hypothesis and experimental analysis. As scientists increasingly use simulation for discov-
ery in emerging fields such as climatology and nuclear fusion, demand is driving the growth
of HPC platforms capable of supporting ever-increasing levels of fidelity and accuracy.
Extreme-scale HPC platforms (i.e., supercomputers), such as Oak Ridge National Labora-
tory’s Titan or Los Alamos National Laboratory’s Trinity, incorporate tens of thousands
of processors, memory modules, and storage devices into a single system to better support
simulation science. Researchers at universities and national laboratories are continuously
striving to develop algorithms to fully utilize these increasingly powerful and complex
supercomputers.

Figure 1: Adaptive Mesh Refinement. An example of adaptive mesh refinement for a two-dimensional grid
in which the most turbulent areas of the mesh have been highly refined (from https://convergecfd.com
/applications/gas-turbines/).

http://www.usenix.org
mailto:john.bent@seagategov.com
mailto:bws@lanl.gov
mailto:ggrider@lanl.gov
https://convergecfd.com/applications/gas-turbines/
https://convergecfd.com/applications/gas-turbines/

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  35

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

A simulation is typically performed by decomposing a physical
region of interest into a collection of cells called a mesh and then
calculating how the properties of the elements within each cell
change over time. The mesh cells are distributed across a set of
processes running across the many compute nodes within the
supercomputer. Contiguous regions of cells are assigned to each
process, and processes must frequently communicate to exchange
boundary conditions between neighboring cells split across pro-
cesses. Although replicated cells, called ghost cells, are sometimes
used to reduce the frequency of communication, processes still
typically exchange messages dozens of times per second.

Additional communication occurs during a load-leveling phase.
Complex areas of the mesh that contain a large number of dif-
ferent types of elements are more difficult to simulate with high
fidelity. Accordingly, simulations will often subdivide these
areas into smaller cells as shown in Figure 1. This process of
adaptive mesh refinement causes work imbalance as some pro-
cesses within the parallel application will suddenly be responsi-
ble for a larger number of cells than their siblings. Therefore the
simulation will rebalance the assignment of cells to processes
following these refinements.

Due to the frequency of communication, the processes must run
in parallel and avoid performance deviations to minimize the
time spent waiting on messages. This method, tightly coupled
bulk synchronous computation, is a primary differentiator
between HPC and Big Data analytics.

Another primary differentiator is that the memory of each pro-
cess is constantly overwritten as the properties of the mesh are
updated. The total amount of this distributed memory has grown
rapidly. For example, an astrophysics simulation on LANL’s
Trinity system may require up to 1.5 PB of RAM to represent
regions of space with sufficient detail. Memory is one of the most
precious resources in a supercomputer; most large-scale simula-
tions expand to use all available memory. The large memory
requirements coupled with the large amount of time required to
simulate complex physical interactions leads to a problem for the
users of large-scale computing systems.

The Need for Checkpointing
How can one ensure the successful completion of a simulation that
takes days of calculation using tens of thousands of tightly coupled
computers with petabytes of constantly overwritten memory?

The answer to that question has been checkpoint-restart. Stor-
ing the program state into a reliable storage system allows a
failed simulation to restart from the most recently stored state.

Seemingly a trivial problem in the abstract, checkpoint-restart
in practice is highly challenging because the actual writes in a
checkpoint are extremely chaotic. One, the amount of data stored
by each process is unlikely to match any meaningful block size

in the storage system and is thus unaligned. Two, the writes are
to shared data sets and thus incur either metadata or data bottle-
necks [3, 8]. Three, the writes are bursty in that they all occur
concurrently during the application checkpoint phase following
a large period of storage idleness during the application compute
phase. Four, the required bandwidth is very high; supercomputer
designers face pressure to ensure 90% efficiency such that the
checkpoint-restart of massive amounts of memory must com-
plete quickly enough that no more than 10% of supercomputer
lifetime is used.

Although many techniques have been developed to reduce this
chaos [4], they are typically not available in practice. Incremen-
tal checkpointing reduces the size of the checkpoint but does
not help when the memories are constantly overwritten. Uncoor-
dinated checkpointing reduces burstiness but is not amenable to
bulk synchronous computation. Two-phase I/O improves perfor-
mance by reorganizing chaotic writes into larger aligned writes.
Checkpointing into neighbor memory improves performance by
eliminating media latencies. However, neither of these latter two
is possible when all of available memory is used by the application.

Thus, HPC storage workloads, lacking common ground with
read-intensive cloud workloads or IOPS-intensive enterprise
workloads, have led to the creation of parallel file systems,
such as BeeGFS, Ceph, GPFS, Lustre, OrangeFS, and PanFS,
designed to handle bursty and chaotic checkpointing.

Storage for Scientific Discovery
From the teraflop to the petaflop era, the basic supercomputer
architecture was remarkably consistent, and parallel file sys-
tems were the primary building block of its storage architecture.
Successive supercomputers were largely copied from the same
blueprint because the speed of processors and the capacities of
memory and disk all grew proportionally to each other following
Moore’s Law. Horizontal arrows in Table 1 show how these basic

FLOPS / RAM ()

RAM / core +

MTTF per component ()

MTTI per application +

Impact of performance deviations *

Drive spindles for capacity ()

Drive spindles for bandwidth *

Tape cassettes for capacity ()

Tape drives for bandwidth *

Storage clients / servers *

Table 1: Supercomputer Trends Affecting Storage. Horizontal lines do not
necessarily indicate no growth in absolute numbers but rather that the
trend follows the relative overall growth in the machine.

http://www.usenix.org

36    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

architectural elements scaled proportionally. However, recent
inflection points, shown with the vertical arrows, require a rede-
sign of both the supercomputer and its storage architecture.

Era: 2002–2015. The storage architecture for the teraflop
and petaflop eras is shown in Figure 2a. Large tightly coupled
applications ran on large clusters of mostly homogeneous
components. Forward progress, despite inevitable application
interruptions, was ensured via checkpoint-restart. Tape-based
archives stored cold data permanently, and disk-based parallel
file systems satisfied the storage requirements for hot data.

These storage requirements are easily quantifiable for each
supercomputer. An optimal checkpoint frequency is derived
from the MTTI. The checkpoint size is typically no larger than
80% of the memory of the system, and HPC sites typically desire
an efficiency of at least 90%. Given a checkpoint frequency and
a checkpoint size, the required checkpoint bandwidth must be
sufficient such that the total time spent checkpointing (and
restarting and recomputing any lost work) is less than 10% of a
system’s operational time. The storage system also includes a
capacity requirement derived from the needs of the system users
and typically results in a capacity requirement between 30 and
40 times the size of the system memory.

As an example, imagine an exascale computer with 32 PB of
memory and a checkpoint frequency of one hour. Ignoring restart
and recompute, a checkpoint can take no more than six minutes,
and therefore the required storage bandwidth must be at least 72
TB/s. The required storage capacity must be at least 960 PB.

An important characteristic of supercomputers within this
era was that the minimum number of disks required for capac-
ity was larger than the minimum number of disks required for
bandwidth. This ensured that the simple model of a storage tier
for performance and a second tier for capacity was economically
optimal throughout this era.

During this era, total transistor counts continued to double
approximately every 24 months. However, in the second half of
this era, they did so horizontally by adding more compute nodes
with larger core counts as opposed to merely increasing transis-
tors within cores. This has had important implications which
affect the storage stack: (1) although component reliability is
little changed, large-scale systems built with increasing num-
bers of components are experiencing much shorter mean times
to failure; (2) the amount of private memory available to each
process is decreasing; (3) the number of processes participating
in checkpoint-restart is growing; and (4) since larger supercom-
puters are more sensitive to performance deviations across their
components, programming models which rely on bulk synchro-
nous computing are less efficient.

Although petascale systems such as LANL’s Roadrunner and
ORNL’s Jaguar began to stress the existing storage model in
2008, it survived until 2015.

Era: 2015–2016. In this era the inflection point in Table 1 not-
ing the growth in the number of disk spindles required to meet
checkpoint bandwidth requirements becomes a limitation. Until
2013, the system capacity requirement ensured sufficient disks
to simultaneously satisfy the performance requirement. How-
ever, as disks have gotten relatively slower (as compared to their
growth in capacity), a larger number of spindles is required to
meet the bandwidth demand. A flash-only storage system could
easily satisfy performance but would be prohibitively expensive
for capacity: thus the introduction of a small performance tier
situated between the application and the disk-based parallel file
system as shown in Figure 2b. This tier is commonly referred
to as a burst buffer [1, 7] because it is provisioned with enough
bandwidth to meet the temporary bandwidth requirement but
not sufficient capacity to meet the overall system demands.
The bursty nature of the checkpoint-restart workload allows
sufficient time to drain the data to a larger-capacity disk-based
system. Initial burst buffer systems have been built on TACC’s
Wrangler, NERSC’s Cori, and LANL’s Trinity supercomputers.

Figure 2: From 2 to 4 and back again. Static for over a decade, the HPC storage stack has now entered a period of rapid change.

(a) 2002–2015 (b) 2015–2016 (c) 2016–2020 (d) 2020–

http://www.usenix.org

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  37

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

Era: 2016–2020. A similar shift to that which motivated burst
buffers now has occurred in the economic ratio between tape
and disk. Although tape’s primary requirement is to satisfy long-
term capacity, it also has a performance requirement which is
becoming increasingly expensive due to unique characteristics
of tape. Specifically, tape capacity and performance are pur-
chased separately, whereas, for disk and flash, they are pur-
chased together; for example, a typical disk might provide a TB of
capacity, 100 MBs of bandwidth, and 100 IOPS. Conversely, tape
capacity is purchased in inexpensive cassettes, bandwidth in
expensive drives, and IOPS in very expensive robots to connect
the two. Analysis has shown that a hybrid disk-tape system was
the correct economic choice for archival HPC storage as early as
2015 [6], as shown in Figure 2c. The emergence of efficient era-
sure coded object storage software has enabled the development
of MarFS [5], the first instance of a disk-based archival storage
system for HPC data that can provide the minimal bandwidth
and extreme levels of data protection required for long-term data
retention. For reference, the four storage tiers of LANL’s 2016
Trinity supercomputer are shown in Table 2.

For future supercomputers of this era, we also expect that the
physical location of the flash memory burst buffers will change.
Instead of being in dedicated external nodes accessible to all of
the compute nodes, flash memory will begin appearing within
the supercomputer (e.g., node-local storage). Despite this change,
this era will continue to be defined by the presence of a parallel
file system.

Era: 2020 Onward. The four storage tiers shown in Figure 2c
are an unnecessary burden on system integrators, administra-
tors, and users. Therefore, as shown in Figure 2d, we predict a
return to two-tier storage architectures for HPC systems. Also

in this era, we predict the emergence of new storage interfaces to
better utilize node-local storage.

Return to Two Tiers. Parallel file systems were created to
handle chaotic, complex, and unpredictable streams of I/O as
shown in Figure 2a. Figure 2b shows that burst buffers now
absorb that chaos, leaving parallel file systems serving only
orderly streams of I/O issued by system utilities. When burst
buffers were first introduced, the possibility that these orderly
streams might go directly to the tape archive was discussed. And
while this was feasible for writes, reads would have experienced
unacceptable latency. However, the move to disk-based object
stores as shown in Figure 2c does provide sufficient perfor-
mance for both reads and writes issued from the burst buffer.
Thus, a separate parallel file system is no longer needed. The top
two storage tiers in Figure 2c will combine, and the burst buffer
will subsume the parallel file system.

Similarly, the bottom two tiers will merge. The erasure codes
used in object storage present a much richer approach to reliabil-
ity and data durability than modern tape archives. As the costs
of an object store fall below those of a tape archive [6], the role of
tape will increasingly be filled by the disk-based object store.

Early prototypes of a return to a two-tier HPC storage system
are EMC’s eponymous 2 Tiers™ and CMU’s BatchFS [9]. Both
expose a file system interface to the application, store hot data in
a burst buffer, and can store cold data in an object store.

New Storage Interfaces. Although the burst buffer will
subsume the parallel file system, over time it will decreasingly
resemble current systems. Many bottlenecks within parallel file
systems are due to the legacy POSIX semantics that are typically
unnecessary for HPC applications. That vendors have provided
POSIX is not surprising given that parallel file systems are also
used by enterprise (i.e., non-HPC) customers who require more
rigorous semantics.

However, as burst buffers will begin appearing as local stor-
age within each compute node, these bottlenecks will finally
become intractable. Maintaining POSIX semantics for a global

Figure 3: HPC Storage System Costs. This graph shows the media costs
required to satisfy the checkpoint bandwidth and capacity requirement
for 90% forward progression. We can see that in 2013, storage systems
composed of one media type (disks or flash) are not as economical as a
storage system that uses flash to meet bandwidth requirements and disks
to meet capacity requirements.

Size Bandwidth Lifetime

Memory 2.1 PB 1–2 PB/s milliseconds

Burst Buffer 3.7 PB 4–6 TB/s hours

Parallel FS 78 PB 1–2 TB/s weeks

Object Store 30 PB 100–300 GB/s months

Tape Archive 50+ PB 10 GB/s forever

Table 2: The Four Tiers of Trinity Storage. LANL’s Trinity supercomputer
uses Cray’s DataWarp as a burst buffer, Lustre as a parallel file system,
MarFS as a file system interface over an object store, and HPSS for the
tape archive. The sizes above reflect the sizes at installation; the object
store and the tape archive will grow over the lifetime of the machine.

http://www.usenix.org

38    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

namespace across distributed local burst buffers destroys the
low latency of node-local storage since data access requires
higher latency communications with a remote centralized
metadata service. Thus, emerging systems like DeltaFS [10] and
Intel’s DAOS-M employ relaxed semantics to allow HPC applica-
tions with less rigorous storage requirements to achieve higher
performance. We expect that these, or similar storage services,
will increasingly appear as user-space libraries utilizing OS-
bypass for low-latency access to local storage with eventual
namespace reconciliation as first developed in Coda.

Further, the increased sensitivity to system noise is diminishing
the efficiency of bulk synchronous computing models. Accord-
ingly, programming models such as Stanford’s Legion and asyn-
chronous MPI will become attractive alternatives, but they will
require asynchronous checkpointing models, such as uncoordi-
nated checkpointing using message logging [4] or asynchronous
transactions [2] with relaxed consistency semantics.

Conclusion
Unique properties of scientific simulations require unique stor-
age architectures. Static for over a decade, HPC storage systems
have now entered a period of rapid development. The opportunity
for innovation in HPC storage is currently immense. We urge
interested readers to join us in building new storage technolo-
gies for exascale computing.

Acknowledgments
A portion of this work was performed at the Ultrascale Systems
Research Center (USRC) at Los Alamos National Laboratory,
supported by the US Department of Energy contract DE-FC02-
06ER25750 and a CRADA between LANL and EMC. The pub-
lication has been assigned the LANL identifier LA-UR-16-21697.

References
[1] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic,
and J. Woodring, “Jitter-Free Co-Processing on a Prototype
Exascale Storage Stack,” in Proceedings of the IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST),
April 2012, pp. 1–5.

[2] J. Bent, B. Settlemyer, H. Bao, S. Faibish, J. Sauer, and
J. Zhang, “BAD Check: Bulk Asynchronous Distributed Check-
pointing and IO,” in Proceedings of the Petascale Data Storage
Workshop at SC15 (PDSW15), Nov. 2015, pp. 19–24.

[3] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and
T. Ludwig, “Small-File Access in Parallel File Systems,” in
Proceedings of the IEEE International Symposium on Parallel
Distributed Processing (IPDPS 2009), May 2009, pp. 1–11.

[4] K. B. Ferreira, “Keeping Checkpointing Viable for Exascale
Systems,” PhD dissertation, University of New Mexico, Albu-
querque, 2011, ISBN: 978-1-267-28351-1.

[5] G. Grider et al., “MarFS—A Scalable Near-Posix Metadata
File System with Cloud Based Object Backend,” in Proceed-
ings of the 10th Parallel Data Storage Workshop (PDSW ’15),
Abstract—Work-in-Progress, 2015: http://www.pdsw.org
/pdsw15/wips/wip-lamb.pdf.

[6] J. Inman, G. Grider, and H. B. Chen, “Cost of Tape Versus
Disk for Archival Storage,” in Proceedings of the IEEE 7th Inter-
national Conference on Cloud Computing (CLOUD), June 2014,
pp. 208–215.

[7] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the Role of Burst Buffers in
Leadership-Class Storage Systems,” in Proceedings of the 2012
IEEE Conference on Massive Data Storage, 2012: https://www
.mcs.anl.gov/papers/P2070-0312.pdf.

[8] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield,
“Zest: Checkpoint Storage System for Large Supercomputers,”
in Proceedings of the 3rd Parallel Data Storage Workshop (PDSW
’08), Nov. 2008, pp. 1–5.

[9] Q. Zheng, K. Ren, and G. Gibson, “BatchFS: Scaling the File
System Control Plane with Client-Funded Metadata Servers,”
in Proceedings of the 9th Parallel Data Storage Workshop (PDSW
’14), 2014, pp. 1–6: http://dx.doi.org/10.1109/PDSW.2014.7.

[10] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G.
Grider, “DeltaFS: Exascale File Systems Scale Better without
Dedicated Servers,” in Proceedings of the 10th Parallel Data
Storage Workshop (PDSW ’15), ACM, 2015, pp. 1–6: http://
doi.acm.org/10.1145/2834976.2834984.

http://www.usenix.org
http://www.pdsw.org/pdsw15/wips/wip-lamb.pdf
https://www.mcs.anl.gov/papers/P2070-0312.pdf
http://dx.doi.org/10.1109/PDSW.2014.7
http://doi.acm.org/10.1145/2834976.2834984
http://doi.acm.org/10.1145/2834976.2834984
http://www.pdsw.org/pdsw15/wips/wip-lamb.pdf
https://www.mcs.anl.gov/papers/P2070-0312.pdf

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/facebook

www.usenix.org/linkedin

www.usenix.org/gplus

REGISTER TODAY!
2016 USENIX
Annual Technical Conference
JUNE 22–24, 2016 • DENVER, CO
www.usenix.org/atc16

USENIX ATC ’16 brings leading systems researchers together for cutting-
edge systems research and unlimited opportunities to gain insight into a
variety of must-know topics, including virtualization, system administration,
cloud computing, security, and networking.

SOUPS 2016
Twelfth Symposium on Usable Privacy and Security

JUNE 22–24, 2016
www.usenix.org/soups2016

SOUPS 2016 will bring together an interdisciplinary group of researchers
and practitioners in human computer interaction, security, and privacy.
The program will feature technical papers, workshops and tutorials, a
poster session, panels and invited talks, and lightning talks.

HotCloud ’16
8th USENIX Workshop on Hot Topics in Cloud Computing

JUNE 20–21, 2016
Researchers and practitioners at HotCloud ’16 share their perspectives,
report on recent developments, discuss research in progress, and
identify new/emerging “hot” trends in cloud computing technologies.

HotStorage ’16
8th USENIX Workshop on Hot Topics in Storage and File Systems

JUNE 20–21, 2016
HotStorage ‘16 is an ideal forum for leading storage systems
researchers to exchange ideas and discuss the design, implementation,
management, and evaluation of these systems.

Co-located with USENIX ATC ’16:

http://www.usenix.org/youtube
http://www.usenix.org/facebook
http://www.usenix.org/linkedin
http://www.usenix.org/gplus
http://www.usenix.org/atc16
http://www.usenix.org/soups2016
https://twitter.com/usenix

