
48    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

SYSADMIN

MongoDB Database Administration
M I H A L I S T S O U K A L O S

MongoDB [1, 2] is a document-oriented NoSQL database that has
become quite popular. In this article, I will show you how to
perform various administrative tasks, after setting up a dummy

collection that will be used as an example. You will learn how to create and
drop collections, use indexes, and convert a MongoDB database from using
the MMAPv1 storage engine to using WiredTiger. I will also talk about
mtools, which is a convenient set of Python scripts for processing MongoDB
log files.

Table 1 introduces you to the MongoDB terminology compared to the well-known Relational
Database terminology.

SQL Term MongoDB Term
Database Database

Table Collection

Index Index

Row BSON document

Column BSON field

Primary key _id field

Group Aggregation

Join Embedding and linking

For this article, I used MongoDB version 3.2.1 [3] running on Mac OS X; however, most of
the presented commands will also work on the older 2.6 version. MongoDB was installed on
Mac OS X using the Homebrew [5] package. You will most certainly find a ready-to-install
package for your operating system, but you can also get precompiled MongoDB binaries
from [4].

A bit of warning before continuing with the rest of the article. MongoDB neither monitors
disk space nor displays any warning messages related to disk space, so it is up to the system
administrator to deal with such issues. The only occasion where you will hear MongoDB
complaining about disk space is when there is no disk space left!

Basic DBA Commands
Most of the tasks presented in this article will be performed from the Mongo shell, which
starts by executing the mongo command. The name of the MongoDB server process is
mongod. First, you should run the following JavaScript code from the MongoDB shell in order
to add some data on your database and have something to experiment with:

Mihalis Tsoukalos is a UNIX
System Administrator, a
programmer (UNIX and iOS),
a DBA, a mathematician, and a
technical writer. You can reach

him at http://www.mtsoukalos.eu/ and
@mactsouk. mactsouk@gmail.com

Table 1: MongoDB and RDBMS terminology

http://www.usenix.org
http://www.mtsoukalos.eu/
mailto:mactsouk@gmail.com

www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  49

SYSADMIN
MongoDB Database Administration

> use login

switched to db login

> for (var i=3D0; i<100000; i++)

{ db.myData.insert({x:i, y:2*i}); }

WriteResult({ “nInserted” : 1 })

> db.myData.count();

100000

The first command switches to the “login” database—if the data-
base does not exist, it will be automatically created. It then uses
a JavaScript for loop so that it can insert 100,000 documents to
the myData collection, which will also be created if needed. The
last command shows how you can find out the total number of
records that exist in a collection.

As you can see, you do not have to specifically create a collection
or its fields (keys). If you try to insert a document to a collection
that does not exist, MongoDB will automatically create the
collection. Additionally, if you try to insert a document that has
a different set of keys to an existing collection, MongoDB will
create it without any complaints. This means that small typo-
graphical errors cannot be detected very easily.

If you wish to delete the entire “myData” collection and start with
an empty one, you should use the drop() method:

> db.myData.drop();

true

As saving data on a database takes disk space, it is good to know
how to delete an entire database. The following command deletes
the entire “login” database, including its data files:

> use login

switched to db login

> db.runCommand({ dropDatabase: 1 })

{ “dropped” : “login”, “ok” : 1 }

Should you wish to view the list of the available databases on the
MongoDB server you are connected to, you can execute the fol-
lowing command from the MongoDB shell:

> show databases

LXF	 0.031GB

local	 0.078GB

login	 0.063GB

test	 0.031GB

After you select a database, you can see its available collections
as follows:

> show tables

myData

system.indexes

The system.indexes collection contains information about
the indexes of a database. However, it should not be accessed
directly as if it was a regular collection but with the help of the
getIndexes() function.

You can manually start a MongoDB server process from the
command line as follows:

$ mongod --fork --logpath a.log --smallfiles --oplogSize 50 --port

 27101 --dbpath w1 --replSet w --logappend

The --port parameter defines the port number that the MongoDB
server will listen to, the --dbpath value defines the folder that
will contain the database files, the value of the --logpath param-
eter shows the file that will hold the log messages, and the --fork
parameter tells the operating system that the process will run
in the background without a terminal. The --replset parameter
defines the name of the replica set and should only be included
when you want to define a replica set. The --logappend param-
eter tells the MongoDB process to append to the log file instead
of overwriting it.

By default, MongoDB does not require users to log in to connect
from the local machine, which means that anyone who has
access to a machine can do whatever she wants with the entire
MongoDB server. In order to enable authorization you must use the
--auth when running mongod or use the security.authorization
setting in the configuration file of MongoDB.

Converting a Database from MMAPv1 to
WiredTiger
MongoDB currently supports two Storage Engines: MMAPv1
and WiredTiger [6]; the good thing is that all commands related
to database administration are the same regardless of the stor-
age engine used.

WiredTiger is an open source project that was built separately
from MongoDB and is also used by other databases. Apart from
the performance gains, its main advantage is that it supports
document-level locking, allowing you to lock only the document
you are currently processing instead of locking the entire collec-
tion your document belongs to. Starting with MongoDB version
3.2, WiredTiger is the default storage engine whereas previous
MongoDB versions used MMAPv1. This section will show you
how to convert a MongoDB database from the MMAPv1 to the
WiredTiger storage engine.

The data directory of a MongoDB database that uses WiredTiger
looks like the following:

http://www.usenix.org

50  S U M M ER 20 16  VO L . 41 , N O. 2 www.usenix.org

SYSADMIN
MongoDB Database Administration

$ ll data/

total 272

-rw-r--r-- 1 mtsouk staff 49 Feb 13 14:12 WiredTiger

-rw-r--r-- 1 mtsouk staff 21 Feb 13 14:12 WiredTiger.lock

-rw-r--r-- 1 mtsouk staff 918 Feb 13 14:14 WiredTiger.turtle

-rw-r--r-- 1 mtsouk staff 40960 Feb 13 14:14 WiredTiger.wt

-rw-r--r-- 1 mtsouk staff 4096 Feb 13 14:12 WiredTigerLAS.wt

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:13 _mdb_catalog.wt

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:13

 collection-0-7818407182795123090.wt

-rw-r--r-- 1 mtsouk staff 4096 Feb 13 14:21

 collection-2-7818407182795123090.wt

drwxr-xr-x 4 mtsouk staff 136 Feb 13 14:21 diagnostic.data

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:13 index-1

-7818407182795123090.wt

-rw-r--r-- 1 mtsouk staff 4096 Feb 13 14:21 index-3

-7818407182795123090.wt

drwxr-xr-x 5 mtsouk staff 170 Feb 13 14:12 journal

-rw-r--r-- 1 mtsouk staff 5 Feb 13 14:12 mongod.lock

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:14 sizeStorer.wt

-rw-r--r-- 1 mtsouk staff 95 Feb 13 14:12 storage.bson

The filenames in the data directory show whether you are using
WiredTiger or not. However, you can find the storage engine of
your MongoDB server from the shell by executing the following
command:

> db.serverStatus().storageEngine

{ “name” : “mmapv1”, “supportsCommittedReads” : false }

Alternatively, you can execute the following command, which
gives the same information in a different format:

> db.serverStatus().storageEngine.name

mmapv1

So the previous database uses MMAPv1. Using the same com-
mands on a database that uses WiredTiger produces the follow-
ing output:

> db.serverStatus().storageEngine

{ “name” : “wiredTiger”, “supportsCommittedReads” : true }

> db.serverStatus().storageEngine.name

wiredTiger

Executing the “db.serverStatus().wiredTiger” command on a
database that uses WiredTiger produces a large amount of out-
put with information about various WiredTiger parameters and
useful statistics, including buffer sizes, number of update, insert,
remove, search calls, cache data, connection data, etc.

Converting a MongoDB 3.0.x or newer database that uses
MMAPv1 to one using WiredTiger is a relatively easy process.
You will first need to back up your data, delete existing data files,
change the configuration file of MongoDB in order to make it

use WiredTiger, and then import your backup data to MongoDB.
Starting MongoDB with an empty data directory makes MongoDB
generate all necessary files, which makes our job much easier.
For Mac OS X, the required steps and commands are the following:

$ mongo

MongoDB shell version: 3.2.1

connecting to: test

> db.serverStatus().storageEngine.name

mmapv1

> use login

switched to db login

> db.myData.count()

100000

<Control-C>

$ mongodump -d login -c myData

2016-02-13T18:40:00.114+0200 writing login.myData to

2016-02-13T18:40:00.367+0200 done dumping login.myData

(100000 documents)

$ launchctl unload ~/Library/LaunchAgents/homebrew.mxcl.

	 mongodb.plist

$ rm -rf /usr/local/var/mongodb

$ mkdir /usr/local/var/mongodb

$ cp /usr/local/etc/mongod.conf{,.old}

$ vi /usr/local/etc/mongod.conf

$ diff /usr/local/etc/mongod.conf /usr/local/etc/mongod.conf.old

7d6

< engine: “wiredTiger”

$ launchctl load ~/Library/LaunchAgents/homebrew.mxcl.

	 mongodb.plist

$ mongorestore

$ mongo

MongoDB shell version: 3.2.1

connecting to: test

> db.serverStatus().storageEngine.name

wiredTiger

> use login

switched to db login

> db.myData.count()

100000

The two count() commands verify that all documents have
been successfully imported. As you can understand from the
output of the diff command, you just need to add a single
line in the MongoDB configuration file to make MongoDB
use WiredTiger. The mongodump command creates a direc-
tory named “dump” inside the current directory. If you execute
the mongorestore command from the same directory you ran
mongodump, then mongorestore will automatically find and use
the “dump” directory.

http://www.usenix.org

www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  51

SYSADMIN
MongoDB Database Administration

About Log Files
The default location of the log files of a HomeBrew [5] MongoDB
installation on a Mac OS X system as defined in the /usr/local

/etc/mongod.conf file is /usr/local/var/log/mongodb/mongo.

log. Data files are kept inside /usr/local/var/mongodb. If
you choose not to use mongod.conf, you will have to define
all required parameters from the command line. On a usual
Linux installation, you can find mongodb.conf inside /etc, and
mongodb.log inside /var/log/mongodb, whereas the data direc-
tory is usually located at /var/lib/mongodb/.

If you try to start a MongoDB server without a proper log file
directory, you are going to get the following error message:

2015-11-29T12:01:54.349+0200 F CONTROL Failed global

initialization:

FileNotOpen Failed to open “/Users/mtsouk/Downloads/./aPath

/a.log”

You are also going to a get a similar error message if the data
directory is missing:

2015-11-29T12:02:42.547+0200 I STORAGE [initandlisten]

exception in

initAndListen: 29 Data directory ./myData not found.,

terminating

2015-11-29T12:02:42.548+0200 I CONTROL [initandlisten]

dbexit: rc: 100

Dropping an entire database and deleting its data files produces
the following kind of log messages:

2016-02-13T11:04:29.593+0200 I COMMAND [conn25]

dropDatabase

green starting

2016-02-13T11:04:29.714+0200 I JOURNAL [conn25]

journalCleanup...

2016-02-13T11:04:29.714+0200 I JOURNAL [conn25]

removeJournalFiles

2016-02-13T11:04:29.718+0200 I JOURNAL [conn25]

journalCleanup...

2016-02-13T11:04:29.718+0200 I JOURNAL [conn25]

removeJournalFiles

2016-02-13T11:04:29.720+0200 I COMMAND [conn25]

dropDatabase

green finished

2016-02-13T11:04:29.720+0200 I COMMAND [conn25] command

green

command: dropDatabase { dropDatabase: 1.0 } keyUpdates:0

writeConflicts:0 numYields:0 reslen:41 locks:{ Global:

{ acquireCount:

{ r: 2, w: 1, W: 1 } }, MMAPV1Journal: { acquireCount: { w: 4 } },

Database: { acquireCount: { W: 1 } } } protocol:op_command 126ms

Therefore, a command like the following would show the data-
bases that were dropped from your MongoDB installation:

$ grep -w dropDatabase /usr/local/var/log/mongodb/mongo.log |

grep -w finished | awk {‘print $6’}

Looking at log files is an important task of a DBA, so the next
section presents mtools, a set of Python scripts that deal with
MongoDB log files.

The mtools Set of Scripts
mtools [7] is a set of Python scripts that can help you parse,
filter, and visualize MongoDB log files. The mtools set includes
mloginfo, mlogfilter, mplotqueries, mlogvis, mgenerate, and
mlaunch. Please note that at the moment, mtools is not compat-
ible with Python 3. The mloginfo script displays information
about the data of a log file in a format similar to the following:

$ mloginfo /usr/local/var/log/mongodb/mongo.log

source:	/usr/local/var/log/mongodb/mongo.log

host:	iMac.local:27017

start:	2015 Sep 12 19:21:04.358

end:	2016 Feb 14 23:10:16.192

	date format:	iso8601-local

length:	5118

binary:	mongod

version:	3.0.6 -> 3.0.7 -> 3.2.0 -> 3.2.1

storage:	wiredTiger

As you can see, mloginfo shows the MongoDB versions that
generated the log messages as well as the storage engine and the
time period of the log entries.

The mlogfilter script is a log file parser that can be used for
extracting information out of busy MongoDB log files. Think
of it as an advanced grep utility for MongoDB log files. The
mlaunch script lets you create MongoDB test environments on
your local machine quickly. The mplotqueries script is used for
visualizing MongoDB log files. The mlogvis script is similar to
the mplotqueries script, but instead of creating a graphics file, its
output is an interactive HTML page on a Web browser. Last, the
mgenerate script produces pseudo-random data for populating
MongoDB databases with sample data.

The first thing you should learn is about the installation of the
mtools package, which can be done as follows:

$ pip install mtools

...

Successfully built mtools psutil

Installing collected packages: psutil, mtools

Successfully installed mtools-1.1.9 psutil-3.4.2

http://www.usenix.org

52    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

SYSADMIN
MongoDB Database Administration

For ease of installation, it is recommended that you use the pip
utility to install mtools when possible; otherwise visit the mtools
installation page [8] for more information.

Now that you have installed mtools, it is time to use mplotqueries
to get information from a MongoDB log file and plot it on screen.
All you have to do is execute the following command:

$ mplotqueries /usr/local/var/log/mongodb/mongo.log

	 --output-file login.png

The mplotqueries tool reads the specified log file and summa-
rizes the information based on the name of the collection used. It
then prints the duration of each operation on a timeline. Figure
1 shows the output mplotqueries produced using the MongoDB
log file found on my Mac. As you can see, most operations ran
almost instantly. This is a very handy way of overseeing your
MongoDB data that can also run as a cron job. If you do not use
the --output-file option, an interactive output is automatically
going to be displayed on your screen.

Figure 2 shows the interactive output generated by mlogvis on
the same log file as before.

Generally speaking, both mlogvis and mplotqueries are very
handy for detecting outliers. If you think certain operations
on a collection are running slow for some reason, you can use
mlogfilter to look into them:

$ mlogfilter /usr/local/var/log/mongodb/mongo.log --word login

The previous command returns log entries that contain the
“login” keyword. One of them is the following:

015-11-29T15:33:11.226+0200 I COMMAND [conn46] command

login.$cmd

command: insert { insert: “myData”, documents: [{ _id:

ObjectId(‘565afe9781f59f422de5bd05’), x: 0.0, y: 0.0 }], ordered:

true } keyUpdates:0 writeConflicts:0 numYields:0 reslen:40 locks:{

Global: { acquireCount: { r: 2, w: 2 } }, MMAPV1Journal: {

Figure 1: The output of the mplotqueries Python script on a log file from my local MongoDB server

http://www.usenix.org

www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  53

SYSADMIN
MongoDB Database Administration

acquireCount: { w: 8 }, acquireWaitCount: { w: 1 },

timeAcquiringMicros: { w: 2058 } },

Database: { acquireCount:

{ w: 1, W: 1 } }, Collection: { acquireCount:

{ W: 1 } },

Metadata: { acquireCount: { W: 4 } } }

199ms

What the previous log entry says is that it took MongoDB 199 ms
to execute an insert operation in the “myData” collection of the
“login” database. If you want to speed up an insert operation, you
might need to upgrade your hardware; however, if such opera-
tions do not happen very often, you should not be concerned.

If you want to find out all possible options for each tool, you can
execute it with the --help option. I think that the mtools set of
Python scripts is a useful tool to add to your arsenal.

Indexes
Analyzing a query is a very good way to find out why a query runs
slow as well as how your query is executed. This can happen with
the help of the explain() method. The interesting part from the
explain(“executionStats”) command that displays how a query
is executed is the following:

> db.myData.find({ “x”: { $gt: 99990}

}).explain(“executionStats”)

...

“executionStats” : {

“executionSuccess” : true,

“nReturned” : 9,

“executionTimeMillis” : 46,

“totalKeysExamined” : 0,

“totalDocsExamined” : 100000,

“executionStages” : {

“stage” : “COLLSCAN”,

“filter” : {

“x” : {

“$gt” : 99990

}

},

“nReturned” : 9,

“executionTimeMillisEstimate” : 0,

...

“docsExamined” : 100000

...

Figure 2: The output of the mlogvis Python script on a log file from my local MongoDB server

http://www.usenix.org

54  S U M M ER 20 16  VO L . 41 , N O. 2 www.usenix.org

SYSADMIN
MongoDB Database Administration

The explain command shows that the execution plan chosen
does a full collection scan (COLLSCAN)—in other words, it
searches all documents in the requested collection, which
is not very efficient. As you can see from the values of both
“totalDocsExamined” and “docsExamined,” 100,000 documents
were accessed in order to return nine documents, as indicated by
the value of “nReturned”.

This time I will define an index and then execute the previous
query and show a part of its execution plan. Please note that as of
MongoDB 3.0, the ensureIndex() command that used to create
an index is deprecated; you should use createIndex() instead.
The index for the “x” key will be created as follows:

> db.myData.createIndex({“x”:1})

{

“createdCollectionAutomatically” : false,

“numIndexesBefore” : 1,

“numIndexesAfter” : 2,

“ok” : 1

}

You can verify that the index you just created is there with the
help of the getIndexes() function that reads the system.indexes
collection:

> db.myData.getIndexes()

[

{

“v” : 1,

“key” : {

“_id” : 1

},

“name” : “_id_”,

“ns” : “login.myData”

},

{

“v” : 1,

“key” : {

“x” : 1

},

“name” : “x_1”,

“ns” : “login.myData”

}

]

As you can see, the index for the “x” key is named “x_1”. Please
note that MongoDB automatically creates an index for the _id
field for every collection.

By executing exactly the same explain() command, you can
verify the usefulness of the index. The interesting part of the
output is the following:

...

“executionStats” : {

“executionSuccess” : true,

“nReturned” : 9,

“executionTimeMillis” : 1,

“totalKeysExamined” : 9,

“totalDocsExamined” : 9,

...

“inputStage” : {

“stage” : “IXSCAN”,

“nReturned” : 9,

“executionTimeMillisEstimate” : 0,

...

This query returned the results by scanning the index keys
(IXSCAN); therefore, it is significantly faster than the previous
query. As you can also see, the select query accessed only nine
documents this time, as indicated by the value of “totalDocs

Examined” in order to return nine documents, which is perfect!

Summary
This article is far from complete as no single article can cover all
aspects of MongoDB administration. For example, Replication
and Sharding were not covered at all. However, the commands and
knowledge presented will help you start working effectively with a
MongoDB database and perform many administrative tasks.

References
[1] MongoDB site: https://www.mongodb.org/.

[2] Kristina Chodorow, MongoDB: The Definitive Guide, 2nd
edition (O’Reilly Media, 2013).

[3] Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett
and Tim Hawkins, MongoDB in Action, 2nd edition (Manning
Publications, 2016).

[4] Download MongoDB: https://www.mongodb.org
/downloads.

[5] HomeBrew: http://brew.sh/.

[6] WiredTiger: http://www.wiredtiger.com/.

[7] mtools: https://github.com/rueckstiess/mtools.

[8] mtools installation: https://github.com/rueckstiess/mtools
/blob/master/INSTALL.md.

http://www.usenix.org
https://www.mongodb.org/
https://www.mongodb.org/downloads
http://brew.sh/
http://www.wiredtiger.com/
https://github.com/rueckstiess/mtools
https://github.com/rueckstiess/mtools/blob/master/INSTALL.md
https://www.mongodb.org/downloads
https://github.com/rueckstiess/mtools/blob/master/INSTALL.md

16 12th USENIX Symposium
on Operating Systems Design
and Implementation

November 2–4, 2016 • Savannah, GA

Join us in Savannah, GA, November 2–4, 2016, for the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’16). The Symposium brings together professionals

from academic and industrial backgrounds in what has become a premier forum for discussing

the design, implementation, and implications of systems software.

Co-located with OSDI ’16 on Tuesday, November 1:

• Diversity ’16: 2016 Workshop on Supporting Diversity in Systems Research

• INFLOW ’16: 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads

Save the Date!

www.usenix.org/osdi16

The full program and registration will be available in August.

http://www.usenix.org/osdi16

