
www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  31

FILE SYSTEMS AND STORAGE

2017 USENIX Research in Linux File and Storage
Technologies Summit (Linux FAST Summit ’17)
R I K F A R R O W

Ric Wheeler (Red Hat) chaired the Linux FAST Summit ’17. There were
50 attendees, the most yet, with 60% from large companies, 20% from
universities, and the rest consultants or from smaller companies.

According to Ric, 33% of the Linux FAST attendees did not attend FAST ’17.

After introducing ourselves and briefly explaining why we were attending, discussion of
issues with block I/O began. Someone mentioned that the latest Linux kernels can handle
as many as 40 million IOPS. Ted Ts’o (Google) suggested that it’s time to start considering
techniques used in high-speed networking to further improve performance.

Erez Zadok (Stony Brook University) wondered how multiple write queues to the same device
affected order handling. Christoph Hellwig (consultant and Linux file system hacker) said
ordering isn’t handled; it’s an unsolved problem. Most devices behave as if they are non-vol-
atile, returning completion codes while data is still buffered in on-device RAM. And devices
perform out-of-order writes as they see fit. That pretty much guarantees that anything done
by an OS, such as write barriers, can’t work.

Andrew Morton (Google) then began the “how to work with the Linux kernel” section, a
tradition at Linux FAST. Andrew suggested sending him your first patch (for file system
patches) rather than just posting your patch to the Linux-kernel list. Andrew pointed out
that the kernel developers had gotten a bad reputation for being harsh, but now “we’re pretty
professional.”

Ted Ts’o put this another way. Suppose someone unknown to the developers sends an email,
which is like cold calling. You want to work through introductions if at all possible, just as
you would in any social situation, and it’s also important to use the most recent kernel pos-
sible. You can get the most recent build at kernel.org, but if you are working with a specialist
in some area, ask that person which build to work with. In general, choosing a stable release
means you will be working with a kernel that will be supported for some time.

Ted also mentioned that he has created some regression testing tools for file systems. You
can find these tools at https://github.com/tytso/xfstests. Ted, who co-authored the FAST ’17
paper “Evolving Ext4 for Shingled Disks” (in this issue), tried the patches written for improv-
ing SMR performances against his regression testing tools. The patches failed, although they
were good enough to run the benchmarks used to write the paper. Those patches will eventu-
ally be cleaned up and merged into the upstream kernel.

George Amvrosiadis (student at Carnegie Mellon University) mentioned having three thou-
sand lines of code that he shared with members of the file system group. He said he got lots
of feedback and started to develop a relationship with this group of kernel hackers. He also
wanted a particular tracepoint added to the kernel and hasn’t succeeded yet. But he wasn’t
discouraged by the process.

Ric then shifted the focus to FUSE by asking Sage Weil (Red Hat, key author of Ceph) about
his experience working with FUSE. Sage said that although writing user-space software is

Rik is the editor of ;login:.
rik@usenix.org

Editor’s Note: This report includes some
summaries from Mai Zheng (zheng@
nmsu.edu) and Om Rameshwar Gatla
(omram@nmsu.edu)

32    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
2017 USENIX Research in Linux File and Storage Technologies Summit

easier, you still run into kernel issues. For example, you don’t
control the page cache or writeback queue.

Erez mentioned a paper he co-authored for FAST ’17 (Vangoor
et al., “To FUSE or Not to FUSE: Performance of User-Space
File Systems”), where they played with lots of switches in FUSE
to see how those affected performance. He was surprised there
was so little documentation for FUSE. George mentioned that
the patch he wanted was a tracepoint that would let them know
when metadata had been modified. Sage pointed out that with
FUSE, the kernel is still doing a lot of work “under the hood” and
that FUSE performance has gotten a lot faster over time.

Another person from Red Hat mentioned that one big advantage
with using FUSE is that you can run your file system without
having to patch a certified kernel. Jeff Darcy (Red Hat) agreed
and added that trying to run non-standard kernels in the cloud
was a non-starter.

John Grove (Micron) said his group was developing a new file
system and that being able to work in FUSE for prototyping was
a great help.

The next topic covered had to do with writing “dirty” buffers
back to disk. Jonathan Amit (IBM Israel) has a problem with a
project that allows customers to write many gigabytes, using
multiple threads. But there is just one kernel thread serving
the write-back cache, and to get the best performance they just
bypass the page cache. Ted answered that using O_DIRECT is
the way people who are passionate about performance handle
this problem. Jonathan said it was not always easy to use O_
DIRECT, and Ted agreed.

Mai Zheng (New Mexico State University) mentioned two cases
where bugs in the Linux kernel affected devices’ behavior. In one
case he tested dozens of SSDs under power faults, and many
devices exhibited corruptions in the tests (see “Understanding
the Robustness of SSDs under Power Fault” presented at FAST ’13).
However, after several years, the same tests were performed
using a newer kernel. It turns out that a bug patch (by Christoph
Hellwig) changes the corruptions observed on some devices
(published in 2016 in ACM Transactions on Computer Systems).
In another case that happened at Algolia datacenter, Samsung’s
SSDs were blamed for data corruption initially. However,
Samsung’s engineers eventually found that it was a kernel bug
that caused the trouble (http://www.spinics.net/lists/raid/
msg49440.html); the bug was patched by Martin K. Petersen.

Ted commented that only enterprise-class SSDs can be relied
upon (at all) for safe behavior on power fail. The enterprise-class
SSDs have super-capacitors that store enough power to write all
data stored in the RAM within the SSD on power fail, and ven-
dors charge three times as much as they do for consumer class
SSDs. Some vendors do certify their SSDs, but you should check

them under real power-fail conditions, like pulling the plug.
Peter Desnoyers (Northeastern University) suggested using an
Arduino with a relay for experimenting with cutting off power.

Jonathan then changed the topic to ask about NVME device per-
formance. Christoph replied that he had rewritten that device to
make it simpler: no waiting, no polling, and this should be in the
4.9 kernel.

Om Rameshwar Gatla (New Mexico State University) raised
a question regarding how robust the local and large-scale file
system checkers are besides e2fsck. Christoph replied that even
the XFS repair utility is as vulnerable to faults as e2fsck is,
and this could be the same with the repair utility of B-tree file
system (btrfs). In regards to the robustness of checkers for large-
scale file systems, developers of Ceph said that their file system
includes many fault-handling techniques such as journaling,
data replication, etc. by which this situation may be mitigated.

Ric Wheeler commented that many repair utilities, such as XFS
repair, consume a lot of memory and that this problem could
serve as a good research topic. The other topic discussed regard-
ing fsck was its running time. Ric suggested running all file
system checkers of an aging, fragmented file system on a hard
disk whose sizes are on the magnitude of terabytes and observe
the memory consumption and total run times. The results from
these experiments may provide a good research opportunity. Ted
added that the problem that e2fsck’s slowness is because EXT
file systems maintain lots of bitmaps to track information on all
the inodes, direct and indirect blocks, etc., but the overall mem-
ory consumption of e2fsck is far less than any other file system
checker. To support his argument, Ted gave an example where
they ran e2fsck on a 6 TB hard disk that was 80% full and had
the Hadoop layout. e2fsck consumed less than 9 MB of memory
to complete. Ted added that having a large number of hard links
creates the greatest challenge for fsck.

Niels De Vos (Red Hat) mentioned that GlusterFS uses extended
attributes (xattrs) in ext4, and if users edit the attributes, you
really get into big trouble. Of course, there’s no way that an fsck
could check for that. They also do erasure coding for files, which
means that checking involves reading files on multiple servers.

Om also asked about the error reporting mechanism from file
systems or lower layers. He wanted to know more details when
facing some errors (e.g., why a volume is reported “unmount-
able”). Ted, Christoph, Ric, and some others commented that
the current mechanism relies on error numbers (errno). The
overhead of passing more detailed information around might be
high. Also, dmesg is a good place to look for more detailed error
messaging in current systems.

There was some discussion about mapping and providing low-
level block information to higher level software. Ted commented

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  33

FILE SYSTEMS AND STORAGE
2017 USENIX Research in Linux File and Storage Technologies Summit

that debugfs (https://www.kernel.org/doc/Documentation/
filesystems/debugfs.txt) provides such a mechanism. Mai com-
mented that in his project about analyzing the bugs in databases
and file systems, debugfs has helped a lot for examining the
relationship between the corruption at low-level I/O blocks and
the impact on database logs.

Jonathan asked about why mmaping two terabytes of memory
takes so long. Andrew pointed out that populating two terabytes
working with four-kilobyte pages was always going to take a
long time, leading Jonathan to wonder whether the Persistent
Memory (PMEM) driver supported huge pages.

Pankaj Mehra (Western Digital) said that people so far don’t
understand PMEM, as they are not using mmap (see Andy
Rudoff’s article “Persistent Memory Programming” in this
issue). Ted agreed: you don’t want a POSIX layer, you want to
mmap PMEM into your process memory. You can treat PMEM as
superflash, but there’s lots of overhead there.

Pankaj replied that if you have PMEM, you are going to want
to manage it, which includes encryption, snapshots, naming,
permissions, and free space. Sam Fineberg (Consultant) pointed
out that the traditional way of dealing with memory errors in
Linux is to use ECC or to crash. Ric mentioned that the Micron-
Intel XPoint PMEM will be able to report bad memory. Mai

mentioned a paper published in EuroSys ’13 which makes the
msync() system call robust (“Failure-Atomic msync(): A Simple
and Efficient Mechanism for Preserving the Integrity of Durable
Data”). Christoph confirmed that the idea as well as the findings
in a follow-up paper from the same group have been incorporated
into the Linux kernel.

Pankaj continued: “When we first came up with the term
PMEM, we were very careful. The way we handled this is the
way Rudoff describes it: one instruction per address. When you
do a store, we will store. If you want PMEM to do transactions,
you lose the performance benefits.”

In the (near) final topic of the day, Ted said that he is currently
working on data encryption at the file system level and that there
are many challenges to it, such as how to provision crypto keys
for encryption and decryption, and where to store them securely.
Ted also said that the efficiency is highly architecture-depen-
dent, with Intel Skylake able to encrypt one word per cycle, but
ARM CPUs having no native support.

The final topic concerned tuning the page cache, and Ric pointed
out that there is a tool called tuned that helps with picking
appropriate sets of tuning for storage, and that you can actually
find tuned profiles for different use cases.

XKCD xkcd.com

