
www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  67

COLUMNS

iVoyeur
Go Instrument Some Stuff

D A V E J O S E P H S E N

Dave Josephsen is the some-
time book-authoring developer
evangelist at Librato.com. His
continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I hate talking about programming languages. Have you heard of Alcibi-
ades? He was, well, I guess you could say he was the frat boy of ancient
Greece. The original Bro. There’s this pretty funny story about him where

he was wrestling this other guy (I forget his name), and Alcibiades, feeling
that he was about to lose, bit him on the ear. Yes, exactly like Mike Tyson.

Now biting your wrestling partner was, in ancient Greece, every bit as frowned upon as it
is today. It is not, suffice to say, a statutorily valid attack in wrestling among gentlepersons.
And Alcibiades’ opponent didn’t have any qualms about letting him know; his quote (accord-
ing to Plutarch, who wasn’t there) was:

“Alcibiades! You bite! Like a woman!”

Setting aside for the moment the Grecian misogyny—for which I apologize on their behalf
(as a male, not as a Grecian)—I think Alcibiades’ opponent was expressing a few overlap-
ping emotions here. There was, of course, the outrage at having been bitten (especially in the
course of, no doubt, well-executed by-the-book wrestling on his part). And then there was
the surprise at having been bitten by Alcibiades, who was (despite ample evidence to the
contrary) always assumed to be a stand-up bro by those who hung out with him. And, finally,
there was the shaming component of the accusation, the part where he called Alcibiades out
by comparing him to the so-called “weaker sex.”

I’m sure everyone in attendance thought this was a pretty slick burn. I can almost hear the
room explode with the ancient Grecian analog of “Oh snap!” And I mean he deserved it, right?
Surely everyone could agree that biting was not only illegal, but also un-bro-like, which put
Alcibiades clearly in violation of not only the wrestling rule book, but also, and probably more
importantly, bro-code—or whatever you want to call that unwritten collection of etiquette
particular to those people in that place. The former violation merely lost him the match, but it
was the latter that made him worthy of disdain. But then Alcibiades replies:

“Nay. I bite like a lion!”

He did this sort of thing all the time; just running roughshod over the rules and undermining
anyone who called him on it. It was basically his thing, and he did it so confoundingly well
that he always got away with it. He just didn’t consider defying convention something to be
ashamed of and was therefore immune to this sort of politesse-rooted shaming.

Programming Languages
When I talk about programming languages, I always wind up feeling just exactly like the
guy Alcibiades bit must have felt, which is to say: pretty sure what I just said was technically
correct, but no longer convinced that it matters, and therefore confused about my place in the
universe.

I’m not possessed of a Herculean-strength intellect, and I struggle to learn these languages
just like the guy Alcibiades bit no doubt worked hard to master wrestling. Everyone assured
us both it was the right and proper thing to do (it says so right there in the introduction sec-

http://www.usenix.org
mailto:dave-usenix@skeptech.org

68    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

COLUMNS
iVoyeur: Go Instrument Some Stuff

tion of the O’Reilly book you wrote about the awesome new lan-
guage you designed). And like the guy Alcibiades bit, I maintain
this assumption that we, the community of people who struggled
to learn Ruby or Python or Java or wrestling or whatever, have
an understanding about what it means to be “good” or “bad”
when we go about it. About the merits of this or that program-
ming philosophy. About what constitutes an acceptable degree of
inefficiency. About what is and is not secure.

But really, we don’t have anything like that understanding. And
bite by bite, I’m slowly beginning to realize that I will never
have whatever equates to moral high-ground with respect to
programming languages. That in fact maybe there never was
such a thing, it just looked that way because my world was so
small. There will never be that language that everyone who uses
programming languages can finally maintain at least a begrudg-
ing respect for. Maybe that’s a good thing, but it also means I am
forever doomed to happily enter into excited conversation about
this or that thing we’re building only to be bitten on the ear over
the language we chose to build it in.

I tire of this—this stupefied grasping at my bloody ear—and it’s
making me gun-shy. I’ve wanted to write this article for months,
but I keep on balking because I know we’re going to have to talk
about languages. Well, at least one language, and worse, I’m
going to have to pick it. I’m going to have to, once again, admit to
liking a programming language, or at least admit to using one.
My ear hurts just thinking about it.

Instrumenting Golang
Oh well. Let’s get this show on the road. I want to talk about
instrumenting the programs you create. And I’m going to do it in
Golang, so deal with it.

When I say instrument, I’m talking about actually placing code
inside the things you write that is designed to either time an
interaction or quantify how often something occurs. It’s easier if
I just show you.

To that end I’ve written a Web service. It’s pretty typical of the
sort of thing I do when I wear my Ops hat these days: a simple
program that listens for HTTP GET requests on port 80 and
exposes some bit of operational knowledge to whatever happens
to be asking. This one responds with an “answer.” Here’s what an
answer looks like:

 type Answer struct {

 Type string

 Desc string

 Get func(index int) string

 Rand func() string

 DB []string

 }

Even if you don’t speak Go, this should be pretty obvious: an
answer is a data structure that consists of a type; a description;
two functions, one for getting specific answers and another for
getting random answers; and an array of strings where we keep
all of our responses.

I won’t have space to paste all of the code for this project here,
but you can clone it from GitHub (https://github.com/djosephsen
/answers), which means you can also go get it with go get

github.com/djosephsen/answers. You’ll find the source under
the src directory in your GOPATH.

Since one likes to be modular about these things, the code is
designed so that we can come along later and add new types of
“answer” and register them into a global index of answers we
can give. If you look in the root directory, you’ll see that it comes
with two types of answer modules, one that provides answers to
the question “Why did the chicken cross the road?” and one that
provides answers to the question “Knock-knock. Who’s there?”

In main.go, you’ll see that after we go about registering the
available modules into the global index of answers with initAn-

swers(), we use the net/http module to register two Handler
functions with net/http and then start listening on port 8080.

 func main() {

 initAnswers()

 metrics.Connect()

 http.HandleFunc(“/”, helpHandler)

 http.HandleFunc(“/get/”, getHandler)

 http.ListenAndServe(“:8080”, nil)

 }

Now, ignoring metrics.Connect() for a moment, I think you can
kind of see where this is going. If a user gets ‘/’, we respond with
a help menu, but if you ask for something that begins with ‘/get/’,
we launch getHandler().

The help handler traverses all the answers we know about and
prints back a list of URLs of the form /get/answer.Type followed
by the answer.Desc that corresponds to the Type. We can see
what it looks like when we use curl to ask for ‘/’.

(osapi) [dave@otokami][librato-vagrant] [master|+ 1]

-> curl localhost:8080

Welcome to the answer service:

Valid answers:

/get/chicken :: Answers to why did the chicken cross the road?

/get/knocknock :: Knock Knock jokes1

Then when we ask for “/get/chicken” the getHandler function
fires, and we get a random answer from the chicken module via
that module’s Rand() function. We can see what it looks like from
curl:

http://www.usenix.org
https://github.com/djosephsen/answers
https://github.com/djosephsen/answers

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  69

COLUMNS
iVoyeur: Go Instrument Some Stuff

(osapi) [dave@otokami][librato-vagrant] [master↓.2+ 1]

-> curl localhost:8080/get/chicken

because the road crossed him

If you write Go, this code should be pretty familiar. It’s a classic
pattern for using net/http to write Web services in Go. In fact it
began life as a copy/paste straight out of the net/http documen-
tation. I’m not going to delve into the answer modules, because to
instrument this application we don’t need to leave main.go.

What we want to do is time and quantify our calls to the various
handlers this program has now, as well as any that we might add
in the future. In other words, we want to know how often get/

chicken is called, and we want to know how long get/chicken
takes to do what it does. And we don’t just want that for get/

chicken, we also want it for the help handler, get/knocknock, and
any other answer modules we might add in the future. And we’re
lazy so we don’t want to add new instrumentation every time we
add another answer module.

And there’s one more problem that you’ll already be aware of if
you’re in the habit of timing function calls. Sometimes, aber-
rant measurements occur, such as calls to get/chicken that take
three seconds because of bogons (possibly in the monitoring
code) that we’ll never be able to effectively track down. So we’re
going to want to generate percentiles for our timing measure-
ments. We want to put extremely aberrant measurements in per-
spective. Is it one time in a million, or is it one time in a hundred?

What I’m very intentionally describing here is the use-case for
which StatsD [1] was invented. We use it all over the place at
Librato, and if you write services like these you probably should
too unless you have something better. Specifically, we run
Statsite [2] (a StatsD clone written in C (because native StatsD
is a NodeJS daemon (lol programming languages))) on every
instance we bring up. That way we can emit metrics directly
from each instance to our metrics backend rather than risk-
ing packet-loss over the wire to a centralized StatsD instance
(StatsD is a UDP protocol).

In this project, I’m using Etsy’s statsd client, which is imported
by my code in metrics/metrics.go. It provides a decent set of
primitives but doesn’t really give us what I’d call a Go-idiomatic
means (lol programming languages) of implementing what we
want here, so I have a few functions in metrics.go to help the cli-
ent out. Let’s take a look at my Time():

func Time(name string, start time.Time) {

 if client == nil {

 return

 }

 now := time.Now()

 duration := now.Sub(start)

 if duration > 5000*time.Millisecond {

 fmt.Printf(“Latent measurement for %q: %s”, name, duration)

 }

 milliseconds := int64(duration / time.Millisecond)

 toStatsd(func() {

 // record the duration

 client.Timing(name, milliseconds)

 // also record a count

 client.UpdateStats([]string{fmt.Sprintf(“%s.count”, name)},

		 1, 1)

 })

}

You’ll find this function in several of our Go projects at Librato,
and it’s pretty clever. It takes a start-time and the name of the
metric we want to show up in the metrics backend. It then com-
putes the difference between the given start time and now and
sends that duration into statsd. But wait, you’re wondering,
how does that time the actual function invocation? Stand by,
that’s the clever part. But before I get to that, you’ll notice that it
sends the timing to StatsD by way of a local toStatsd() function,
which in turn takes a function with no arguments as its argu-
ment. Let’s look at toStatsd():

func toStatsd(fn func()) {

 start := time.Now()

 fn()

 duration := time.Now().Sub(start)

 if duration > 250*time.Millisecond {

 fmt.Printf(“Statsd time took %s”, duration)

 }

}

This was probably more along the lines of what you expected
to see in Time(). This function captures the before time, runs
the given function, and then captures the after time. If you look
back up at Time(), you’ll notice that we’re passing toStatsd()
an anonymous function that sends in the actual timing metric
and increments a counter. So really toStatsd() is just a wrapper
to time how long it takes the statsd client itself to do its thing.
We’re actually measuring how much latency statsd itself incurs.

Now let’s bring this full circle by taking a look at getHandler() in
main.go to see how we use metrics.Time():

func getHandler(w http.ResponseWriter, r *http.Request) {

 answerType := r.URL.Path[len(“/get/”):]

 defer metrics.Time(“answer.handler.”+answerType, time.Now())

 fmt.Fprintf(w, “%s\n”,a.Answers[answerType].Rand())

}

Ah hah, the plot thickens. We’re calling metrics.Time in a defer
statement. If you don’t program in Go, the defer statement is
used to postpone the execution of a given function until just
before the parent function returns. The interesting part about

http://www.usenix.org

70    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

COLUMNS
iVoyeur: Go Instrument Some Stuff

this is that defer evaluates our functions arguments imme-
diately, so when we pass time.Now() as the second argument
to metrics.Time, that’s evaluated immediately. That’s how we
capture our “before” time. Then defer takes care of executing
metrics.Time() just before the function returns (after our answer
module has done its thing), and as we’ve already seen metrics.

Time captures its own after-time.

This gives us a single line of code we can inject at the beginning
of any function in Go to get timing data as well as a count and
rate of that function’s invocation. The percentiles come auto-
matically from StatsD as you can see in Figure 1.

So aside from metrics/metrics.go, which is completely reusable
and modular/importable if desired, I’ve only added three lines of
code to fully instrument every handler invocation this applica-
tion has and any that might be added in the future, and one of
those three lines was metrics.Connect(), which opens a socket to
the local StatsD daemon.

I don’t care how much you hate Golang, that’s pretty cool, right?
And, I mean, look at the graphs, everybody likes graphs … right?

Ow. My ear!

Figure 1: Look at all the lovely data!

References
[1] StatsD: https://github.com/etsy/statsd.

[2] Statsite: https://github.com/armon/statsite.

http://www.usenix.org
https://github.com/etsy/statsd
https://github.com/armon/statsite

