
www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  71

COLUMNS

Practical Perl Tools
Perl to the Music

D A V I D N . B L A N K - E D E L M A N

G iven all of the APIs and their Perl interactions we’ve discussed in
this column, it is a little surprising it has taken me this long to get
around to one of my favorite subjects: music. I started to pay closer

attention to the APIs of the streaming music services right around the time
one of my favorites (Rdio) was shuttered. I had amassed a pretty large collec-
tion of artists and albums I wanted to replicate on another service and was
concerned about extracting the info from their service before it closed down.
Luckily, the engineers at Rdio were equally concerned for their users and
did a superb job of providing each user with an export of their data. But that
started me down the path of wondering just what I could do in Perl to interact
with my music data.

Several of the major streaming services have a decent API. Here’s the rundown as of this
writing:

◆◆ Spotify: https://developer.spotify.com
◆◆ Rhapsody: https://developer.rhapsody.com
◆◆ Deezer: http://developers.deezer.com/api
◆◆ Pandora: (only official partners can use it)
◆◆ Tidal: none
◆◆ Guevara: none
◆◆ Apple Music: none
◆◆ Google Play Music: none (really, Google? No API?)

Some of the services above have “unofficial APIs” where a random developer has reverse-
engineered how the service works and published code that uses that information. We’re
not going to touch any of those APIs with a very large pole for any number of reasons, most
of which I bet you can guess. Instead, in this column we’ll pick the top one of the list above,
Spotify, and dive into it. Spotify has a particularly mature API. Note: for some of these
examples, you will need a Spotify account (and indeed, may need to be a subscriber).

Do I Know Who You Are?
The Spotify API distinguishes between authorized requests and public, non-authorized
requests. The former is less rate-limited than the latter and (depending on the kind of autho-
rization) also allows for querying of more sensitive data. But we can still get some good stuff
from the API using public requests, so let’s start there before we get into the auth game.

Given all of the past columns on APIs, I expect no gasps of astonishment when I say that the
API is REST-based and that the results returned are in JSON format. The one Spotify API-
specific piece we haven’t really seen before (but is actually pretty common) is that Spotify
has a unique resource identifier and ID for pointing to a specific object in their system. So,
for example, here in their docs list:

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’.  
dnblankedelman@gmail.com

http://www.usenix.org
https://developer.spotify.com
https://developer.rhapsody.com
http://developers.deezer.com/api
mailto:dnblankedelman@gmail.com

72  S U M M ER 20 16  VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Practical Perl Tools: Perl to the Music

spotify:track:6rqhFgbbKwnb9MLmUQDhG6

is a Spotify URI and

6rqhFgbbKwnb9MLmUQDhG6

is a Spotify ID. The URI includes what kind of thing is being
referenced, the ID just simply provides which specific thing (i.e.,
that track) is being referenced. And in case you were curious,
that URI in their doc points to the first track of an iconic album.
I’ll let you paste it in to the Spotify client to see just which one.

Dither, Dither, Dither
Right about now in the column the hero has a small crisis where
he frets about which Perl module/approach he should use. Should
he build something up using the minimalist but elegant modules
that only do one basic thing really well (like performing an HTTP
request or parsing JSON)? Should he instead use the all-singing,
all-dancing REST request module that does both of these things
and four other things besides? Perhaps he should use the module
specifically made for this Web service. Or maybe show all three?
Decisions, decisions.

It may shorten this column, but let’s go right for the purpose-
built module this time: WebService::Spotify. I’ll explain this
decision in more depth (complete with a dash of dithering)
when we come back to authenticated/authorized requests. This
module appears to be the most up-to-date (there is a module
available called WWW::Spotify, but it calls the deprecated
Spotify API). The difference between WebService::Spotify and
something more lightweight becomes apparent when you install
it. Because it is using Mouse (the smaller version of the modern
object-oriented framework called Moose), it requires a whole
slew of dependencies. cpanminus or CPANPLUS (discussed in
a previous column) will handle this for you, but it can still be a
bit disconcerting to watch the module names scroll by when you
install it.

Once installed, using the module for non-authorized API calls is
super simple:

use WebService::Spotify;

my $s = WebService::Spotify->new;

my $r = $s->search(‘chloe’, type => ‘artist’);

foreach my $artist (@{ $r->{artists}->{items} }) {

 print “$artist->{name} ($artist->{uri})\n”;

}

print “total=$r->{artists}->{total}\n”;

print “previous=$r->{artists}->{previous}\n”;

print “next=$r->{artists}->{next}”;

print “\nlimit=$r->{artists}->{limit}\n”;

print “offset=$r->{artists}->{offset}\n”;

Here’s the output when I run it (which we will explain in a
moment):

Chloe Angelides (spotify:artist:79A4RmgwxYGIDkqQDUHLXK)

Chloe (spotify:artist:71POUphzXd95FKPipXjtE0)

Chloë (spotify:artist:2pCYsqZMqjA345dkjNXEct)

Chloe Martini (spotify:artist:6vhgsnZ2dLDaLDog3pqP2d)

Chloe Agnew (spotify:artist:34sL9HIOU50t8u0IQMZeze)

Chløë Black (spotify:artist:0IfnpflOVEmRGxCKaCYPX4)

Chloe (spotify:artist:2hg0g48H7GvAlTzkt3z5Vo)

Chloe Kaul (spotify:artist:35BBadnzA39iYkbQWLOr3p)

Chlöe Howl (spotify:artist:1hvPdvTeY6McdTvN4DyKGe)

Chloe Dolandis (spotify:artist:2SfamMWWSDbMcGpSua06o4)

total=340

previous=

next=https://api.spotify.com/v1/search?query=chloe&offset

=10&limit=10&type=artist

limit=10

offset=0

The code creates a new object, executes a search, and then prints
key parts of the response. The response comes back in JSON
form that is then parsed into Perl data structures. Here are some
excerpts from a dump of that data structure:

0 HASH(0x7fe70ca94dc8)

 ‘artists’ => HASH(0x7fe70ca94b88)

 ‘href’ => ‘https://api.spotify.com/v1/search?

query=chloe&offset=0&limit=10&type=artist’

 ‘items’ => ARRAY(0x7fe70b003718)

...

1 HASH(0x7fe70e129500)

‘external_urls’ => HASH(0x7fe70e1157c8)

‘spotify’ => ‘https://open.spotify.com/artist/

71POUphzXd95FKPipXjtE0’

‘followers’ => HASH(0x7fe70e115138)

‘href’ => undef

‘total’ => 38

‘genres’ => ARRAY(0x7fe70e129a40)

empty array

‘href’ => ‘https://api.spotify.com/v1/artists/

71POUphzXd95FKPipXjtE0’

‘id’ => ‘71POUphzXd95FKPipXjtE0’

‘images’ => ARRAY(0x7fe70e0d6780)

0 HASH(0x7fe70e0d67c8)

‘height’ => 640

‘url’ => ‘https://i.scdn.co/image/20620033bdf1

c86e83cb3f18f97172aa89ee6eca’

‘width’ => 640

1 HASH(0x7fe70e42e388)

‘height’ => 300

‘url’ => ‘https://i.scdn.co/image/5c0a9f8cb3bb

f55e15c305720d6033090c04c136’

‘width’ => 300

2 HASH(0x7fe70a7646e0)

‘height’ => 64

‘url’ => ‘https://i.scdn.co/image/767603633a02

http://www.usenix.org
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/search?query=chloe&offset=0&limit=10&type=artist
https://open.spotify.com/artist/71POUphzXd95FKPipXjtE0
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0
https://i.scdn.co/image/20620033bdf1c86e83cb3f18f97172aa89ee6eca
https://i.scdn.co/image/5c0a9f8cb3bbf55e15c305720d6033090c04c136
https://i.scdn.co/image/767603633a026e73551c6c98d366b8cf08a1adec
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/search?query=chloe&offset=0&limit=10&type=artist
https://open.spotify.com/artist/71POUphzXd95FKPipXjtE0
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0
https://i.scdn.co/image/20620033bdf1c86e83cb3f18f97172aa89ee6eca
https://i.scdn.co/image/5c0a9f8cb3bbf55e15c305720d6033090c04c136

www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  73

COLUMNS
Practical Perl Tools: Perl to the Music

6e73551c6c98d366b8cf08a1adec’

‘width’ => 64

‘name’ => ‘Chloe’

‘popularity’ => 39

‘type’ => ‘artist’

‘uri’ => ‘spotify:artist:71POUphzXd95FKPipXjtE0’

...

‘limit’ => 10

 ‘next’ => ‘https://api.spotify.com/v1/search?query=chloe

&offset=10&limit=10&type=artist’

 ‘offset’ => 0

 ‘previous’ => undef

 ‘total’ => 331

We get back a list of artists, each with their own sub-data struc-
ture (a list of hashes). Each artist that is returned has a number
of fields. Our script prints out just the name and the URL, but
you can see there’s lots of interesting stuff here, including point-
ers to images for the artist. Already we are having some fun.

In addition to the list of artists, we also get back some data about
the query itself, which I thought was so important to discuss,
I print it explicitly in the script. This data helps us paginate
through the large quantity of info in Spotify’s database as
needed. The “total” field tells us there are actually 331 artists
with this name, but by default the module asks the API to limit
the output to sending back 10 records at a time. This query
started at the beginning of the data set (an offset of 0), and there
is nothing before it (previous is “undef”). There is, however, the
URI we should be querying to get the next 10 records (which
includes an offset of 10, and an explicit limit of 10).

If we weren’t using the WebService::Spotify module, we would
call that URI to get the next set of 10. To do this explicitly with
the module, we could add an “offset” parameter to the search()
method like this:

my $r = $s->search(‘chloe’, type => ‘artist’, offset => 10);

but WebService::Spotify makes it even easier by providing a
next() method that consumes a results object and “does the right
thing,” as in:

my $s = WebService::Spotify->new;

my $r = $s->search(‘chloe’, type => ‘artist’);

while (defined $r->{artists}->{next}) {

 print_artists($r);

 $r = $s->next($r->{artists});

}

sub print_artists {

 my $r = shift;

 foreach my $artist (@{ $r->{artists}->{items} }) {

 print “$artist->{name} ($artist->{uri})\n”;

 }

}

This code pages through the data using next() to pull the next
result set if there is any.

So now that we’ve seen how to query for artists with a particular
name, what can we do with that artist’s info? As a start, with the
artist ID, we can look up that artist’s albums and her or his top
tracks in a particular country:

same search as before, let’s pick the second result

my $artist = $r->{artists}->{items}->[1];

my $albums = $s->artist_albums($artist->{id});

my $top_tracks = $s->artist_top_tracks($artist->{id},

‘country’ => ‘US’);

Here’s a small excerpt from the $albums data structure:

0 HASH(0x7fea614a86a8)

 ‘href’ => ‘https://api.spotify.com/v1/artists/

 71POUphzXd95FKPipXjtE0/albums?

 offset=0&limit=20&album_type=single,album,compilation

,appears_on,ep’

 ‘items’ => ARRAY(0x7fea614a8780)

 0 HASH(0x7fea613279d8)

‘album_type’ => ‘album’

‘available_markets’ => ARRAY(0x7fea61268880)

0 ‘AR’

1 ‘AU’

2 ‘AT’

3 ‘BE’

4 ‘BO’

5 ‘BR’

6 ‘BG’

7 ‘CA’

8 ‘CL’

9 ‘CO’

10 ‘CR’

...

58 ‘ID’

‘external_urls’ => HASH(0x7fea614a94c8)

‘spotify’ => ‘https://open.spotify.com/album

/3nVaq2gmNw8Z7k7rgVB961’

‘href’ => ‘https://api.spotify.com/v1/albums/3nVaq

2gmNw8Z7k7rgVB961’

‘id’ => ‘3nVaq2gmNw8Z7k7rgVB961’

‘images’ => ARRAY(0x7fea61bd6768)

0 HASH(0x7fea614a9438)

‘height’ => 640

‘url’ => ‘https://i.scdn.co/image/d64f75bc4f

b474478b904b7e4058bf369d2373e1’

‘width’ => 640

1 HASH(0x7fea61bd68a0)

‘height’ => 300

‘url’ => ‘https://i.scdn.co/image/d2e5b264f4

87ac3bf1e3c32d48b1296247e99455’

‘width’ => 300

2 HASH(0x7fea61bd6f00)

‘height’ => 64

http://www.usenix.org
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://open.spotify.com/album/3nVaq2gmNw8Z7k7rgVB961
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961
https://i.scdn.co/image/d2e5b264f487ac3bf1e3c32d48b1296247e99455
https://i.scdn.co/image/767603633a026e73551c6c98d366b8cf08a1adec
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://open.spotify.com/album/3nVaq2gmNw8Z7k7rgVB961
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961
https://i.scdn.co/image/d2e5b264f487ac3bf1e3c32d48b1296247e99455
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961

74    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

COLUMNS
Practical Perl Tools: Perl to the Music

 ‘url’ => ‘https://i.scdn.co/image/c20d9975b9

 253255d879c9a10d8f3a8deab077e5’

 ‘width’ => 64

 ‘name’ => ‘Only Everyone’

 ‘type’ => ‘album’

 ‘uri’ => ‘spotify:album:3nVaq2gmNw8Z7k7rgVB961’

We’ve received info about an album called “Only Everyone.”
The response tells us it is available in 58 markets. Album covers
are available at the specified URLs. Another interesting field
is “album_type.” If we had wanted to, we could have narrowed
down the type of album we were seeking (for example, if we
wanted to see all of the singles available from this artist). To do
that, we’d add an extra parameter to the query, as in:

my $albums = $s->artist_albums($artist->{id},

 ‘album_type’ => ‘single’);

The result of our artist_top_tracks() method call is equally fun.
In our code, we’ve asked what the top tracks are for that artist
in the US market (remember the list of markets in the previous
output?). Here’s an excerpt from what we get back:

 ‘tracks’ => ARRAY(0x7f841614be30)

 0 HASH(0x7f841486e0c0)

 ‘album’ => HASH(0x7f84131f7978)

 ‘album_type’ => ‘album’

 ‘available_markets’ => ARRAY(0x7f841227ea98)

‘AR’

...

 58 ‘ID’

 ‘id’ => ‘5mwk4GspWSXQHIkZGGdnhm’

 ‘name’ => ‘Boys and Girls Soundtrack’

 ‘type’ => ‘album’

 ‘uri’ => ‘spotify:album:5mwk4GspWSXQHIkZGGdnhm’

 ‘artists’ => ARRAY(0x7f841250d5a8)

 0 HASH(0x7f841347d2e0)

 ‘id’ => ‘71POUphzXd95FKPipXjtE0’

 ‘name’ => ‘Chloe’

 ‘type’ => ‘artist’

 ‘uri’ => ‘spotify:artist:71POUphzXd95FKPipXjtE0’

 ‘available_markets’ => ARRAY(0x7f841347d5b0)

 0 ‘AR’

...

 58 ‘ID’

 ‘disc_number’ => 1

 ‘duration_ms’ => 203800

 ‘explicit’ => JSON::PP::Boolean=SCALAR(0x7f8412196d08)

 -> 0

 ‘external_ids’ => HASH(0x7f841347c8a8)

 ‘isrc’ => ‘USAK10000397’

 ‘id’ => ‘600tF3aqxRjwJOtdjxEwzY’

 ‘name’ => ‘Get You Off my Mind’

 ‘popularity’ => 15

 ‘preview_url’ => ‘https://p.scdn.co/mp3-preview/4d99d5

 6fad8d2b31eb9fb7fa5c9a603fa23adb16’

 ‘track_number’ => 14

 ‘type’ => ‘track’

 ‘uri’ => ‘spotify:track:600tF3aqxRjwJOtdjxEwzY’

I’ve chopped a bunch of the fields of the data structure just to save
space but left enough so that you can see that for each track, you
get its name, the album it was on (and full info on that album),
markets available, the artist info for that track, what disc it is (for
multi-disc sets), what track it is on that disk, how long the actual
track is, and even a URL to a 30-second MP3 preview of the track.
Feel free to check out the preview, although I wish to insert a
caveat that this example wasn’t picked for its artistic merit.

There are a few more API calls we can make without authoriza-
tion listed in the WebService::Spotify doc (for example, to return
the tracks found on an album). I hope you have a sense of how you
might build a more sophisticated script to do things like search
for all of the albums and tracks by an artist.

What We Do in Private
There’s a lot of fun that can be had using non-authorized API
calls. I could probably end the column right here and you would
have enough to play with for a long time. But one important part
of these streaming music services is the ability to manipulate
the service’s music in various ways. Spotify is all about the playl-
ist, so as the last item in this column, we’re going to take a brief
look at how to work with them from the API. In particular, we are
going to look at how we retrieve our users’ private playlists.

The very mention of users and ownership should perk up your
ears because it means we get to get back into the authentica-
tion and authorization business. Spotify uses a method we
discussed in detail a few columns back, namely OAuth2, to
allow a user to delegate the privileges to a script/app to per-
form operations on your behalf. And this brings us back to the
reason why using WebService::Spotify had such appeal. Yes,
we certainly could have used LWP::Authen::OAuth2 as we did
in that previous column, and I suspect it would work, but I was
also perfectly pleased to use the OAuth2 support built into
WebService::Spotify instead. There are good arguments for
going either route, so I would say you should follow your own best
judgment on this call.

Let’s take a look at some code that uses OAuth2 behind the scenes
to extract the contents of one of my private playlists. In order to
use this code, I first had to register for an application at https://
developer.spotify.com/my-applications/#!/applications. I gave
the application a name, a description, and a redirect URI (I used
“http://localhost:8888/callback”; more on that in a moment).
Upon creation, the application was assigned a client ID and a cli-
ent secret. Let’s see the code and then we’ll take it apart:

use WebService::Spotify;

use WebService::Spotify::Util;

http://www.usenix.org
https://i.scdn.co/image/c20d9975b9253255d879c9a10d8f3a8deab077e5
https://p.scdn.co/mp3-preview/4d99d56fad8d2b31eb9fb7fa5c9a603fa23adb16
https://developer.spotify.com/my-applications/#!/applications
https://developer.spotify.com/my-applications/#!/applications
http://localhost:8888/callback
https://i.scdn.co/image/c20d9975b9253255d879c9a10d8f3a8deab077e5
https://p.scdn.co/mp3-preview/4d99d56fad8d2b31eb9fb7fa5c9a603fa23adb16

www.usenix.org	   S U M M ER 20 16  VO L . 41 , N O. 2  75

COLUMNS
Practical Perl Tools: Perl to the Music

my $username = “yourusername”;

$ENV{SPOTIFY_CLIENT_ID} = ‘YOUR_CLIENT_ID_HERE’;

$ENV{SPOTIFY_CLIENT_SECRET} = ‘YOUR_CLIENT_SECRET_HERE’;

$ENV{SPOTIFY_REDIRECT_URI} = ‘http://localhost:8888/

callback’;

my $token = WebService::Spotify::Util::prompt_for_user_

 token($username);

my $s = WebService::Spotify->new(auth => $token);

my $playlist = $s->user_playlists($username)->{items}->[2];

note, as of this writing, the module had a bug that

causes the use of ‘fields’ to fail. It may be fixed

by the time you read this.

#

If not, line 133 of lib/WebService/Spotify.pm should read:

return $self->get(“users/$user_id/$method”, fields =>

$fields);

my $tracks = $s->user_playlist(

 $username,

 ‘playlist_id’ => $playlist->{id},

 ‘fields’ => ‘tracks.items(track(name,album(name),

 artists(name)))’,

);

print “Playlist: $playlist->{name}\n”;

foreach my $t (@{ $tracks->{tracks}->{items} }) {

 print “Track: $t->{track}->{name}\n”;

 print “Album: $t->{track}->{album}->{name}\n”;

 print “Artists: $t->{track}->{artists}->[0]->{name}\n”;

 print “\n”;

}

The first interesting part of the code is the “prompt_for_user_
token” call. Here we are asking the module to do the necessary
OAuth2 dance to get us a token that can be presented to the
service by WebService::Spotify to show we have authorization.

When this line of the code runs, it spits out a URL that you need
to paste into a browser and then prompts for the URL that will
be returned to us. Spotify shows you a standard OAuth2 autho-
rization request screen. If you authorize the request, the service
attempts to redirect to the redirect URI we supplied during the
application creation stage but adds on a few parameters. These
parameters include a representation of a token we will need later.

Here’s where I have taken a less than elegant shortcut. Unless
you are doing something interesting on the machine running the
browser (localhost), chances are you don’t have a server running
on port 8888 to handle this redirect. As a result, the browser
displays a “Sorry, I can’t go to that URL” error page. That’s just
fine, we don’t actually need to complete the redirect, we just
need the URL being used for that redirect. We can just copy the
URL it attempted from the browser’s URL field and paste it to
the prompt from our running script so it can continue. I suppose

if we wanted to be cooler we could indeed spin up a tiny server
(e.g., using something like Mojolicious) to catch the redirect and
print out the URL, but that level of coolness is not required for
this particular application.

Now that we’ve done the OAuth2 auth dance, the code in
this example uses the appropriate token when creating the
WebService::Spotify object. WebService::Spotify will make sure
to handle getting the right token to Spotify during the rest of the
transactions with the service. It is also smart enough to cache
the token (and ask for renewals if necessary), so we won’t have to
go through that initial authorization step again.

The first thing we do with our newfound authorization is request
one of the playlist records from the list of playlists our user owns.
I’m picking the third playlist in my account just because I know
it is short and hence useful for this example. You could easily
write code that iterates through all of them.

Now to get the tracks for this playlist—we ask for the contents of
my user’s playlist with the ID retrieved from the playlist record.
To be fancy, we’re adding an additional parameter to our request
that limits the fields returned from our query. That field says
“tracks.items(track(name,album(name),artists(name)))”, which
means “given all of the items in a playlist record, pull out the
tracks, and from within the tracks pull out the track name, the
name of the album that track comes from, and the artists’ name.”
We could have left this parameter off and just grabbed the fields
from the large response we get back, but this is a bit more effi-
cient, and the returned object is easier to look at in a debugger.
We iterate through the tracks in the playlist, printing out these
items. Here’s what the output looks like for my shortest playlist:

Playlist: Pre-class

Track: I Zimbra - 2005 Remastered Version

Album: Fear Of Music (Deluxe Version)

Artists: Talking Heads

Track: Default

Album: Default

Artists: Django Django

Working with all of this data is done just the way we saw in the
previous sections. Creating (user_playlist_create) and manipu-
lating playlists (user_playlist_add_tracks) is supported by
WebService::Spotify as well. Both are straightforward given
what we already know about playlist IDs and track URIs.

I hope you have fun experimenting with this API. Take care, and
I’ll see you next time.

http://www.usenix.org
http://localhost:8888/callback
http://localhost:8888/callback

