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Most of the Python code that I write isn’t part of an exotic frame-

work or huge application. Instead, it’s usually related to a mun-
dane data analysis task involving a CSV file. It isn’t glamorous, 

but Python is an effective tool at getting the job done without too much 
fuss. When working on such problems, I prefer to not worry too much about 
low-level details (I just want the final answer). However, if you use Python 
for manipulating a lot of data, you may find that your scripts use a large 
amount of memory. In this article, I’m going to peek under the covers of how 
memory gets used in a Python program and explore options for using it more 
efficiently. I’ll also look at some techniques for exploring and measuring the 
memory use of your programs. Disclosure: Python 3 is assumed for all of the 
examples, but the underlying principles apply equally to Python 2.

Reading a Large CSV File
My Chicago office is located along a major bus route, the trusty #22 that will take me down 
the road to Wrigley Field if I want to avoid work during the summer. It tends to be a pretty 
busy route, but just how busy? Chicago, being a data-friendly city, has historical bus ridership 
data posted online [1]. You can download it as a CSV file. If you do, you’ll get a 13.8 MB file 
with 676,476 lines of data that give you the ridership of every bus route in the city on every 
day of the year going back to the year 2001. It looks like this:

route,date,daytype,rides

3,01/01/2001,U,7354

4,01/01/2001,U,9288

6,01/01/2001,U,6048

8,01/01/2001,U,6309

9,01/01/2001,U,11207

...

By modern standards, a 13.8 MB CSV file isn’t so large. Thus, I’m inclined to grab it using 
Python’s csv module. Problem solved:

>>> import csv

>>> with open(‘cta.csv’) as f:

...     rows = list(csv.DictReader(f))

...

>>> len(rows)

676476

>>> rows[0]

{‘date’: ‘01/01/2001’, ‘route’: ‘3’, ‘rides’: ‘7354’, ‘daytype’: ‘U’}

>>> 

Now let’s tabulate the ridership totals across all of the bus routes using the collections 
module:
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>>> from collections import Counter

>>> ride_counts = Counter()

>>> for row in rows:

...     ride_counts[row[‘route’]] += int(row[‘rides’])

... 

>>> ride_counts[‘22’]

104039097

>>>

While we’re at it, why don’t we find out the five most common 
bus routes. 

>>> ride_counts.most_common(5)

[(‘79’, 153736884), (‘9’, 138645554), (‘49’, 113908939),  

  (‘4’, 111154851), (‘66’, 110746972)]

>>> 

Great. Before you quit, however, go look at the memory use of the 
Python interpreter in your system process viewer—you’ll find 
that it’s using nearly 300 MB of RAM (maybe more). Yikes! For a 
13.8 MB input file, that sure seems like a lot—almost as much as 
some of the minimally useful apps on my phone. The horror. 

Measuring Memory Use
Measuring the memory use of a Python program in a portable 
way was not an entirely easy task until somewhat recently. Yes, 
you could always go view the Python process in the system task 
viewer, but there were no standard library modules to help you 
out. This changed somewhat in Python 2.6 with the addition of 
the sys.getsizeof() function. It lets you determine the size in 
bytes of individual objects. For example:

>>> import sys

>>> a = 42

>>> sys.getsizeof(a)

28

>>> b = ‘hello world’

>>> sys.getsizeof(b)

60

>>>

Unfortunately, the usefulness of sys.getsizeof() is a bit limited. 
For containers such as lists and dicts, it only reports the size of 
the container itself, not the cumulative sizes of the items con-
tained inside. It’s subtle, but you can see this yourself if you look 
carefully at this example where the combined size of two items 
in a list is smaller than the reported size of the list itself:

>>> a = ‘hello’

>>> b = ‘world’

>>> items = [a, b]

>>> sys.getsizeof(a)

54

>>> sys.getsizeof(b)

54

>>> sys.getsizeof(items)	 # Notice size is less than combined  

	 # a, b size

80

>>> 

Containers also present complications in determining an 
accurate use. For example, the same object might appear more 
than once such as in a list of [a, a, b, b]. Also, Python tends to 
aggressively share immutable values under the covers. So it’s 
not a simple case where you can just add up the byte totals for all 
of the items in a container and get an accurate figure. Instead 
you’d need to gather information on all unique objects using their 
object IDs like this:

>>> items = [a, a, b, b]

>>> unique_items = { id(item): sys.getsizeof(item) for item  

        in items }

>>> total_size = sys.getsizeof(items) + sum(unique_items. 

        values())

204

>>>

If you had deeply nested data structures, you’d have to take 
further steps to recursively traverse the entire data structure. 
Needless to say, it gets ugly. Just to illustrate, here’s how you 
would measure the memory usage of the list holding all of that 
bus data.

>>> unique_objects = { id(rows): rows }

>>> unique_objects.update((id(row), row) for row in rows)

>>> unique_objects.update((id(val), val) for row in rows for 

        val in row.values())

>>> sum(sys.getsizeof(val) for val in unique_objects.values())

308977196

>>> 

Starting in Python 3.4, you can obtain global memory statistics 
using the tracemalloc module [2]. This module allows you to 
selectively monitor the memory use of Python and have it record 
memory allocations. It’s not so useful for small measurements, 
but you can use it in a script:

import tracemalloc

import csv

def read_data(filename):

    with open(filename) as f:

        return list(csv.DictReader(f))

tracemalloc.start()

rows = read_data(‘cta.csv’)

print(len(rows), ‘Rows’)

print(‘Current: %d, Peak %d’ % tracemalloc.get_traced_memory())
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If I run this on my machine with Python 3.5, I get the following 
output:

676476 Rows

Current: 308979047, Peak 309009543

The reported memory use is ever so slightly higher than what 
was calculated directly with sys.getsizeof(), but basically the 
two figures agree.

Exploring Common Data Structure Choices
Given the large memory footprint associated with reading this 
file, you might consider other choices for representing a simple 
record, such as a list, tuple, or class instance. Here are several 
different functions that read the data in different forms:

import csv

def read_data_as_dicts(filename):

    with open(filename) as f:

        return list(csv.DictReader(f))

def read_data_as_lists(filename):

    with open(filename) as f:

        rows = csv.reader(f)

        headers = next(rows)

        return list(rows)

def read_data_as_tuples(filename):

    with open(filename) as f:

        rows = csv.reader(f)

        headers = next(rows)

        return [tuple(row) for row in rows]

class RideData(object):

    def __init__(self, route, date, daytype, rides):

        self.route = route

        self.date = date

        self.daytype = daytype

        self.rides = rides

def read_data_as_instances(filename):

    with open(filename) as f:

        rows = csv.reader(f)

        headers = next(rows)

        return [ RideData(*row) for row in rows ]

If you run and measure these different functions using 
tracemalloc, you will get memory use as follows:

Record Type Memory Use (MB)
Dict 294.7
List 170.8
Tuple 160.1
Instance 268.5

In these results, you find that tuples provide the most efficient 
storage. This shouldn’t be a surprise, but there are still some 
subtle aspects to the results. For example, what explains the 10 
MB gap between tuples and lists? On the surface it doesn’t seem 
like there would be much difference between the two structures 
given that they’re both “list like.” We can investigate with  
sys.getsizeof():

>>> a = (‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> b = [‘3’, ‘01/01/2001’, ‘U’, ‘7354’]

>>> import sys

>>> sys.getsizeof(a)

80

>>> sys.getsizeof(b)

96

>>>

Here, we find that there is a 16-byte difference in storage 
between a list and tuple. Added up across the 676,476 rows of 
data, that amounts to about 10 MB of storage. The 16-byte dif-
ference is due to the fact that lists are a little more complicated 
than they might first seem. For one, since lists are mutable, their 
size can change as elements are added or removed. To manage 
this, lists internally contain a memory pointer to a resizable 
memory buffer where items are stored. Tuples, being immutable, 
don’t have to handle resizing. Thus, the items in a tuple can be 
stored directly at the end of the underlying tuple structure. Lists 
also overallocate their internal storage so as to make repeated 
append() operations faster (this is to minimize a potentially 
expensive memory reallocation each time a new element is 
added). For example, a list containing only five items might 
actually have room to store eight items without asking for more 
space. To manage this, lists maintain an extra counter of how 
much total space is available in addition to a counter that records 
the actual number of elements used. Here is a diagram that illus-
trates the difference in the memory layout of a tuple versus a list: 
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The header portion contains some bookkeeping informa-
tion, including the object’s type and the reference count used 
in memory management. This is the same for all objects. The 
16-byte difference in tuple/list storage is explained by the pres-
ence of an extra memory pointer (buffer) and counter (navail) on 
lists. Depending on the amount of unused space, lists might even 
be a bit larger.

Another surprising result is the efficiency of instances over dic-
tionaries—especially if you happen to know that instances are 
actually built using dictionaries. For example:

>>> r = RideData(‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> r.__dict__

{ ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, ‘rides’: ‘7354’ 

}

>>>

Thus, what explains the 26 MB advantage of using instances 
over dictionaries? As it turns out, this is also another memory 
optimization. When creating a lot of instances, Python makes 
an assumption that the dictionaries for all of the instances will 
probably contain the exact same set of keys. It makes sense—all 
objects are initialized in __init__() and are likely to have an 
identical underlying structure. Python exploits this and creates 
what’s known as a key-sharing dictionary as described in PEP 
412 [3]. In a nutshell, the keys for the instance data are split off 
from the normal dictionary and stored in a shared structure. 
It makes for a slightly smaller dictionary structure. You can 
investigate:

>>> c = { ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, 

‘rides’: ‘7354’ }

>>> sys.getsizeof(c)

288

>>> d = RideData(‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> d

<__main__.RideData object at 0x101ad4f60>

>>> d.__dict__

{ ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, ‘rides’: ‘7354’ 

}

>>> sys.getsizeof(d.__dict__)  # Size of instance dict

192

>>>

Here, you see that the instance dictionary is quite a bit smaller 
than a normal dictionary. However, you can’t forget that 
instances also contain some state, including the class and refer-
ence count:

>>> sys.getsizeof(d)   # Size of the instance structure

56

>>>

So, in this example, you’ll find that an instance requires 56 bytes 
of storage plus the storage required for the instance dictionary. 
Added together, you find that an instance requires 248 bytes 
vs. 288 bytes for a normal dictionary. Multiplied by the 676,476 
records, you get a savings of about 26 MB.

Named Tuples
Tuples are efficient, but one downside is that they often lead to 
code where you do a lot of ugly indexing. For example:

>>> rows = read_data_as_tuples(‘cta.csv’)

>>> from collections import Counter

>>> ride_counts = Counter()

>>> for row in rows:

...     ride_counts[row[0]] += int(row[3])

... 

>>>

You can clean this up using the namedtuple() function to define 
a class. For example:

from collections import namedtuple

RideTuple = namedtuple(‘RideTuple’, [‘route’,’date’,’daytype’, 

‘rides’])

The namedtuple() function performs a neat trick using proper-
ties that produces a class roughly equivalent to this:

class RideTuple(tuple):

    __slots__ = ()       # Explained in next section

    @property

    def route(self):

        return self[0]

    @property

    def date(self):

        return self[1]

    @property

    def daytype(self):

        return self[2]

    @property

    def rides(self):

        return self[3]

In this class, properties have been added to pull attributes from 
a specific tuple index. This gives you nice access to those values 
via the dot (.) operator. For example:

>>> r = RideTuple(‘3’,’01/01/2001’,’U’,’7354’)

>>> r.route

‘3’

>>> r.date

‘01/01/2001’

>>> r[0]

‘3’
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>>> r[1]

‘01/01/2001’

>>>

Named tuples also offer a cautionary tale of measuring Python’s 
memory use—namely, that you can’t always trust it to tell you the 
truth! For example, suppose you measure the memory of a single 
named tuple versus a tuple:

>>> a = (‘3’, ‘01/01/2001’, ‘U’, 7354’)

>>> b = RideTuple(‘3’,’01/01/2001’,’U’,’7354’)

>>> sys.getsizeof(a)

80

>>> sys.getsizeof(b)

80

>>>

Here, you will find that the memory is identical. That looks good. 
However, if you run two versions of code under tracemalloc, 
you’ll find that they have different behavior.

Record Type Memory Use (MB)
Tuple 160.1

Named tuple 165.3

For reasons unknown, named tuples allocate an extra machine 
word (8 bytes on a 64-bit machine) for each instance. Added up 
over the 676,476 rows of our data set, that amounts to an extra 
5 MB. If there’s any takeaway, the results of sys.getsizeof() are 
not always to be trusted. If you must know, objects self-report 
their size using a special method __sizeof__() which could be 
implemented incorrectly. If you really care about accuracy, it’s a 
good idea to measure memory use a few different ways.

Slots
A somewhat lesser known technique for saving memory is to 
define a class with a __slots__ specifier like this:

class RideData(object):

    __slots__ = (‘route’, ‘date’, ‘daytype’, ‘rides’)

    def __init__(self, route, date, daytype, rides):

        self.route = route

        self.date = date

        self.daytype = daytype

        self.rides = rides

Normally, instances are represented by a dictionary. However, if 
you use slots, you’re giving a hint about how many attributes will 
be stored. Python uses this to eliminate the instance dictionary 
and rearrange the storage of attributes into something that looks 
a lot like a tuple. Here is a diagram showing how instances are 
stored with and without slots:

Remarkably, a class that uses slots is even slightly more efficient 
than one using a tuple. For example, if you run a test under trace-

malloc, you’ll get these results:

Record Type Memory Use (MB)
Tuple 160.1

Instance with slots 155.0

The savings is due to the fact that unlike a tuple, instances don’t 
support indexing of attributes (e.g., r[n]). Thus, it is not neces-
sary for a size to be stored on a per-instance basis. The attributes 
are merely loaded and stored from a hardwired position known 
in advance. The exact mechanism is almost exactly the same as 
the attribute properties defined on a named tuple.

Using the Appropriate Datatypes
In our example, we were being lazy and storing the numeric 
ride data as a string (e.g., ‘7354’) instead of as an integer (7354). 
However, strings are not the most efficient representation. Let’s 
explore:

>>> a = ‘7354’

>>> b = 7354

>>> c = 7354.0

>>> sys.getsizeof(a)

53

>>> sys.getsizeof(b)

28

>>> sys.getsizeof(c)

24

>>> 

As you can see, storing the number as an integer saves 25 bytes. 
However, storing the value as a floating point number saves a bit 
more. Integers require more space because they are allowed to 
grow to arbitrary magnitude. To handle this, they must not only 
store the integer value, but some additional sizing information. 
Floats don’t need this.
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By changing just one column of the data to a float, we save about 
18 MB of memory. So being smart about what you store makes a 
difference.

Value Sharing
Under the covers, Python memory management is based on 
memory pointers. For example, suppose you make a list and 
“copy” it to another variable:

>>> a = [1,2,3]

>>> b = a

>>>

This didn’t actually make a copy of the list. Instead, the names 
“a” and “b” both refer to the same object. If you change the list, 
it’s reflected in both variables.

>>> a.append(4)

>>> a

[1, 2, 3, 4]

>>> b

[1, 2, 3, 4]

>>>

The id() function will give you the object identity, a unique 
integer value. You can use this to see that a and b in the above 
example are the same object.

>>> id(a)

56623488

>>> id(b)

56623488

>>>

Now, how to use this? When reading certain kinds of data sets, 
you might encounter a lot of repetition. To illustrate, let’s grab 
the bus data again.

>>> f = open(‘cta.csv’)

>>> rows = list(csv.DictReader(f))

>>> unique_routes = set(row[‘route’] for row in rows)

>>> len(unique_routes)

182

>>> route_ids = set(id(row[‘route’]) for row in rows)

>>> len(route_ids)

634285

>>> 

What you’re seeing here is that the data contains only 182 unique 
values for the “route” field, yet those values are stored in 634,285 
unique objects. It’s a bit odd that there aren’t 676,476 unique 
values corresponding to the length of the entire data set. As it 
turns out, Python caches objects representing all single-letter 
ASCII strings. Thus routes 1–9 get special treatment. You can 
verify this:

>>> route_ids = set(id(row[‘route’]) for row in rows if 

len(row[‘route’])==1)

>>> len(route_ids)

9

>>>

Perhaps you can take a similar caching strategy for reusing the 
rest of the values. Here is a simple function that caches strings:

def cache(value, _values = {}):

    if value not in _values:

        _values[value] = value

    return _values[value]

Next, you can apply the cache function to selected values during 
instance creation. For example:

class RideData(object):

    __slots__ = [‘route’,’date’,’daytype’,’rides’]

    def __init__(self, route, date, daytype, rides):

        self.route = cache(route)

        self.date = cache(date)

        self.daytype = daytype

        self.rides = float(rides)

Making this change, the storage required for our example data is 
reduced down to about 68 MB—not too bad considering it started 
out at over 300 MB.

Changing Your Orientation
So far, we have worked to represent the data as a list of records—
varying the representation of each record. However, another 
approach is to turn everything sideways and represent the data 
as a collection of columns. For example, suppose you read the 
data using this function:

def read_data_as_columns(filename):

    route = []

    date = []

    daytype = []

    rides = []

    with open(filename) as f:

        for row in csv.DictReader(f):

            route.append(cache(row[‘route’]))

            date.append(cache(row[‘date’]))

            daytype.append(row[‘daytype’])

            rides.append(float(row[‘rides’]))

    return {

        ‘route’: route,

        ‘date’: date,

        ‘daytype’: daytype,

        ‘rides’: rides

        }
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Making this change reduces the memory use to about 38 MB. 
However, it also shatters your head as working with the resulting 
data is wacky. Instead of getting a single list of records, you get 
four lists representing each column. For example:

>>> columns = read_data_as_columns(‘cta.csv’)

>>> len(columns)

4

>>> columns[‘route’][0]

‘3’

>>> columns[‘date’][0]

‘01/01/2001’

>>>

Yes, you can work with the data like this, but doing so might 
require a bit of ingenuity and increase your job security. You 
would probably be better off using a third party library such as 
Pandas, which also stores its data in a column form [4]. This 
brings us to the last important point about memory. Third party 
libraries often rely on C extensions and code outside of Python 
that can’t be measured accurately using the tools described here. 
For example, you can try this experiment with Pandas:

>>> import pandas

>>> import tracemalloc

>>> tracemalloc.start()

>>> data = pandas.read_csv(‘cta.csv’)

>>> tracemalloc.get_traced_memory()

(433375, 471219)

>>> import sys

>>> sys.getsizeof(data)

135868754

>>> 

Pandas is efficient, but it’s not so efficient that it’s storing all 
of the data in only 430 KB. Nor is the reported size of the data 
variable 135 MB. A look in the task viewer shows Python actu-
ally using about 56 MB of memory. Bottom line: if you’re using 
certain kinds of Python extensions, the memory profiling tools 
described here might not work.

If You Liked It, You Should Have Put a Generator 
on It
In the end, maybe it’s best to ask yourself if you actually need to 
read all of the data at once. Perhaps a generator function can do 
the trick:

import csv

from collections import Counter

def read_data(filename):

    with open(filename) as f:

         rows = csv.DictReader(f)

         for row in rows:

             yield { **row, ‘rides’:int(row[‘rides’]) }

ride_counts = Counter()

for row in read_data(‘cta.csv’):

    ride_counts[row[‘route’]] += row[‘rides’]

If you run this version under tracemalloc, you’ll find that it tabu-
lates all of the data and uses only 36K of memory. Yes, generators 
are your friend.

Final Thoughts
This article has looked at a variety of issues surrounding Python 
memory use. There are probably a few important takeaways. 
First, there are some built-in tools such as sys.getsizeof() and 
the tracemalloc that you can use to investigate the memory use 
of your program. They’re not always reliable, but when used in 
combination, you can often get a pretty good idea of what’s hap-
pening. Second, there are a variety of ways in which you can rep-
resent data to reduce the memory footprint. For example, using 
__slots__ in a class definition. Small details, such as your 
choice of low-level data representation and value sharing with 
caching, can also make a big impact. Last but not least, different 
data organizations (e.g., rows vs. columns) can be important.
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