
76    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

COLUMNS

What’s New in Go 1.6—Vendoring
K E L S E Y H I G H T O W E R

G o 1.6 was released in Q1 of 2016 and introduced support for Linux
on MIPS and Android, HTTP2 support in the standard library, and
some amazing improvements to the garbage collector (GC), which

reduced latency and improved performance for the most demanding applica-
tions written in the language. Improvements to the standard library and run-
time normally get the most attention leading up to a new release. However,
with the release of Go 1.6 it’s all about dependency management, which takes
on one of the biggest pain points in the Go community.

Before you can really appreciate the impact of the Go 1.6 release, and the work around
improving dependency management, we need to review how we got here.

Manual Dependency Management
Until recently, managing dependencies in Go required pulling external libraries into your
GOPATH and attempting to build your application. To make things easy, Go ships with the
go tool, which automates fetching dependencies and putting things in the right place. In the
early days one could argue this was enough to get by. There was no real pressure to focus on
tracking versions of your dependencies, largely because everything was relatively new and
had a single version.

Let’s take a look at managing dependencies for a simple application called hashpass—which
prints a bcrypt hash for a given password.

First we need to create a directory to hold the hashpass source code:

$ mkdir -p $GOPATH/src/github.com/kelseyhightower/hashpass

$ cd $GOPATH/src/github.com/kelseyhightower/hashpass

Now save the hashpass source code to a file named main.go:

package main

import (

 “fmt”

 “log”

 “syscall”

 “golang.org/x/crypto/bcrypt”

 “golang.org/x/crypto/ssh/terminal”

)

func main() {

 fmt.Println(“Password:”)

 password, err := terminal.ReadPassword(syscall.Stdin)

 if err != nil {

 log.Fatal(err)

Kelsey Hightower has worn
every hat possible throughout
his career in tech, and enjoys
leadership roles focused on
making things happen and

shipping software. Kelsey is a strong open
source advocate focused on building simple
tools that make people smile. When he is not
slinging Go code, you can catch him giving
technical workshops covering everything from
programming to system administration and
distributed systems.
kelsey.hightower@gmail.com

http://www.usenix.org
mailto:kelsey.hightower@gmail.com

www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  77

COLUMNS
What’s New in Go 1.6—Vendoring

 }

 passwordHash, err := bcrypt.GenerateFromPassword

(password, 12)

 if err != nil {

 log.Fatal(err)

 }

 fmt.Println(string(passwordHash))

}

With the hashpass source code in place it’s time to compile a
binary:

$ go build .

main.go:8:5: cannot find package “golang.org/x/crypto

/bcrypt” in any of:

 /usr/local/go/src/golang.org/x/crypto/bcrypt (from $GOROOT)

 /Users/khightower/go/src/golang.org/x/crypto/bcrypt

(from $GOPATH)

main.go:9:5: cannot find package “golang.org/x/crypto/ssh

/terminal” in any of:

 /usr/local/go/src/golang.org/x/crypto/ssh/terminal

(from $GOROOT)

 /Users/khightower/go/src/golang.org/x/crypto/ssh/terminal

(from $GOPATH)

Fail.

The build did not work, but what happened? The error message
is telling us that we are missing a few dependencies required to
build hashpass. Recall the import block at the top of the main.go
source file.

import (

 “fmt”

 “log”

 “syscall”

 “golang.org/x/crypto/bcrypt”

 “golang.org/x/crypto/ssh/terminal”

)

The first three imports—fmt, log, and syscall—can be found in
the standard library installed as part of the Go distribution.
The next two libraries are external dependencies that must be
fetched and installed into our GOPATH before we can use them.

Use the go tool to fetch both external dependencies:

$ go get golang.org/x/crypto/bcrypt

$ go get golang.org/x/crypto/ssh/terminal

Notice we are not fetching a specific version of our external
dependencies. Yeah, you can see where this is going; stay with
me. With our external dependencies in place, try building
hashpass again, but this time use the -v flag to print each of the
dependencies as they are being compiled:

$ go -v build .

golang.org/x/crypto/blowfish

golang.org/x/crypto/ssh/terminal

golang.org/x/crypto/bcrypt

github.com/kelseyhightower/hashpass

Success! We now have the hashpass binary in our current direc-
tory. Run the hashpass binary and enter a (fake) password to get
a bcrypt hash:

$./hashpass

Password:

$2a$12$bD51ZjG//

NWrbo5dYWSFeeppvJwZazRBWqLBh4afnP0pUQSg3yAMy...

Managing dependencies this way works for simple projects with
few external dependencies, but there are many hidden gotchas
here. We are not tracking each version of our dependencies,
which means other people will have a hard time reproducing
our build. The version of our dependencies is based on when we
fetched them, not specific versions we declared ahead of time.
This is the problem the Go community has been trying to solve
for nearly five years.

Third Party Dependency Management Tools
Given the challenge of manually managing dependencies,
many third party tools started to appear, Godep being the most
popular. Godep helps track which version of a dependency your
project is using and optionally includes those dependency source
trees in the same repository as your code through a process
called vendoring.

Let’s see Godep in action. Install Godep using the go get command:

$ go get github.com/tools/godep

Remove the existing hashpass external dependencies from your
GOPATH:

$ rm -rf $GOPATH/src/golang.org/x/

Now we are ready to use Godep to manage the hashpass exter-
nal dependencies. Let’s start from the hashpass source code
directory:

$ cd $GOPATH/src/github.com/kelseyhightower/hashpass

Use the godep get command to fetch the hashpass external
dependencies.

$ godep get .

Fetching https://golang.org/x/crypto/bcrypt?go-get=1

Fetching https://golang.org/x/crypto?go-get=1

Fetching https://golang.org/x/crypto/ssh/terminal?go-get=1

...

http://www.usenix.org
https://golang.org/x/crypto/bcrypt?go-get=1
https://golang.org/x/crypto?go-get=1
https://golang.org/x/crypto/ssh/terminal?go-get=1

78    S U M M ER 20 16  VO L . 41 , N O. 2 	 www.usenix.org

COLUMNS
What’s New in Go 1.6—Vendoring

Use the godep save command to record the version of each
dependency in use and copy their source code into your
repository:

$ godep save

The godep save command creates a working directory named
Godeps. Take a moment to explore it.

$ ls Godeps/

Godeps.json Readme _workspace

The Godeps.json file is used to record the versions of our
dependencies:

$ cat Godeps/Godeps.json

{

 “ImportPath”: “github.com/kelseyhightower/hashpass”,

 “GoVersion”: “go1.5”,

 “GodepVersion”: “v62”,

 “Deps”: [

 {

 “ImportPath”: “golang.org/x/crypto/bcrypt”,

 “Rev”: “b8a0f4bb4040f8d884435cff35b9691e362cf00c”

 },

 {

 “ImportPath”: “golang.org/x/crypto/blowfish”,

 “Rev”: “b8a0f4bb4040f8d884435cff35b9691e362cf00c”

 },

 {

 “ImportPath”: “golang.org/x/crypto/ssh/terminal”,

 “Rev”: “b8a0f4bb4040f8d884435cff35b9691e362cf00c”

 }

]

}

Not what you are accustomed to seeing, right? The Godeps.json
file is not tracking semantic version numbers like 1.0.0 or 2.2.1.
This is where the Go community differs from many others.
In the Go community we track the entire source tree that we
depend on and do not rely on version numbers—version numbers
can be reused and can point to later versions of a source tree, a
security nightmare waiting to happen.

Another thing that’s not so obvious at first glance, Godeps copies
all of our dependencies into our source tree under the Godeps
/_workspace directory:

$ tree -d Godeps/_workspace/

Godeps/_workspace/

└── src

 └── golang.org

 └── x

 └── crypto

 ├── bcrypt

 ├── blowfish

 └── ssh

 └── terminal

8 directories

The Godeps/_workspace directory mirrors part of the GOPATH
we depend on for building our application. The idea here is to
check in the entire Godeps directory and ensure our dependen-
cies live next to our code. The Godeps/_workspace directory is
ignored by the go build tool because it starts with an underscore
and will require the godep command as a wrapper around the go
build command.

$ godep go build -v .

The godep command ensures the Godeps/_workspace directory
is included at the front of the GOPATH, which causes our ven-
dored dependencies to take priority during the build process.

The main drawback to using Godep to manage dependencies
was that Godep was non-standard and incompatible with the
go tool—go get will ignore the Godeps/_workspace directory
and force users to check out your entire project to build your
application.

Vendoring
Vendoring makes it easier to deliver reproducible builds and
reduces reliance on remote code repositories hosting your
dependencies—it also prevents your development team from
scrambling when GitHub goes down in the middle of a release:
fun times!

Godep proved that managing dependencies can be done with the
right tools, but required help from the core Go project to reach
its full potential. That help arrived in Go 1.6; a snippet from the
release notes:

◆◆ Go 1.6 includes support for using local copies of external depen-
dencies to satisfy imports of those dependencies, often referred
to as vendoring.

◆◆ Code below a directory named “vendor” is importable only
by code in the directory tree rooted at the parent of “vendor,”
and only using an import path that omits the prefix up to and
including the vendor element.

In a nutshell Go 1.6 will search a vendor directory for external
dependencies, but you’ll still need tools to copy them there.

http://www.usenix.org

www.usenix.org	 S U M M ER 20 16  VO L . 41 , N O. 2  79

COLUMNS
What’s New in Go 1.6—Vendoring

Newer versions of Godeps will detect that you’re using Go 1.6
and copy your dependencies into the vendor directory.

$ cd $GOPATH/src/github.com/kelseyhightower/hashpass

$ rm -rf Godep

$ godep save

Godep creates a vendor directory and copies the hashpass exter-
nal dependences into it:

$ tree -d vendor/

vendor/

└── golang.org

└── x

└── crypto

├── bcrypt

├── blowfish

└── ssh

└── terminal

7 directories

As an added bonus, Godeps continues to write the Godeps
/Godeps.json file, so you can track exactly where your dependen-
cies came from. At this point we can rebuild hashpass without
any wrapper tools thanks to support for the vendor directory.

$ go build -v

github.com/kelseyhightower/hashpass/vendor/golang.org/x

/crypto/blowfish

github.com/kelseyhightower/hashpass/vendor/golang.org/x

/crypto/ssh/terminal

github.com/kelseyhightower/hashpass/vendor/golang.org/x

/crypto/bcrypt

github.com/kelseyhightower/hashpass

Notice all the hashpass dependencies are being pulled in from
the local vendor directory. Feel free to take the rest of the day off,
you’ve earned it!

Summary
Since the release of Go 1.0, the Go community has been on a long
journey to get a handle on dependency management. Over the
years the community has stepped in to help define what the right
dependency management solution looks like for Go and, as a
result, gave way to the idea of vendoring and reproducible builds.
Now, with the release of Go 1.6, the community has a standard
we can rely on for many years to come.

http://www.usenix.org

