
12    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE

Evolving Ext4 for Shingled Disks
A B U T A L I B A G H A Y E V , T H E O D O R E T S ’ O , G A R T H G I B S O N , A N D
P E T E R D E S N O Y E R S

Multi-terabyte hard disks today use Shingled Magnetic Recording
(SMR), a technique that increases capacity at the expense of more
costly random writes. We introduce ext4-lazy, a small change to

the popular Linux ext4 file system that eliminates a major source of random
writes—the metadata writeback—significantly improving performance on
SMR disks in general, as well as on conventional disks for metadata-heavy
workloads in particular. In this article, we briefly explain why SMR disks
suffer under random writes and how ext4-lazy helps.

To cope with the exponential growth of data, as well as to stay competitive with NAND
flash-based solid state drives (SSDs), hard disk vendors are researching capacity-increasing
technologies. Shingled Magnetic Recording (SMR) is one such technique that allows disk
manufacturers to increase areal density with existing fabrication methods. So far, the industry
has introduced two kinds of SMR disks: Drive-Managed (DM-SMR) and Host-Managed (HM-
SMR). HM-SMR disks have a novel backward-incompatible interface that requires changes to
the I/O stack and, therefore, are not widely deployed. DM-SMR disks, on the other hand, are a
drop-in replacement for Conventional Magnetic Recording (CMR) disks that offer high capac-
ity with the traditional block interface. Millions of DM-SMR disks have been shipped; in the
rest of the article, therefore, we will use SMR disk as a shorthand for DM-SMR disk.

If you buy a multi-terabyte disk today, there is a good chance that it is an SMR disk in dis-
guise, which is easy to tell: unlike CMR disks, SMR disks suffer performance degradation
when subjected to continuous random write traffic, as Figure 1 shows.

One approach to adopting SMR disks is to develop a file system from scratch based on their
performance characteristics. But file systems are complex and critical pieces of code that
take years to mature. Therefore, we take an evolutionary approach to adopting these disks:
we make a small change to the popular Linux file system, ext4, that significantly improves
its performance on SMR disks by avoiding random metadata writes.

We introduce a simple technique that we call lazy writeback journaling, and we call a ver-
sion of ext4 using our journaling technique ext4-lazy. Like other journaling file systems, by
default ext4 writes metadata twice; as Figure 2a shows, it first writes the metadata block to
a temporary location J in the journal and then marks the block as dirty in memory. Once the
block has been in memory for long enough, a writeback thread writes the block to its static
location S, resulting in a random write. Although metadata writeback is typically a small
portion of a workload, it results in many random writes. Ext4-lazy, on the other hand, marks
the block as clean after writing it to the journal, to prevent the writeback, and inserts a map-
ping (S, J) to an in-memory map allowing the file system to access the block in the journal,
as seen in Figure 2b. Since the journal is written sequentially to a circular log, overwriting
a metadata block is not possible. Therefore, ext4-lazy writes an updated block to the head of
the log, updating the map and invalidating the old copy of the block. Ext4-lazy uses a large
journal so that it can continue writing updated blocks while reclaiming the space from the

Abutalib Aghayev is a PhD
student in the Computer
Science Department at
Carnegie Mellon University.
His research interests include

operating systems, file and storage systems,
and, recently, distributed machine learning
systems. agayev@cs.cmu.edu

Theodore Ts’o started working
with Linux in September 1991
and is the first North American
Linux kernel developer. He
also served as the tech lead

for the MIT Kerberos V5 development team
and as a chair of the IP Security working group
at the IETF. He previously was CTO for the
Linux Foundation and is currently employed
at Google. Theodore is a Debian Developer,
and maintains the ext4 file system in the Linux
kernel. He is also the maintainer and original
author of the e2fsprogs userspace utilities for
the ext2, ext3, and ext4 file systems.
tytso@thunk.org

Garth Gibson is a Professor
of Computer Science and an
Associate Dean in the School of
Computer Science at Carnegie
Mellon University. Garth’s

research is split between scalable storage
systems and distributed machine learning
systems, and he has had his hand in the
creation of the RAID taxonomy, the Panasas
PanFS parallel file system, the IETF NFS v4.1
parallel NFS extensions, and the USENIX
Conference on File and Storage Technologies
(FAST). garth@cs.cmu.edu

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  13

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

invalidated blocks. During mount, it reconstructs the in-memory map from the journal
resulting in a modest increase in mount time. Results show that ext4-lazy significantly
improves performance on SMR disks in general, as well as on CMR disks for metadata-heavy
workloads in particular.

Our main contribution to ext4 includes the design, implementation, and evaluation of ext4-
lazy on SMR and CMR disks. The change we make is minimally invasive—we modify 80
lines of existing code and introduce the new functionality in additional files totaling 600
lines of C code. As we show in the evaluation section, even on a metadata-light file server
benchmark where the metadata writes make up less than 1% of total writes, with stock ext4
the SMR disk appears unresponsive for almost an hour with near-zero throughput. With
ext4-lazy, on the other hand, the SMR disk does not suffer such a behavior and completes
1.7–5.4x faster. For directory traversal and metadata-heavy workloads, ext4-lazy achieves
2–13x improvement on both SMR and CMR disks.

Background
A high-level introduction to SMR technology has been previously presented in ;login: [3].
Readers interested in nitty-gritty details of how an SMR disk works and why it suffers under
random writes may refer to the detailed study [1] of one such disk. Here, we give just enough
background on SMR disks and ext4 journaling to make the rest of the article understandable.

Peter Desnoyers is an Associate
Professor at Northeastern
University. He worked for
Apple, Motorola, and a
number of startups for 15 years

before getting his PhD at the University of
Massachusetts, Amherst, in 2007. He received
BS and MS degrees from MIT. His main
focuses are storage, particularly the integration
of emerging storage technologies, and cloud
computing. pjd@ccs.neu.edu 0.03

0.3

3

30

 0.01

 0.1

 1

 10

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

Time (s)

ST5000AS0011
ST8000AS0002
ST4000LM016
WD40NMZW

WD5000YS

Figure 1: Throughput of CMR and SMR disks from Table 1 under 4 KiB random write traffic. The CMR disk
(WD500YS) has a stable but low throughput under random writes. SMR disks, on the other hand, have a
short period of high throughput followed by a continuous period of ultra-low throughput.

Type Vendor Model Capacity Form Factor
SMR Seagate ST8000AS0002 8 TM 3.5 inch

SMR Seagate ST5000AS0011 5 TB 3.5 inch

SMR Seagate ST4000LM016 4 TB 2.5 inch

SMR Western Digital WD40NMZW 4 TB 2.5 inch

CMR Western Digital WD5000YS 500 MB 3.5 inch

Table 1: CMR and SMR disks from two vendors used for evaluation

14    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

SMR
As a concrete example, one SMR disk used in our evaluation
consists of ≈ 30 MiB bands that are the smallest units that must
be written sequentially. Overwriting a random block in a band
requires read-modify-write (RMW) of the whole band. This
results in reading a band, modifying it in memory, writing the
updated band to a temporary band (since overwriting the origi-
nal band is not atomic and could corrupt the old data if power is
lost), and finally overwriting the original band, generating ≈ 90
MiB disk I/O. To hide the cost of random writes, the disk uses a
persistent cache for handling bursts of random writes—incoming
random writes are written to the persistent cache, and the bands

are updated using RMW during the idle times, emptying the per-
sistent cache. If the burst of random writes is large enough to fill
the persistent cache, the throughput of the disk drops because
every incoming write requires RMW of the corresponding band.
Sequential writes, on the other hand, are detected and written
directly to bands, bypassing the persistent cache.

Ext4 and Journaling
The ext4 file system evolved from ext2, which was influenced by
Fast File System (FFS). Similar to FFS, ext2 divides the disk into
cylinder groups—or as ext2 calls them, block groups—and tries to
put all blocks of a file in the same block group. To further increase
locality, the metadata blocks (inode bitmap, block bitmap, and
inode table) representing the files in a block group are also placed
within the same block group, as Figure 3a shows. In ext2 the size
of a block group was limited to 128 MiB—the maximum number
of 4 KiB data blocks that a 4 KiB block bitmap can represent. Ext4
introduced flexible block groups or flex_bgs—a set of contiguous
block groups whose metadata is consolidated in the first 16 MiB
of the first block group within the set, as shown in Figure 3b.

Ext4 ensures metadata consistency via journaling, but it does
not implement journaling itself; rather, it uses a generic kernel
layer called the Journaling Block Device that runs in a separate
kernel thread called jbd2. In response to file system operations,
ext4 reads metadata blocks from disk, updates them in memory,
and exposes them to jbd2 for journaling. For increased perfor-
mance, jbd2 batches metadata updates from multiple file system
operations (by default, for five seconds) into a transaction
buffer and atomically commits the transaction to the journal—a
circular log of transactions. After a commit, jbd2 marks the in-
memory copies of metadata blocks as dirty so that the writeback
thread would write them to their static locations.

(a) ext2 Block Group

Super Block Group Desc Block Bitmap Inode Bitmap Inode Table Data Blocks

Block Group 0 Block Group 1
Data Blocks Data Blocks

Block Group 2
Data Blocks

(b) ext4 flex_bg

Block Group 15
Data Blocks

Metadata for all block groups in a flex_bg ~ 16 MiB

~ 1 MiB ~ 127 MiB

2 GiB

flex_bg 0 flex_bg 1

Band 0 Band 49

flex_bg 3999

Band 266,565 Band 266,566
(c) Disk Layout of ext4 partition on an 8 TB SMR disk

Figure 2: (a) Ext4 writes a metadata block to disk twice. It first writes
the metadata block to the journal at some location J and marks it dirty
in memory. Later, the writeback thread writes the same metadata block
to its static location S on disk, resulting in a random write. (b) Ext4-lazy
writes the metadata block approximately once to the journal and inserts a
mapping (S, J) to an in-memory map so that the file system can find the
metadata block in the journal.

(a) Journaling under ext4
Disk

Journal

Memory

1

2

J
S

J

(b) Journaling under ext4-lazy
Disk

Journal

Memory

12

Map

JS

Figure 3: (a) In ext2, the first megabyte of a 128 MiB block group contains the metadata blocks describing the block group, and the rest is data blocks.
(b) In ext4, a single flex bg (flexible block group) concatenates multiple (16 in this example) block groups into one giant block group and puts all of the
metadata in the first block group. (c) Modifying data in a flex bg will result in a metadata write that may dirty one or two bands, seen at the boundary of
bands 266,565 and 266,566.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  15

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

On SMR disks, when the metadata blocks are eventually writ-
ten back, they dirty the bands that are mapped to the metadata
regions in a f lex_bg, as seen in Figure 3c. Since a metadata
region is not aligned with a band, metadata writes to it may dirty
zero, one, or two extra bands, depending on whether the meta-
data region spans one or two bands and whether the data around
the metadata region has been written.

Design of Ext4-lazy
At a high level, ext4-lazy adds the following components to ext4
and jbd2:

Map: Ext4-lazy tracks the location of metadata blocks in the
journal with an in-memory map that associates the static loca-
tion S of a metadata block with its location J in the journal. The
mapping is updated whenever a metadata block is written to the
journal, as shown in Figure 2b.

Indirection: In ext4-lazy, all accesses to metadata blocks go
through the map. If the most recent version of a block is in the
journal, there will be an entry in the map pointing to it; if no
entry is found, then the copy at the static location is up-to-date.

Cleaner: The cleaner in ext4-lazy reclaims space from locations
in the journal that have become invalidated by the writes of new
copies of the same metadata block.

Map reconstruction on mount: On every mount, ext4-lazy
reads the descriptor blocks from the transactions between the
tail and the head pointer of the journal and populates map.

Evaluation
We evaluate ext4-lazy on a system with a quad-core Intel
i7-3820 (Sandy Bridge) 3.6 GHz CPU, 16 GB of RAM running
Linux kernel 4.6, using the disks listed in Table 1. One surprising
finding of our work was that the default journal size on ext4 is a

bottleneck for metadata-heavy workloads. Figure 4 shows that
just by increasing the journal size, a metadata-heavy workload
completes over 40x faster. As a result, the recent version of
e2fsprogs has increased the default journal size from 128 MiB
to 1 GiB for file systems over 128 GiB. Readers interested in the
details may refer to our paper [2]. Since enabling a large journal
on ext4 is a command-line option to mkfs, we choose ext4 with a
10 GiB journal as our baseline.

Next, we first show that ext4-lazy achieves significant speedup
on the CMR disk WD5000YS from Table 1 for metadata-heavy
workloads, and specifically for massive directory traversal
workloads. We then show that on SMR disks, ext4-lazy provides
significant improvement on both metadata-heavy and metadata-
light workloads.

Ext4-lazy on a CMR Disk
For metadata-heavy workloads we use the following bench-
marks. MakeDirs creates 800,000 directories in a directory
tree of depth 10. The directory tree is also used by the following
benchmarks: ListDirs runs ls -lR on the directory tree, TarDirs
creates a tarball of the directory tree, and RemoveDirs removes
the directory tree.

CreateFiles creates 600,000 files each of size 4 KiB in a new
directory tree of depth 20. The directory tree is also used by the
following benchmarks: FindFiles runs find on the directory tree,
TarFiles creates a tarball of the directory tree, and RemoveFiles
removes the directory tree. All of the benchmarks start with a
cold cache, set up by echoing “3” to /proc/sys/vm/drop_caches.

As Figure 5 shows, benchmarks that are in the file/directory
create category (MakeDirs, CreateFiles) complete 1.5–2x
faster on ext4-lazy than on ext4-baseline, while the remaining
benchmarks that are in the directory-traversal category—except
TarFiles—complete 3–5x faster. We choose MakeDirs and
RemoveDirs as a representative of each category and analyze
their performance in detail below.

10
0

10
1

10
2

10
3

T
im

e
(s

)

(a)

ext4-stock
ext4-baseline

0

0.5

1

 0 150 300 450

D
ir

ty
 P

ag
es

 (
G

iB
)

Time (s)

(b)

ext4-stock
ext4-baseline

 10

 20

 30

 40

MakeDirs ListDirs TarDirs RemoveDirs

T
im

e
(m

in
)

ext4-baseline ext4-lazy

 10

 20

 30

 40

CreateFiles FindFiles TarFiles RemoveFiles

T
im

e
(m

in
)

Figure 4: (a) Completion time for a benchmark creating 100,000 files on
ext4-stock (ext4 with 128 MiB journal) and on ext4-baseline (ext4 with
10 GiB journal). (b) The volume of dirty pages during benchmark runs
obtained by sampling /proc/meminfo every second.

Figure 5: Microbenchmark runtimes on ext4-baseline and ext4-lazy

16    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

MakeDirs on ext4-baseline results in ≈ 4,735 MiB of journal
writes that are transaction commits containing metadata
blocks, as seen in the first row of Table 2 and at the center in
Figure 6a; as the dirty timer on the metadata blocks expires,
they are written to their static locations, resulting in a similar
amount of metadata writeback. The block allocator is able to
allocate large contiguous blocks for the directories, because
the file system is fresh. Therefore, in addition to journal writes,
metadata writeback is sequential as well. The write time domi-
nates the runtime in this workload: hence, by avoiding metadata
writeback and writing only to the journal, ext4-lazy halves the
writes as well as the runtime, as seen in the second row of Table
2 and Figure 6b. On an aged file system, the metadata writeback
is more likely to be random, resulting in even higher improve-
ment on ext4-lazy.

An interesting observation about Figure 6b is that although
the total volume of metadata reads—shown as periodic verti-
cal spreads—is ≈ 140 MiB (3% of total I/O in the second row of
Table 2), they consume over 30% of runtime due to long seeks
across the disk. In this benchmark, the metadata blocks are read
from their static locations because we run the benchmark on a
fresh file system, and the metadata blocks are still at their static
locations. As we show next, once the metadata blocks migrate to
the journal, reading them is much faster since no long seeks are
involved.

In RemoveDirs benchmark, on both ext4-baseline and ext4-
lazy, the disk reads ≈ 4,066 MiB of metadata, as seen in the
last two rows of Table 2. However, on ext4-baseline the meta-
data blocks are scattered all over the disk, resulting in long seeks
as indicated by the vertical spread in Figure 6c, while on ext4-
lazy they are within the 10 GiB region in the journal, resulting
in only short seeks, as Figure 6d shows. Ext4-lazy also benefits
from skipping metadata writeback, but most of the improve-
ment comes from eliminating long seeks for metadata reads.
The significant difference in the volume of journal writes
between ext4-baseline and ext4-lazy seen in Table 2 is caused
by metadata write coalescing: Since ext4-lazy completes faster,
there are more operations in each transaction, with many modi-
fying the same metadata blocks, each of which is only written
once to the journal.

The improvement in the remaining benchmarks is also due to
reducing seeks to a small region and avoiding metadata write-
back. We do not observe a dramatic improvement in TarFiles,
because unlike the rest of the benchmarks that read only meta-
data from the journal, TarFiles also reads data blocks of files
that are scattered across the disk. Massive directory traversal
workloads are a constant source of frustration for users of most
file systems. One of the biggest benefits of consolidating meta-
data in a small region is an order-of-magnitude improvement in
such workloads.

Ext4-lazy on SMR Disks
An additional critical factor for file systems when running on
SMR disks is the cleaning time after a workload. A file system
resulting in a short cleaning time gives the disk a better chance
of emptying the persistent cache during idle times of a bursty
I/O workload, and has a higher chance of continuously perform-
ing at the persistent cache speed, whereas a file system resulting
in a long cleaning time is more likely to force the disk to inter-
leave cleaning with file system user work.

In the next section we show microbenchmark results on just one
SMR disk—ST8000AS0002 from Table 1. At the end of every
benchmark, we run a vendor-provided script that polls the disk
until it has completed background cleaning and reports the total
cleaning time, which we report in addition to the benchmark
runtime. We achieve similar normalized results for the remain-
ing disks, which we skip to save space.

Microbenchmarks
Figure 7 shows results of the microbenchmarks (see section
“Ext4-lazy on a CMR Disk”) repeated on ST8000AS0002 with
a 2 TB partition, on ext4-baseline and ext4-lazy. MakeDirs
and CreateFiles do not fill the persistent cache, and, therefore,
they typically complete 2–3x faster than on CMR disk. Similar
to CMR disk, MakeDirs and CreateFiles are 1.5–2.5x faster on
ext4-lazy. On the other hand, ListDir, for example, one of the
remaining directory traversal benchmarks, completes 13x faster
on ext4-lazy, as compared to 5x faster on CMR disk.

Metadata Reads (MiB) Metadata Writes (MiB) Journal Writes (MiB)
MakeDirs/ext4-baseline 143.7±2.8 4,631±33.8 4,735±0.1

MakeDirs/ext4-lazy 144±4 0 4,707±1.8

RemoveDirs/ext4-baseline 4,066.4±0.1 322.4±11.9 1,119±88.6

RemoveDirs/ext4-lazy 4,066.4±0.1 0 472±3.9

Table 2: Distribution of the I/O types with MakeDirs and RemoveDirs benchmarks running on ext4-baseline and ext4-lazy

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  17

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

The cleaning times for ListDirs, FindFiles, TarDirs, and TarFiles
are zero because they do not write to disk—TarDirs and TarFiles
write their output to a different disk. However, cleaning time
for MakeDirs on ext4-lazy is zero as well, compared to ext4-
baseline’s 846 seconds, despite having written over 4 GB of
metadata, as Table 2 shows. Being a pure metadata workload,
MakeDirs on ext4-lazy consists of journal writes only, as Figure
6b shows, all of which are streamed, bypassing the persistent
cache and resulting in zero cleaning time. Similarly, cleaning
time for RemoveDirs and RemoveFiles are 10 and 20 seconds,
respectively, on ext4-lazy compared to 590 and 366 seconds on
ext4-baseline, because these too are pure metadata workloads
resulting in only journal writes for ext4-lazy. During deletion,
however, some journal writes are small and end up in persistent
cache, resulting in short cleaning times.

File Server Macrobenchmark
Our file server benchmark creates a working set of 10,000 files
spread sparsely across 25,000 directories, with file sizes ranging
from 512 bytes to 1 MiB, and then executes 100,000 transactions
with the I/O size of 1 MiB. In total, the benchmark writes 37.89
GiB and reads 31.54 GiB of data from user space.

Table 3 shows the distribution of write types completed by a
ST8000AS0002 SMR disk with a 400 GB partition during the
benchmark. On ext4-baseline, metadata writes make up 1.6%
of total writes. Although the unique amount of metadata is

only ≈ 120 MiB, as the storage slows down, metadata writeback
increases slightly, because each operation takes a long time to
complete, and the writeback of a metadata block occurs before
the dirty timer is reset.

The benchmark completes more than 2x faster on ext4-lazy, in
461 seconds, as seen in Figure 8. On ext4-lazy, the disk sustains
140 MiB/s throughput and fills the persistent cache in 250
seconds, and then drops to a steady 20 MiB/s until the end of the
run. On ext4-baseline, however, the large number of small meta-
data writes reduces throughput to 50 MiB/s, taking the disk 450
seconds to fill the persistent cache. Once the persistent cache
fills, the disk interleaves cleaning and file system user work, and
small metadata writes become prohibitively expensive, as seen,
for example, between seconds 450 and 530. During this period
we do not see any data writes, because the writeback thread
alternates between page cache and buffer cache when writing
dirty blocks, and it is the buffer cache’s turn. We do, however,
see journal writes because jbd2 runs as a separate thread and
continues to commit transactions.

The benchmark completes even more slowly on a full 8 TB ext4
partition, as seen in Figure 9, because ext4 spreads the same
workload over more bands. With a small partition, updates to
different files are likely to update the same metadata region.
Therefore, cleaning a single band frees more space in the persis-
tent cache, allowing it to accept more random writes. With a full

0

200

400

 0 50 100 150 200 250

D
is

k
 O

ff
se

t
(G

iB
)

(a) MakeDirs/ext4-baseline

Metadata Read Metadata Write Journal Write

0

200

400

 0 500 1000 1500 2000

D
is

k
 O

ff
se

t
(G

iB
)

(c) RemoveDirs/ext4-baseline

Metadata Read Metadata Write Journal Write

0

200

400

 0 50 100 150 200 250

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

(b) MakeDirs/ext4-lazy

Metadata Read Journal Write

0

200

400

 0 500 1000 1500 2000

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

(d) RemoveDirs/ext4-lazy

Metadata Read Journal Write

Figure 6: Disk offsets of I/O operations during MakeDirs and RemoveDirs microbenchmarks on ext4-baseline and ext4-lazy. Metadata reads and writes
are spread out while journal writes are at the center. The dots have been scaled based on the I/O size. In part (d), journal writes are not visible due to low
resolution. These are pure metadata workloads with no data writes.

Data Writes (MiB) Metadata Writes (MiB) Journal Writes (MiB)
ext4-baseline 32,917±9.7 563±0.9 1,212±12.6

ext4-lazy 32,847±9.3 0 1,069±11.4

Table 3: Distribution of write types completed by a ST8000AS0002 SMR disk during a Postmark run on ext4-baseline and ext4-lazy. Metadata writes
make up 1.6% of total writes in ext4-baseline, only 20% of which is unique.

18    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

partition, however, updates to different files are likely to update
different metadata regions: now the cleaner has to clean a whole
band to free a space for a single block in the persistent cache.
Hence, after an hour of ultra-low throughput due to cleaning, it
recovers slightly towards the end, and the benchmark completes
5.4x slower on ext4-baseline. Interested readers may refer to our
paper [2] for the evaluations of all disks from Table 1.

Conclusion
Previous work has explored separating metadata from data and
managing it as a log by designing a file system from scratch
[4–6]. Our work, however, is the first that leverages the metadata
separation idea for adapting a legacy file system to SMR disks. It
shows how effective a well-chosen small change can be. It also
suggests that while three decades ago it was wise for file systems
depending on the block interface to scatter the metadata across
the disk, today, with large memory sizes that cache metadata and
with changing recording technology, putting metadata at the cen-
ter of the disk and managing it as a log looks like a better choice.

We conclude with the following general takeaways:

◆◆ We think modern disks are going to practice more extensive
“lying” about their geometry and perform deferred cleaning
when exposed to random writes; therefore, file systems should
work to eliminate structures that induce small isolated writes,
especially if the user workload is not forcing them.

◆◆ With modern disks, operation costs are asymmetric: random
writes have a higher ultimate cost than random reads, and,
furthermore, not all random writes are equally costly. When
random writes are unavoidable, file systems can reduce their
cost by confining them to the smallest perimeter possible.

Figure 7: Microbenchmark runtimes and cleaning times on ext4-baseline
and ext4-lazy running on an SMR disk. Cleaning time is the additional time
after the benchmark run that the SMR disk was busy cleaning.

 15

 30

 45

 60

MakeDirs ListDirs TarDirs RemoveDirs

T
im

e
(m

in
)

ext4-baseline run
ext4-baseline clean

ext4-lazy run
ext4-lazy clean

 5

 10

 15

 20

 25

CreateFiles FindFiles TarFiles RemoveFiles

T
im

e
(m

in
)

 0

 50

 100

 150

 200

 0 200 400 600 800 1000T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

ext4-baseline ext4-lazy

0

200

400

 0 200 400 600 800 1000

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

Data Write Metadata Write Journal Write

 0

 50

 100

 150

0 500 1000 1500 2000 2500 3000 3500T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

ext4-baseline ext4-lazy

 0

 2

 4

 6

 8

0 500 1000 1500 2000 2500 3000 3500

D
is

k
 O

ff
se

t
(T

iB
)

Time (s)

Data Write Metadata Write Journal Write

Figure 9: The top graph shows the throughput of a ST8000AS0002 SMR
disk with a full 8 TB partition during a file server benchmark run on ext4-
baseline and ext4-lazy. The bottom graph shows the offsets of write types
during the run on ext4-baseline. The graph does not reflect sizes of the
writes, only their offsets.

Figure 8: The top graph shows the throughput of a ST8000AS0002 SMR
disk with a 400 GB partition during a file server benchmark run on ext4-
baseline and ext4-lazy. The bottom graph shows the offsets of write types
during the run on ext4-baseline. The graph does not reflect sizes of the
writes, only their offsets.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  19

FILE SYSTEMS AND STORAGE
Evolving EXT4 for Shingled Disks

References
[1] A. Aghayev and P. Desnoyers, “Skylight—A Window on
Shingled Disk Operation,” in Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST ’15), pp.
135–149: https://www.usenix.org/system/files/conference​
/fast15/fast15-paper-aghayev.pdf.

[2] A. Aghayev, T. Ts’o, G. Gibson, and P. Desnoyers, “Evolving
Ext4 for Shingled Disks,” in Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST ’17), pp.
105–120: https://www.usenix.org/system/files/conference​
/fast17/fast17-aghayev.pdf.

[3] T. Feldman and G. Gibson, “Shingled Magnetic Recording:
Areal Density Increase Requires New Data Management,”
;login, vol. 38, no. 2 (June 2013), pp. 22–30: http://www.pdl.cmu​
.edu/PDL-FTP/HECStorage/05_feldman_022-030.pdf.

[4] J. Piernas, T. Cortes, and J. Garcia, “DualFS: A New Journ-
aling File System without Meta-Data Duplication,” in Proceed-
ings of the 16th International Conference on Supercomputing,
2002, pp. 137–146: http://ditec.um.es/web-ditec/ficheros​
/publicaciones/publicacion95.pdf.

[5] K. Ren and G. Gibson, “TableFS: Enhancing Metadata Effi-
ciency in the Local File System,” in Proceedings of the 2013 USE-
NIX Annual Technical Conference (USENIX ATC’13), pp. 145–156:
http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-13-102.pdf.

[6] Z. Zhang and K. Ghose, “hFS: A Hybrid File System Proto-
type for Improving Small File and Metadata Performance,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Con
ference on Computer Systems (EuroSys ’07), pp. 175–187: http://​
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&​
rep=rep1&type=pdf.

https://www.usenix.org/system/files/conference/fast15/fast15-paper-aghayev.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-aghayev.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-aghayev.pdf
https://www.usenix.org/system/files/conference/fast17/fast17-aghayev.pdf
http://www.pdl.cmu.edu/PDL-FTP/HECStorage/05_feldman_022-030.pdf
http://www.pdl.cmu.edu/PDL-FTP/HECStorage/05_feldman_022-030.pdf
http://ditec.um.es/web-ditec/ficheros/publicaciones/publicacion95.pdf
http://ditec.um.es/web-ditec/ficheros/publicaciones/publicacion95.pdf
http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-13-102.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.507&rep=rep1&type=pdf

