
56  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY

Ryoan: A Distributed Sandbox for Untrusted
Computation on Secret Data
T Y L E R H U N T , Z H I T I N G Z H U , Y U A N Z H O N G X U , S I M O N P E T E R , E M M E T T W I T C H E L

R yoan provides a distributed sandbox, leveraging hardware enclaves
(e.g., Intel’s software guard extensions (SGX)) to protect sandbox
instances from potentially malicious computing platforms. The pro-

tected sandbox instances confine untrusted data-processing modules to pre-
vent leakage of the user’s input data. Ryoan is designed for a request-oriented
data model, where confined modules only process input once and do not
persist state about the input. We present the design and prototype implemen-
tation of Ryoan and evaluate it on a series of challenging problems, including
email filtering, health analysis, image processing, and machine translation.

Data-processing services are widely available on the Internet. Individual users can con-
veniently access them for tasks, including image editing (e.g., Pixlr), tax preparation (e.g.,
TurboTax), data analytics (e.g., SAS OnDemand), and even personal health analysis (e.g.,
23andMe). However, user inputs to such services, such as tax documents and health data, are
often sensitive, which creates a dilemma for the user. In order to leverage the convenience
and expertise of these services, she has to disclose sensitive data to them, potentially allow-
ing them to disclose the data to third parties. If she wants to keep her data secret, she either
has to give up using the services or hope that they can be trusted—that their service software
will not leak data (intentionally or unintentionally), and that their administrators will not
read the data while it resides on the server machines.

Companies providing data-processing services for users often wish to outsource part of the
computation to third-party cloud services, a practice called “software as a service (SaaS).”
For example, 23andMe may choose to use a general-purpose machine learning service
hosted by Amazon. SaaS encourages the decomposition of problems into specialized pieces
that can be assembled on behalf of a user, e.g., combining the health expertise of 23andMe
with the machine learning expertise and robust cloud infrastructure of Amazon. However,
23andMe now finds itself a user of Amazon’s machine learning service and faces its own
dilemma—it must disclose proprietary correlations between health data and various diseases
in order to use Amazon’s machine learning service. In these scenarios, the owner of secret
data has no control over the data-processing service.

We propose Ryoan [1], a distributed sandbox that forces data-processing services to keep
user data secret, without trusting the service’s software stack, developers, or administrators.
Ryoan’s name is inspired by a famous dry landscape Zen garden that stimulates contempla-
tion (Ryōan-ji). First, Ryoan provides a sandbox to confine individual data-processing mod-
ules and prevent them from leaking data; second, it uses trusted hardware to allow a remote
user to verify the integrity of individual sandbox instances and protect their execution; third,
the sandbox can be configured to allow confined code modules to communicate in controlled
ways, enabling flexible delegation among mutually distrustful parties. Ryoan gives a user
confidence that a service has protected her secrets.

Tyler Hunt is a PhD student
at the University of Texas at
Austin, working with Emmett
Witchel. His research interests
involve designing and building

systems with interesting security properties.
thunt@cs.utexas.edu

Zhiting Zhu has been a PhD
student at the University of
Texas at Austin since 2014,
where he works with Emmett
Witchel. He is interested in

operating systems. zhitingz@cs.utexas.edu

Yuanzhong Xu received his PhD
in computer science from the
University of Texas at Austin in
2016. He is generally interested
in systems and security. He

currently works for Facebook as a research
scientist. yxu@utexas.edu

Simon Peter is an Assistant
Professor at the University
of Texas at Austin, where he
conducts research in operating
systems and networks. He

received a PhD in computer science from
ETH Zurich in 2012 and an MSc in computer
science from the Carl von Ossietzky University
of Oldenburg, Germany, in 2006. Before
joining UT Austin in 2016, he was a Research
Associate at the University of Washington
from 2012 to 2016. simon@cs.utexas.edu

Emmett Witchel is a Professor
in Computer Science at the
University of Texas at Austin.
He received his doctorate from
MIT in 2004. He and his group

are interested in operating systems, security,
and concurrency. witchel@cs.utexas.edu

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 57

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

A key enabling technology for Ryoan is hardware enclave-
protected execution (e.g., Intel’s Software Guard Extensions
(SGX) [2]), a new hardware primitive that uses trusted hardware
to protect a user-level computation from potentially malicious
privileged software. The processor hardware keeps unencrypted
data on chip but encrypts data when it moves into RAM. The
hypervisor and operating system retain their ability to manage
memory (e.g., move memory pages onto secondary storage), but
privileged software sees only an encrypted version of the data
that is protected from tampering by a cryptographic hash. Haven
[3] and SCONE [4] are examples of systems that use enclaves to
protect a user’s computation from potentially malicious system
software, including a library operating system to increase back-
ward compatibility.

Ryoan faces issues beyond those faced by enclave-protected
computation systems such as Haven. Enclaves are intended to
protect an application that is trusted by the user, which does not
collude with the infrastructure, though it may unintentionally
leak data via side channels. In Ryoan’s model the application and
the infrastructure are under the control of an adversary and may
collude to steal the user’s secrets. Even if the application itself
is isolated from the infrastructure using enclave protection, the
adversary could exercise its control to construct covert chan-
nels between the application and the platform. Ryoan’s goal is to
prevent such covert channels and stop an untrusted application
from intentionally and covertly using users’ data to modulate
events like system call arguments or I/O traffic statistics, which
are visible to the infrastructure.

An untrusted application in Ryoan is confined by a trusted
sandbox. For the Ryoan prototype we use Native Client (NaCl)
[5, 6], which is a state-of-the-art user-level sandbox. NaCl can
be built as a standalone binary independent from the browser.
NaCl uses compiler-based techniques to confine untrusted code
rather than relying on address space separation, a property nec-
essary to be compatible with SGX enclaves. The Ryoan sandbox
safeguards secrets by controlling explicit I/O channels, as well
as covert channels such as system call traces and data sizes.

The Ryoan prototype uses SGX to provide hardware enclaves.
Each SGX enclave contains a NaCl sandbox instance that loads
and executes untrusted modules. The NaCl instances communi-
cate with each other to form a distributed sandbox that enforces
strong privacy guarantees for all participating parties—the users
and different service providers. Confining untrusted code [7] is a
longstanding problem that remains technically challenging, but
Ryoan benefits from hardware-supported enclave protection.
Ryoan also assumes a request-oriented data model, where con-
fined modules only process input once and cannot read or write
persistent storage after they receive their input. This model

makes Ryoan applicable only to request-oriented server applica-
tions—but such servers are the most common way to bring scal-
able services to large numbers of users.

Ryoan’s security goal is simple: prevent leakage of secret data.
However, confining services over which the user has no control
is challenging without a centralized trusted platform. We make
the following contributions:

◆◆ A new execution model that allows mutually distrustful parties
to process sensitive data in a distributed fashion on untrusted
infrastructure.

◆◆ The design and implementation of a prototype distributed
sandbox that confines untrusted code modules (possibly on dif-
ferent machines) and enforces I/O policies that prevent leakage
of secrets.

◆◆ Several case studies of real-world application scenarios to
demonstrate how they benefit from the secrecy guarantees of
Ryoan, including an image processing system, an email spam/
virus filter, a personal health analysis tool, and a machine
translator.

◆◆ Evaluation of the performance characteristics of our prototype
by measuring the execution overheads of each of its build-
ing blocks: the SGX enclave, confinement, and checkpoint/
rollback. The evaluation is based on both SGX hardware and
simulation.

Background and Threat Model
Ryoan assumes a processor with hardware-protected enclaves,
e.g., Intel’s SGX-enabled Skylake (or later) architecture. The
address space of a protected enclave has its privacy and integ-
rity guaranteed by hardware. Hardware encrypts and hashes
memory contents when it moves off chip, protecting the contents
from other users and also from the platform’s privileged soft-
ware (operating system and hypervisor). Code within an enclave
can manipulate user secrets without fear of divulging them
to the underlying execution platform. Code within an enclave
cannot have its code or control manipulated by the platform’s
privileged software.

SGX’s security guarantees are ideal for Ryoan’s distributed
NaCl-based sandbox. The sandbox confines the code it loads,
ensuring that the code cannot leak secrets via storage, network,
or other channels provided by the underlying platform. Ryoan
instances communicate with each other using secure TLS con-
nections. By collecting SGX measurements and by providing
trusted initialization code, Ryoan can demonstrate to the user
that their processing topology has been set up correctly.

58  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

Threat Model
We consider multiple, mutually distrustful parties involved in
data-processing services. A service provider is not trusted by the
users of the service to keep data secret; if the service provider
outsources part of the computation to other services, it becomes
a user of them and does not trust them to provide secrecy, either.
Each service provider can deploy its software on its own compu-
tational platform, or it can use a third-party cloud platform that
is mutually distrustful of all service providers. We assume that
users and providers trust their own code and platform but do not
trust each other’s code or platforms. Everyone must trust Ryoan
and SGX.

A service provider might be the same as its computational
platform provider, and the two might collude to steal secrets
from their input data. Besides directly communicating data,
untrusted code may use covert channels via software interfaces,
such as syscall sequences and arguments, to communicate bits
from the user’s input to the platform.

A user of a service does not trust the software at any privilege
level in the computational platform. For example, the attacker
could be the machine’s owner and operator, a curious or even
malicious administrator, an invader who has taken control of
the operating system and/or hypervisor, the owner of a virtual
machine physically co-located with the VM being attacked, or
even a developer of the untrusted application or OS writing code
to directly record user input.

Although we consider covert channels based on software inter-
faces like system calls, we do not consider side or covert chan-
nels based on hardware limitations or execution time. Untrusted
enclaves can leak bits by modulating their cache accesses, page
accesses, execution time, etc. While we do not claim to prevent
the execution-time channel, Ryoan does limit the use of this
channel to once per request.

Intel Software Guard Extensions
Software Guard Extensions (SGX), available in new Intel
processors, allow processes to shield part of their address space
from privileged software. Processes on an SGX-capable machine
may construct an enclave, which is an address region whose
contents are protected from all software outside of the enclave
via encryption and hashing. Code and data loaded into enclaves,
therefore, can operate on secret data without fear of uninten-
tional disclosure to the platform. These guarantees are provided
by the hardware [2].

SGX provides attestation of enclave identity, which for Ryoan
is a hash of the enclave’s initial state, that is, memory contents
and permissions offset from the enclave base address. Ryoan
assumes that the initial state of an enclave cannot be imperson-
ated under standard cryptographic assumptions. Ryoan uses

SGX to attest that all enclaves have the same initial state and
thus the same identity. Ryoan loads service provider code after it
initializes. Before the service code is loaded and before passing
sensitive data to Ryoan, a user will request an attestation from
SGX and verify the identity of the enclave.

Enclave code may access any part of the address space which
does not belong to another enclave. Enclave code does not, how-
ever, have access to all x86 features. All enclave code is unprivi-
leged (ring 3), and any instruction that would raise its privilege
results in a fault.

Hardware security limitations
Enclaves on modern Intel processors have security limitations
including page faults [8], cache timing, address bus monitoring,
and the information exposed by processor monitoring units.
We believe these limitations must be addressed independently
from Ryoan, and we hope they will be. Each of these limitations
compromise Ryoan’s security goals. If there are other hardware
limitations, they also must be addressed independently from
Ryoan. Part of the purpose in constructing the Ryoan prototype
is to demonstrate the importance of addressing these hardware-
based information leaks.

Native Client
Google Native Client (NaCl) is a sandbox for running x86/x86-
64 native code (a NaCl module) using software fault isolation.
NaCl consists of a verifier and a service runtime. To guarantee
that the untrusted module cannot break out of NaCl’s software-
based fault isolation sandbox, the verifier disassembles the
binary and validates the disassembled instructions as being safe
to execute.

NaCl executes system calls on behalf of the loaded application.
System calls in the application transfer control to the NaCl run-
time which determines the proper action. Ryoan cannot allow
the application to use its system calls to pass information to the
underlying operating system. For example, if Ryoan passed read
system calls from the application directly to the platform, the
application could use the size and number of the calls to encode
information about the secret data it is processing. We discuss
the details of the confinement provided by Ryoan in the section
“Ryoan’s Confined Environment,” below.

Design
Ryoan is a distributed sandbox that executes a directed acy-
clic graph (DAG) of communicating untrusted modules which
operate on sensitive data. Ryoan’s primary job is to prevent the
modules from communicating any of the sensitive data outside
the confines of the system, including external hosts and the
platform’s privileged software.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 59

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

Ryoan prevents modules from leaking sensitive data by decou-
pling externally visible behaviors from the content of secret data.
SGX hardware limits externally visible behaviors to explicit
stores to unprotected memory and use of system services
(syscalls).

Unprotected stores are eliminated by the NaCl tool chain and
runtime. Ryoan mostly eliminates system calls by provid-
ing their functionality from within NaCl. For example, Ryoan
provides mmap functionality by managing a fixed-sized memory
pool within the SGX enclave. However, untrusted modules must
read input and write output, so Ryoan provides a restricted I/O
model that prevents data leaks: for example, the output size is a
fixed function of input size. A module cannot communicate the
contents of the input data by changing the size of the output.

Figure 1 shows a single instance of the Ryoan distributed sand-
box. A principal—for example, a company providing software
as a service—can contribute a module which Ryoan loads and
confines, enabling the module to safely operate on secret data. A
module consists of code, initialized data, and the maximum size
of dynamically allocated memory. The NaCl sandbox uses a load-
time code validator to ensure that the module cannot violate
the sandbox by reaching outside of its address range or making
syscalls without Ryoan intervention.

Ryoan executes inside of hardware-protected enclaves and does
not trust the operating system nor the hypervisor. SGX gener-
ates an unforgeable remote attestation for the user that a Ryoan
instance is executing in an enclave on the platform. The user
can establish an encrypted channel that she knows terminates
within that Ryoan instance. SGX guarantees the enclave crypto-
graphic secrecy and integrity against manipulation by privileged
software.

Enforcing Topology
The user either defines the communication topology of confined
modules or explicitly approves it. A topology is a DAG of modules
with unidirectional links. The DAG specification is first passed

to an initial enclave which we call the master. The master con-
tains standard, trusted initialization code provided by Ryoan.
The master requests that the operating system start enclaves
that contain Ryoan instances for modules listed in the specifica-
tion. These enclaves can be hosted on different machines. The
master uses SGX to perform local or remote attestation to verify
the validity of individual Ryoan enclaves, then lets neighbor
enclaves in the DAG establish cryptographically protected
communication channels via key exchange using the untrusted
network or local inter-process communication as a transport.
The user can verify the validity of the master via attestation
and ask it whether a desired topology has been initialized. After
that, the user establishes secure channels with the entry and exit
enclaves of the DAG and starts data processing.

Figure 2 shows an example of Ryoan processing input from
user Alice whose sensitive data is processed by both 23andMe
and Amazon. Each Ryoan instance executes in an enclave on
the same or different machines. The host machine(s) might be
provided by 23andMe, Amazon, or a third party. In all cases,
Ryoan ensures no leakage of the user’s secrets and also prevents
leakage of any trade secrets used by 23andMe and Amazon.

Data-Oblivious Communication
One of the primary safety functions of Ryoan is to prevent the
computational platform from inferring secrets about the input
data by observing data flow among modules. Therefore, data
flow must be independent from the contents of the input data:
Ryoan never moves data in response to activity under the control
of the untrusted module once the module has read its input data.
This safety property is sometimes called being data oblivious [9].

Units of work can be any size, but Ryoan ensures that data flow
patterns do not leak secrets from input data by making module
output size a fixed, application-defined function of the input
size. Ryoan protects communication with the following rules: (1)
each Ryoan instance reads its entire input from every input-
connected Ryoan instance before the module starts processing;
(2) the size of the output is a polynomial function of the input
size, specified as part of the DAG, and Ryoan pads/truncates all
outputs to the exact length determined by the polynomial and
the size of the input; (3) Ryoan is notified by the module when
its output is complete, and it writes the module’s output to all
output-connected Ryoan instances. Ryoan encapsulates module
output in a message that contains metadata which describes
what is module output and what is padding (if any). The meta-
data is interpreted, and any padding is stripped away by the next
Ryoan instance before exposing the data to its module. Each
Ryoan instance must receive the complete input of a work unit
before executing its module. These rules are sufficient because
they ensure that output traffic is independent from input data

Figure 1: A single instance of Ryoan’s distributed sandbox. The privileged
software includes an operating system and an optional hypervisor.

60  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

(though there are possible alternatives—for example, each
request could specify its output size).

Consider the scenario in Figure 2. Each input comes from a user.
The user can choose to leak the size of the input, or he can hide
the size by padding the input. The description of the DAG speci-
fies that (1) the output of 23andMe’s first module is padded to a
fixed size, defined by 23andMe, which can hold the largest pos-
sible model query; (2) the output of Amazon Machine Learning’s
classifier module is padded to a fixed size to encode the classi-
fication result; and (3) the response to the user from 23andMe’s
second module is also padded to a fixed size that can hold the
largest possible result.

Ryoan’s Confined Environment
Any module with access to user data is executed in Ryoan’s con-
fined environment, which prevents information leakage while
reducing porting effort. When a module receives the secret data
contained within a request, it enters the confined environment
and loses the ability to communicate with the untrusted OS via
any system call. Therefore, Ryoan must provide a system API
sufficient for most legacy code to function properly. To reduce
porting effort, Ryoan provides an in-memory virtual file system
and supports anonymous memory mappings from a pre-allo-
cated memory region to support module dynamic memory.

Ryoan’s confined environment is sufficient for many data-
processing tasks. For example, ClamAV, a popular virus scan-
ning tool, loads the entire virus database during initialization;
when scanning the input such as a PDF file, ClamAV creates
temporary files to store objects extracted from the PDF. Ryoan’s
in-memory file system satisfies these requirements.

Module Life Cycle
A Ryoan instance enforces the following life cycle on its module:
creation, initialization, wait, process, output, destruction/reset.
The sandbox begins by validating its module and verifying that
its identity matches the DAG specification. The instance allows
the module to initialize with full access to the system services
exposed by vanilla NaCl. Nonconfined initialization makes mod-
ule creation more efficient and makes porting easier because
initialization code can remain unchanged.

Modules signal Ryoan when initialization is complete by calling
wait_for_work, a routine implemented by Ryoan. Once a module
is initialized, the module processes a request, generates its
output, and then is destroyed or reset to prevent accumulating
secret data. Ryoan instances are request oriented: input can be
any size, but each input is an application-defined “unit of work.”
For example, a unit of work can be an email when classifying
spam or a complete file when scanning for viruses. Each module
gets a single opportunity to process its input data.

Checkpoint-Based Enclave Reset
Creating and initializing modules often requires far more CPU
time than processing a single request. For instance, loading the
data necessary for virus scanning takes 24 seconds; orders of
magnitude greater than the ≈0.124 seconds it takes to process
a single email. Ryoan manages the module life cycle efficiently
using checkpoint-based enclave reset.

Ryoan provides a checkpoint service that allows the application
to be rolled back to an untainted, but initialized, memory state
(Figure 3). In our prototype this state is at the first invocation
of wait_for_work. Ryoan does not allow an enclave that has
seen secret input to be checkpointed, because its data model is
request-oriented: modules should not depend on past requests to
operate. Checkpointing a module that has seen secret data would
(potentially) give that module multiple execution opportunities
on a single request’s data.

Checkpoint restore allows Ryoan to save the cost of tear-
ing down and rebuilding the SGX enclave, and it saves the
cost of executing the application’s initialization code. Ryoan
checkpoints are taken once but restored after each request is
processed. Therefore, Ryoan makes a full copy of the module’s
writable state and simply tracks which pages get modified,
avoiding a memory copy during processing. Only the contents of
pages that were modified during input processing are restored.
SGX provides a way for enclave code to verify page permissions
and be reliably notified about memory faults, which is necessary
to track which pages are written.

Figure 2: Ryoan’s distributed sandbox. In this example, the application spans the administrative domains of 23andMe and Amazon.

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 61

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

Use Cases
This section explains four scenarios where Ryoan provides a
previously unattainable level of security for processing sensitive
data. For all examples, the Ryoan instances could execute on the
same platform or on different platforms, e.g., the entire computa-
tion might execute on a third-party cloud platform like Google
Compute Engine, or a provider’s module might execute on its
own server. Ryoan’s security guarantees apply to all scenarios.

Email Processing
A company can use Ryoan to outsource email filtering and scan-
ning while keeping email text secret. We consider spam filtering
and virus scanning, using popular legacy applications—DSPAM
3.10.2 and ClamAV 0.98.7. The computation DAG for this service
contains four Ryoan instances, each confining a data process-
ing module (see Figure 4). An email arrives at the entry enclave
over a secure channel. The entry enclave simply distributes the
email text and attachments to the enclaves containing DSPAM
and ClamAV, respectively. The results of virus scanning and
spam filtering are sent to a final post-processing enclave, which
constructs a response to the user over a secure channel.

Personal Health Analysis
Consider a company (e.g., 23andMe) that provides custom-
ized health reports for users based on a variety of health data.
23andMe accepts a user’s genetic data, medical history, and
physical activity log as input, extracts important health features
from these data, and predicts the likelihood of certain diseases.

Secrecy for both users and 23andMe is protected with a DAG
(see Figures 2 and 4). Amazon provides the classifier, which
queries a model as a Ryoan module. Users provide their genetic
information, medical history, and activity log in a request. Upon
receiving a user’s request, 23andMe’s first module constructs a
Boolean vector of health features and forwards it to Amazon’s
module. Amazon’s module generates predictions based on the
model and forwards the result to 23andMe’s second enclave,
which then forwards the result back to the user.

Image Processing
Image classification as a service is an emerging area that could
benefit from Ryoan’s security guarantees. We envision a sce-
nario where a user wants different image classification services
based on her expertise. For example, one service might be known

for accurate identification of adult content while another might
do an excellent job recognizing and segmenting horses. The
image processing DAG in Figure 4 shows an example where an
image filtering service outsources different subtasks to different
providers and then combines the results. Our prototype imple-
ments all of these detection tasks using OpenCV 3.1.0, and each
detection task loads a model that is specialized to the detection
task and would represent a company’s competitive advantage.

Translation
A company uses Ryoan to provide a machine translation service
while keeping the uploaded text secret. Users upload text to the
translation enclave and get the translated text back. Our proto-
type uses Moses, a statistical machine translation system. We
train a phrase-based French to English model using the News
Commentary data set released for the 2013 workshop in machine
translation [10].

Evaluation
We evaluated Ryoan’s overhead on realistic workloads for each of
these use cases. Slowdowns range from 27% to 419%. The Ryoan
prototype relies on some unreleased SGX features. Therefore,
our evaluation involves an SGX performance model where appli-
cable. For evaluation details see the original publication [1].

Conclusion
Ryoan allows users to safely process their secret data with
software they do not trust, executing on a platform they do not
control, thereby benefiting users, data processing services, and
computational platforms.

Figure 3: Instance life cycle: unoptimized vs. checkpoint based

Figure 4: Topologies of Ryoan example applications. Nodes in the graph
are Ryoan instances, though we identify them by their untrusted module.
Users establish secure channels with trusted Ryoan code for the source
and sink nodes to provide input and get output, respectively.

62  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

SECURITY
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

References
[1] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
Distributed Sandbox for Untrusted Computation on Secret
Data,” in Proceedings of the 12th USENIX Symposium on
 Operating Systems Design and Implementation (OSDI ’16),
pp. 533–549: https://www.usenix.org/conference/osdi16
/technical-sessions/presentation/hunt.

[2] Intel(R) Software Guard Extensions Programming Ref-
erence, 2014: https://software.intel.com/sites/default/files
/managed/48/88/329298-002.pdf.

[3] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applica-
tions from an Untrusted Cloud with Haven,” in Proceedings of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14), pp. 267–283: https://www.usenix
.org/system/files/conference/osdi14/osdi14-paper-baumann
.pdf.

[4] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C.
Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell,
D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer,
“SCONE: Secure Linux Containers with Intel SGX,” in Pro-
ceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16), pp. 689–703: https://
www.usenix.org/system/files/conference/osdi16/osdi16
-arnautov.pdf.

[5] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A Sand-
box for Portable, Untrusted X86 Native Code,” in Proceedings
of the 30th IEEE Symposium on Security and Privacy, 2009, pp.
79–93: http://regmedia.co.uk/2008/12/09/native_client_paper
.pdf.

[6] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting Software Fault Isolation to
Contemporary CPU Architectures,” in Proceedings of the 19th
USENIX Security Symposium (USENIX Security ’10), pp. 1–11:
https://www.usenix.org/legacy/event/sec10/tech/full_papers
/Sehr.pdf.

[7] B. W. Lampson, “A Note on the Confinement Problem,” Com-
munications of the ACM, vol. 16, no. 10, October 1973.

[8] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Sys-
tems,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2015, pp. 640–656: http://www.ieee-security.org/TC
/SP2015/papers-archived/6949a640.pdf.

[9] O. Ohrimenko, F. Schuster, C. Fournet, S. Nowozin, A. Mehta,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine
Learning on Trusted Processors,” in Proceedings of the 25th
USENIX Security Symposium (USENIX Security ’16), pp.
619–636: https://www.usenix.org/system/files/conference
/usenixsecurity16/sec16_paper_ohrimenko.pdf.

[10] Shared Task: Machine Translation: http://www.statmt.org
/wmt13/translation-task.html.

https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16/%E2%80%8Btechnical%E2%80%8B-sessions/presentation/hunt
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
http://regmedia.co.uk/2008/12/09/native_client_paper.pdf
http://regmedia.co.uk/2008/12/09/native_client_paper.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Sehr.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Sehr.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf
http://www.ieee-security.org/TC/SP2015/papers-archived/6949a640.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_ohrimenko.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_ohrimenko.pdf
http://www.statmt.org/wmt13/translation-task.html
http://www.statmt.org/wmt13/translation-task.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt

