
44    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

SYSADMINImprove Your Multi-Homed Servers with
Policy Routing
J O N A T H O N A N D E R S O N

Jonathon Anderson has been
an HPC Sysadmin since 2006
and believes that everything
would be a lot easier if we just
spent more time figuring out the

correct way to do things. He’s currently serving
as HPC Engineer at the University of Colorado
and hopes to stick around Boulder for a long
time to come.
jonathon.anderson@colorado.edu

Traditional IP routing systems route packets by comparing the des-
tination address against a predefined list of routes to each available
subnet; but when multiple potential routes exist between two hosts

on a network, the preferred route may be dependent on context that cannot
be inferred from the destination alone. The Linux kernel, together with the
iproute2 suite [1], supports the definition of multiple routing tables [2] and a
routing policy database [3] to select the preferred routing table dynamically.
This additional expressiveness can be used to avoid multiple routing pitfalls,
including asymmetric routes and performance bottlenecks from suboptimal
route selection.

Background
The CU-Boulder Research Computing environment spans three datacenters, each with
its own set of special-purpose networks. A traditionally routed host simultaneously con-
nected to two or more of these networks compounds network complexity by making only one
interface (the default gateway) generally available across network routes. Some cases can be
addressed by defining static routes, but even this leads to asymmetric routing that is at best
confusing and at worst a performance bottleneck.

Over the past few months we’ve been transitioning our hosts from a single-table routing
configuration to a policy-driven, multi-table routing configuration. The end result is full
bi-directional connectivity between any two interfaces in the network, irrespective of
underlying topology or a host’s default route. This has reduced the apparent complexity in
our network by allowing the host and network to Do the Right Thing™ automatically, uncon-
strained by an otherwise static route map.

Linux policy routing has become an essential addition to host configuration in the University
of Colorado Boulder “Science Network.” It’s so useful, in fact, that I’m surprised a basic rout-
ing policy isn’t provided by default for multi-homed servers.

The Problem with Traditional Routing
The simplest Linux host routing scenario is a system with a single network interface.

ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

 pfifo_fast state UP qlen 1000

 link/ether 00:50:56:88:56:1f brd ff:ff:ff:ff:ff:ff

 inet 10.225.160.38/24 brd 10.225.160.255 scope global dynamic ens192

 valid_lft 60184sec preferred_lft 60184sec

http://www.usenix.org
mailto:jonathon.anderson@colorado.edu

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  45

SYSADMIN
Improve Your Multi-Homed Servers with Policy Routing

Such a typically configured network with a single uplink has a
single default route in addition to its link-local route.

ip route list

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192 proto kernel scope link src

10.225.160.38

Traffic to hosts on 10.225.160.0/24 is delivered directly, while
traffic to any other network is forwarded to 10.225.160.1.

A dual-homed host adds a second network interface and a second
link-local route, but the original default route remains (see
Figure 1).

ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

	 pfifo_fast state UP qlen 1000

 link/ether 00:50:56:88:56:1f brd ff:ff:ff:ff:ff:ff

 inet 10.225.160.38/24 brd 10.225.160.255 scope global

dynamic ens192

 valid_lft 86174sec preferred_lft 86174sec

3: ens224: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

	 pfifo_fast state UP qlen 1000

 link/ether 00:50:56:88:44:18 brd ff:ff:ff:ff:ff:ff

 inet 10.225.176.38/24 brd 10.225.176.255 scope global dynamic

ens224

 valid_lft 69193sec preferred_lft 69193sec

ip route list

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192 proto kernel scope link src

10.225.160.38

10.225.176.0/24 dev ens224 proto kernel scope link src

10.225.176.38

The new link-local route provides access to hosts on
10.225.176.0/24 and is sufficient for a private network con-
necting a small cluster of hosts. In fact, this is the configuration
that we started with in our Research Computing environment:
.160.0/24 is a low-performance “management” network, while
.176.0/24 is a high-performance “data” network.

In a more complex network, however, link-local routes quickly
become insufficient. In the CU Science Network, for example,
each datacenter is considered a discrete network zone with its
own set of “management” and “data” networks. For hosts in
different network zones to communicate, a static route must be
defined in each direction to direct performance-sensitive traffic
across the high-performance network route (see Figure 2).

server # ip route add 10.225.144.0/24 via 10.225.176.1

client # ip route add 10.225.176.0/24 via 10.225.144.0

Although managing these static routes can be tedious, they do
sufficiently define connectivity between the relevant network
pairs: “data” interfaces route traffic to each other via high-per-
formance networks, while “management” interfaces route traf-
fic to each other via low-performance networks. Other networks
(e.g., the Internet) can only communicate with the hosts on their
default routes; but this limitation may be acceptable for some
scenarios.

Even this approach is insufficient, however, to allow traffic
between “management” and “data” interfaces. This is par-
ticularly problematic when a client host is not equipped with
a symmetric set of network interfaces (see Figure 3). Such a
client may only have a “management” interface but should still

Figure 1: A simple dual-homed server with a traditional default route Figure 2: A server and a client, with static routes between their data
interfaces

http://www.usenix.org

46    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

SYSADMIN
Improve Your Multi-Homed Servers with Policy Routing

communicate with the server’s high-performance interface for
certain types of traffic. (For example, a dual-homed NFS server
should direct all NFS traffic over its high-performance “data”
network, even when being accessed by a client that itself only
has a low-performance “management” interface.) By default, the
Linux rp_filter [4] blocks this traffic, as the server’s response
to the client targets a different route than the incoming request;
but even if rp_filter is disabled, this asymmetric route limits
the server’s aggregate network bandwidth to that of its lower-
performing interface.

The server’s default route could be moved to the “data” inter-
face—in some scenarios, this may even be preferable—but this
only displaces the issue: clients may then be unable to communi-
cate with the server on its “management” interface, which may
be preferred for certain types of traffic. In Research Computing,
for example, we prefer that administrative access and monitor-
ing not compete with IPC and file system traffic.

Routing Policy Rules
Traditional IP routing systems route incoming packets based
solely on the the intended destination; but the Linux iproute2
stack supports route selection based on additional packet
metadata, including the packet source. Multiple discrete routing
tables, similar to the virtual routing and forwarding (VRF) sup-
port found in dedicated routing appliances [5], define contextual
routes, and a routing policy selects the appropriate routing table
dynamically based on a list of rules.

In the following example, there are three different routing
contexts to consider. The first of these—the “main” rout-
ing table—defines the routes to use when the server initiates
communication.

server # ip route list table main

10.225.144.0/24 via 10.225.176.1 dev ens224

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192 proto kernel scope link src

10.225.160.38

10.225.176.0/24 dev ens224 proto kernel scope link src

10.225.176.38

A separate routing table defines routes to use when respond-
ing to traffic on the “management” interface. Since this table is
concerned only with the default route’s interface in isolation, it
simply reiterates the default route.

server # ip route add default via 10.225.160.1 table 1

server # ip route list table 1

default via 10.225.160.1 dev ens192

Similarly, the last routing table defines routes to use when
responding to traffic on the “data” interface. This table defines a
different default route: all such traffic should route via the “data”
interface.

server # ip route add default via 10.225.176.1 table 2

server # ip route list table 2

default via 10.225.176.1 dev ens224

With these three routing tables defined, the last step is to define
routing policy to select the correct routing table based on the
packet to be routed. Responses from the “management” address
should use table 1, and responses from the “data” address should
use table 2. All other traffic, including server-initiated traffic
that has no outbound address assigned yet, uses the “main” table
automatically.

Figure 3: In a traditional routing configuration, the server would try to
respond to the client via its default route, even if the request arrived on its
data interface.

Figure 4: Routing policy allows the server to respond using its data
interface for any request that arrives on its data interface, even if it has a
different default route.

http://www.usenix.org

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  47

SYSADMIN
Improve Your Multi-Homed Servers with Policy Routing

support the aforementioned rule- configuration files. Red Hat
Enterprise Linux 6 introduced NetworkManager, a persistent
daemon with additional functionality; however, NetworkMan-
ager did not support rule- files until version 1.0, released as part
of RHEL 7.1 [6]. If you’re currently using NetworkManager, but
wish to define routing policy in rule- files, you’ll need to either
disable NetworkManager entirely or exempt specific interfaces
from NetworkManager by specifying NM_CONTROLLED=no in the
relevant ifcfg- files.

In a Debian-based distribution, these routes and rules can be
persisted using post-up directives in /etc/network/interfaces.

Further Improvements
We’re still in the process of deploying this policy-based routing
configuration in our Research Computing environment, and,
as we do, we discover more cases where previously complex
network requirements and special-cases are abstracted away
by this relatively uniform configuration. We’re simultaneously
evaluating other potential changes, including the possibility
of running a dynamic routing protocol (such as OSPF) on our
multi-homed hosts, or of configuring every network connec-
tion as a simultaneous default route for failover. In any case,
this experience has encouraged us to take a second look at our
network configuration to reevaluate what we had previously
thought were inherent limitations of the stack itself.

server # ip rule add from 10.225.160.38 table 1

server # ip rule add from 10.225.176.38 table 2

server # ip rule list

0: from all lookup local

32764: from 10.225.176.38 lookup 2

32765: from 10.225.160.38 lookup 1

32766: from all lookup main

32767: from all lookup default

With this routing policy in place, a single-homed client (or, in
fact, any client on the network) may communicate with both the
server’s “data” and “management” interfaces independently and
successfully and the bi-directional traffic routes consistently via
the appropriate network (see Figure 4).

Persisting the Configuration
This custom routing policy can be persisted in the Red Hat
“ifcfg” network configuration system by creating interface-
specific route- and rule- files.

cat /etc/sysconfig/network-scripts/route-ens192

default via 10.225.160.1 dev ens192

default via 10.225.160.1 dev ens192 table mgt

cat /etc/sysconfig/network-scripts/route-ens224

10.225.144.0/24 via 10.225.176.1 dev ens224

default via 10.225.176.1 dev ens224 table data

cat /etc/sysconfig/network-scripts/rule-ens192

from 10.225.160.38 table mgt

cat /etc/sysconfig/network-scripts/rule-ens224

from 10.225.176.38 table data

The symbolic names mgt and data used in these examples are
translated to routing table numbers as defined in the /etc/

iproute2/rt_tables file.

echo “1 mgt” >>/etc/iproute2/rt_tables

echo “2 data” >>/etc/iproute2/rt_tables

Once the configuration is in place, activate it by restarting the
network service (e.g., systemctl restart network). You may
also be able to achieve the same effect using ifdown and ifup on
individual interfaces.

Red Hat’s support for routing rule configuration has a confusing
regression that merits specific mention. Red Hat (and its deriva-
tives) has historically used a network init script and subscripts
to configure and manage network interfaces, and these scripts

References
[1] Iproute2: http://www.linuxfoundation.org/collaborate
/workgroups/networking/iproute2.

[2] Routing tables: http://linux-ip.net/html/routing-tables
.html.

[3] Policy-based routing: http://linux-ip.net/html/routing
-rpdb.html.

[4] rp-filter How To: http://tldp.org/HOWTO/Adv-Routing
-HOWTO/lartc.kernel.rpf.html.

[5] Virtual routing and forwarding: http://www.cisco.com/c
/en/us/td/docs/net_mgmt/active_network_abstraction/3-7
/reference/guide/ANARefGuide37/vrf.html.

[6] Red Hat on policy-based routing persistence: https://
access.redhat.com/solutions/288823.

http://www.usenix.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://linux-ip.net/html/routing-tables.html
http://linux-ip.net/html/routing-rpdb.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7/reference/guide/ANARefGuide37/vrf.html
https://access.redhat.com/solutions/288823
https://access.redhat.com/solutions/288823
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://linux-ip.net/html/routing-tables.html
http://linux-ip.net/html/routing-rpdb.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7/reference/guide/ANARefGuide37/vrf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7/reference/guide/ANARefGuide37/vrf.html

