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Internet of Pwnable Things
Challenges in Embedded Binary Security

J O S  W E T Z E L S

Embedded systems are everywhere, from consumer electronics to 
critical infrastructure, and with the rise of the Internet of Things 
(IoT), such systems are set to proliferate throughout all aspects of 

everyday life. Due to their ubiquitous and often critical nature, such systems 
have myriad security and privacy concerns, but proper attention to these 
aspects in the embedded world is often sorely lacking. In this article I will 
discuss how embedded binary security in particular tends to lag behind what 
is commonly expected of modern general purpose systems, why bridging 
this gap is non-trivial, and offer some suggestions for promising defensive 
research directions.

Embedded Systems Security
Because embedded systems are so diverse, the threat landscape is equally varied, ranging 
from life-threatening sabotage of cyber-physical systems (e.g., electrical blackouts, smart-
car crashes, insulin pump tampering) to economic (e.g., cable TV piracy, smart meter fraud) 
and privacy (e.g., smart-home surveillance) threats. Embedded security priorities also differ 
from those in the general purpose (GP) world. Whereas the latter tend to be mostly concerned 
about threats to confidentiality, embedded systems tend to prioritize availability and integ-
rity. You want nuclear reactors to operate safely and automotive braking and flight control 
systems to function properly at all times.

Compared to GP systems, attention to embedded security is relatively recent, something that 
is especially visible in the industrial control systems (ICS), which form the technological 
backbone of electric grids, water supplies, and manufacturing environments. These sys-
tems were never designed to be connected to untrusted networks in the first place but, over 
the years, have steadily become more and more networked and exposed. As a result, these 
systems do not have corresponding security improvements. And concerns here are far from 
hypothetical as high-profile attacks have damaged nuclear facilities in Iran, caused black-
outs on the Ukrainian power grid, and physically damaged a German steel mill.

This situation is compounded by the challenges of embedded patch deployment. Whereas in 
the GP world, patch management is often centralized and automated, the embedded world 
is faced by a myriad of problems (absence of hot-patching capabilities, safety recertifica-
tion upon introduction of new code, extreme availability requirements, long device lifespans 
exceeding vendor support, etc.) complicating such an approach. This creates a situation of 
prolonged vulnerability exposure and exploits with long shelf-life capable of targeting mil-
lions of vulnerable, unpatched, and connected embedded devices.

Memory Corruption, Safe Languages, and Exploit Mitigations
When it comes to embedded systems, memory corruption issues (e.g., buffer overflows) 
consistently rank among the most prevalent categories of vulnerabilities as exemplified by a 
2016 Kaspersky study of ICS vulnerabilities [1]. This prevalence is largely due to the domi-
nance of unsafe languages such as C++ and assembly in embedded software development. As 

Jos Wetzels is a Research 
Assistant with the Distributed 
and Embedded Security 
(DIES) Research Group at the 
University of Twente in The 

Netherlands. He currently works on projects 
aimed at hardening embedded systems used 
in critical infrastructure, where he focuses 
on binary security in general and exploit 
development and mitigation in particular, and 
has been involved in research regarding on-
the-fly detection and containment of unknown 
malware and advanced persistent threats. 
He has assisted teaching hands-on offensive 
security classes for graduate students at the 
Dutch Kerckhoffs Institute for several years. 
a.l.g.m.wetzels@gmail.com



74    S U M M ER 20 17   VO L .  42 ,  N O.  2 	 www.usenix.org

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

someone once said: “C is a terse and unforgiving abstraction of 
silicon.” Ideally, this problem would be mitigated by widespread 
adoption of safe languages, and while some are currently used 
(e.g., Ada, which is used in civilian and military avionics and 
aerospace systems) or show potential (e.g., Rust, which provides 
memory safety without garbage collection) for future adoption in 
the embedded world, there are some serious limitations. 

First of all, the “close to metal” nature of C makes it well-
suited for writing similarly bare-metal software (e.g., OSes 
or firmware) in a way that almost all safe languages are not. 
Note that Rust seems promising in this regard as shown by the 
intermezzOS and Tock [2, 8] OSes. Secondly, there’s the issue of 
portability as there are billions of lines of legacy code written in 
unsafe languages, and there already are C toolchains for nearly 
every platform out there. Hence, even if the ideal embedded safe 
language existed right now, it would still take quite a while for an 
industry-wide shift in development practices to take off, never 
mind what to do with all that legacy code. So safe languages are a 
long-term solution at best, and we live in a short-term world that 
needs short-term solutions.

Exploit mitigations are just such a short-term solution since they 
seek to complicate exploitation of existing vulnerabilities rather 
than prevent their introduction in the first place. Exploit devel-
opment can be conceptualized as the programming of so-called 
“weird machines” [3] through composition of “exploit primitives” 
into a chain. Complicating this chain means making each link 
harder to forge by making mitigations harder to overcome and 
lengthening the chain by crafting mitigations for various steps of 
the exploitation process in order to raise attacker cost and elimi-
nate practical exploitability of certain vulnerabilities altogether. 

Ever since memory corruption vulnerabilities started getting 
widespread attention with Aleph One’s 1996 Phrack article 
“Smashing the Stack for Fun and Profit,” various exploit mitiga-
tions have been proposed, implemented, broken, and improved 
until we’ve arrived at the present-day situation, where exploiting 
a stack buffer overflow on a modern GP system often requires 
you to at least either find an information leak to bypass stack 
canaries or overwrite a function pointer, find an information 
leak to bypass ASLR, craft a ROP (return-oriented program-
ming) chain to bypass non-executable memory, and find a sand-
box escape: that’s two to three additional bugs (though less if one 
has a flexible enough vulnerability) on top of the actual vulner-
ability itself to achieve arbitrary code execution.

Embedded Exploitation: Blast from the Past
Compared to the GP world, embedded exploitation often feels 
like it’s stuck somewhere in the ’90s. Consider, for example, the 
Shadow Brokers incident [4] last year, where an unknown threat 
actor managed to obtain exploit and implant code used by the 
top-tier, probably state-sponsored, Equation Group threat actor 
and published part of the plunder online. This included exploits 
targeting enterprise firewalls used in very sensitive environ-
ments; what stood out here is that none of the exploits needed 
bypasses for any mitigation whatsoever. 

In order to get an idea of what the situation with respect to 
embedded mitigation adoption looks like, I surveyed 36 popular 
embedded operating systems (ranging from high-end Linux-
based ones to tiny proprietary real-time microkernels) for 
support of the “bread & butter” baseline of mitigations: Execut-
able Space Protection (ESP, also known as DEP, NX, or W^X 
memory), Address Space Layout Randomization (ASLR), and 
stack canaries (also known as stack cookies or stack smashing 
protection). Briefly put: ESP forces attackers to use code-reuse 
payloads (such as ROP chains) by making data memory non-
executable, while ASLR complements this by ensuring memory 
layout secrecy in order to prevent attackers from constructing 
such code-reuse payloads. Stack canaries are orthogonal to the for-
mer mitigations and work by inserting a randomized secret value, 
between stackframe metadata and local variables, that is checked 
for integrity when a function returns in order to detect whether it 
has been overwritten as part of a stack-smashing attack.

As you can see in Figure 1, only a minority supports these 
mitigations, and this becomes a negligibly small minority once 
you discard the Linux-, BSD-, and Windows-based OSes or only 
consider the most constrained OSes. And note that this survey 
was an optimistic one: if a mitigation is supported by an OS for 
even a single platform, no matter implementation quality, it was 
marked as supported. It’s pretty safe to say embedded binary 
security lags behind the GP world significantly.
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Figure 1: Exploit mitigation support among 36 popular embedded OSes. 
Non-LBW means Non-Linux, BSD, and Windows-based OSes, and 
Constrained indicates those tiny, minimalistic OSes designed for so-called 
deeply embedded systems.



www.usenix.org	   S U M M ER 20 17   VO L .  42 ,  N O.  2  75

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

Dependencies, Constraints, and Possible 
Solutions
So what’s the reason for this adoption gap? Well, it turns out 
that if you map out the hardware and software dependencies of 
these mitigations (Figure 2), there’s some serious constraints 
that complicate adoption. Embedded devices are designed for a 
specific task and tend to have limited resources as well as often 
being headless and diskless. The hardware is often simple and 
lacking in advanced features, and the software is tailored for 
such constraints. And on top of all that there are often real-time 
and safety-critical requirements. 

In order to get an idea of the state of mitigation dependency sup-
port among common embedded hardware and OSes, I surveyed 
51 popular von Neumann-style embedded core families (Figure 
3) and mapped out OS feature dependency support (Figure 4) 
among the 36 previously surveyed OSes. As shown in these fig-
ures, widespread support for key dependencies is lacking, which 
presents a significant hurdle to mitigation adoption. To see why 
these dependencies are so crucial and to provide some sugges-
tions for research directions that can potentially overcome exist-
ing limitations, let’s take a look at each mitigation in our baseline 
in detail.

Stack Canaries and Embedded Random Number 
Generators (RNGs)

Stack canary mechanisms are implemented as a compiler fea-
ture but require some sort of (secure) random number generator 
to be present on the target OS to generate the master canary 
value when the binary in question is loaded. This is best left to 
the cryptographically secure pseudo-random number genera-
tor (CSPRNG) provided by the OS itself (e.g., /dev/urandom 
on UNIX-like systems), but as Figure 4 shows, only 41.7% of 

surveyed embedded OSes provide a system CSPRNG, and this 
number drops to 22.2% if you eliminate Linux-, BSD-, and 
Windows-based ones and becomes negligible altogether if you 
only consider the most constrained operating systems.

I’ve discussed the issues with embedded OS CSPRNGs in more 
detail in my recent 33C3 talk “Wheel of Fortune: Analyzing 
Embedded OS Random Number Generators.” To put it briefly, 
it’s not trivial to port existing designs from the GP world, mainly 
because of a combination of resource constraints in terms 
of processing speed, memory and power consumption, and a 
general low entropy environment. These systems are designed 
for limited, specific tasks, often in a machine-to-machine set-
ting without human activity, and are designed to perform those 
tasks in a reliable, predictable fashion. This is a major stumbling 
block because PRNGs need sources with some external entropy 
in order to stretch their output into longer sequences of pseudo-
random output. 

On GP systems common sources for entropy are user input 
devices like the mouse, keyboard, or disk activity, but since many 
embedded systems are headless and/or diskless this is not an 
option. Depending on the embedded device in question, poten-
tially suitable entropy sources might be available from sensor 
values, radio measurements, accelerometer data, etc., but from 
an OS designer’s point of view these sources cannot be assumed 
to be universally present on all devices the OS is to be deployed 
on. This problem would ideally be solved by having omnipres-
ent on-chip high-throughput true random number generators 
(TRNGs), but this is quite unrealistic considering accompanying 
cost increases. In addition, it doesn’t help with existing legacy 
systems.

Figure 2: Exploit mitigation hardware and OS feature dependencies
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Figure 3: Hardware feature support among 51 popular von Neumann 
embedded core families
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Two promising research directions upon which embedded OS 
CSPRNG designers could draw are advances in lightweight 
cryptography and investigation of omnipresent entropy sources. 
The former encompasses various cryptographic primitives 
designed for highly constrained systems. Initiatives such as the 
ACRYPT project [5] have produced a “zoo” of IoT-oriented light-
weight primitives, with accompanying implementation footprint 
information (in terms of code size, memory usage, and execution 
time), which can serve as building blocks in a larger OS CSPRNG 
design. The embedded entropy problem is a more fundamental 
one and doesn’t lend itself well to a one size fits all solution, but 
a thorough exploration of the suitability of potential entropy 
sources, which are virtually omnipresent in embedded systems, 
such as startup values of on-chip SRAM, clock jitter, and so on, 
would definitely be worthwhile.

Executable Space Protection (ESP)
Essentially there are two main CPU architectural styles: Har-
vard and von Neumann. The former has physically separate 
code and data memories, while the latter has a single memory 
holding both code and data. There are many possible nuances 
to these “pure” styles, but when it comes to the goals of ESP the 
only thing that matters is that memory can’t be both writable 
and executable so that attackers can’t easily inject malicious 
shellcode payloads into memory. As such, Harvard architectures 
trivially provide ESP, but for von Neumann-style CPUs, ESP 
will have to be implemented either in a hardware-assisted way 
or through software emulation. The former case is implemented 
in the form of a dedicated hardware feature (x86 NX bit, ARM 
XN bit, etc.), usually as part of the memory management unit 
(MMU) regulating memory executability at a certain granular-
ity level on a per-page basis. In the case of software emulation, 

there are multiple approaches all outside the scope of this article, 
the most famous of them probably being the PaX project’s imple-
mentation [6], but all of them incur at least some overhead and 
tend to be architecture-specific.

As shown in Figure 3, 43.1% of surveyed core families have hard-
ware ESP support, something you need to consider in light of 
the fact that software emulation-based approaches to ESP only 
exist for a limited number of OS and architecture combinations 
(e.g., Linux on x86). Both ESP implementations require memory 
protection support (and as such an MMU or more lightweight 
memory protection unit (MPU)) on the part of the OS to allow 
for memory permission management. And while most embedded 
OSes offer memory protection support, we can see in Figure 3 
that only 47.1% of all surveyed core families have MMU sup-
port and only 11.8% have MPU support, leaving 41.1% unable to 
accommodate memory protection. Now some microcontrollers 
might offer (limited) memory permission management capabili-
ties without featuring an MPU/MMU, and for some processors 
there are external MMUs available, like the Motorola 68851, 
but apart from these edge cases, there’s a significant “gap seg-
ment” of embedded systems without support for the core ESP 
dependencies.

Ideally, embedded systems designers would start consciously 
using either Harvard CPUs (AVR, 8051, PIC, etc.) or von Neu-
mann ones with hardware ESP support (ARMv6+, MIPS32r3+, 
x86, etc.), but for those systems where this is not an option we 
will need widespread embedded OS adoption of a multi-architec-
ture, low-overhead software emulation ESP approach. This does, 
however, still leave us with the open problem of how to deal with 
MPU-/MMU-less systems that cannot offer any form of memory 
protection to begin with.

Address Space Layout Randomization (ASLR)
In order to craft the code-reuse payloads used to bypass ESP, 
attackers will have to know the addresses of particular code 
fragments (so-called “gadgets”) to incorporate into their pay-
load. ASLR aims to complicate this by ensuring memory layout 
secrecy through randomization, which is done by placing various 
different memory objects—the stack, heap, main program image, 
loaded libraries—at randomized addresses. In order to do this, 
ASLR has three key dependencies: a CSPRNG, OS virtual mem-
ory support, and hardware with an MMU. The ASLR random-
ization takes place at load-time and draws upon an OS CSPRNG, 
as we’ve seen earlier, and is far from omnipresently available in 
all embedded operating systems.

Virtual memory provides memory isolation between different 
tasks/processes and thus prevents shared memory conflicts that 
might otherwise arise from ASLR’s memory object randomiza-
tion. If we look at Figure 4, however, we can see that only 44.4% 
of all surveyed embedded operating systems provide virtual 
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Figure 4: OS feature support among 36 popular embedded OSes
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memory support, and this number drops to a mere 17.1% if we 
eliminate the Linux-, BSD-, and Windows-based OSes. Even 
worse are the most constrained operating systems, none of 
which support virtual memory for various reasons, such as being 
designed for MMU-less and diskless targets or having conflict-
ing hard real-time requirements.

This widespread lack of embedded virtual memory and MMU 
support are two major obstacles to widespread ASLR adoption 
that are not going away anytime soon, which means that we need 
an embedded alternative to ASLR. ASLR’s dependency on vir-
tual memory arises from the fact that it is a load-time software 
diversification technique [7]. This dependency does not apply, 
however, to diversification techniques operating at earlier points 
in the software life cycle such as at compile or install time. In 
these cases either a compiler feature or a dedicated transforma-
tion program produce diversified binaries by randomizing code 
layout and/or individual instruction sequences. Such approaches 
achieve a similar effect to ASLR by randomizing the addresses 
(and nature) of code-reuse gadgets but have the downside of 
being less effective since they only diversify between differ-
ent software builds or individual device instances rather than 
between individual boots or program runs as well as only diver-
sifying code memory. There are currently no mature, widely 
adopted implementations of such schemes that I know of, nor has 
their applicability to the embedded world been covered, but they 
seem to be a promising embedded ASLR alternative.

A Call to Action
So where do we go from here? First of all, security research-
ers should continue to demonstrate the urgency and impact of 
embedded vulnerabilities to drive the point home that embed-
ded systems cannot afford to keep lagging behind when they 
are becoming increasingly ubiquitous and interconnected. 
Secondly, work on short-term solutions (researchers addressing 
the challenges outlined in this article working together with OS 
developers to push for embedded exploit mitigation adoption) 
should be conducted alongside work on more long-term solu-
tions such as embedded safe language research and development 
of secure embedded patching and updating mechanisms. And, 
finally, with the rise of the Internet of Things there is a real need 
for IoT standardization, policy, and regulation that focuses on 
security by design rather than leaving it as an afterthought or 
something that has to be retrofitted after the first vulnerabili-
ties are discovered due to a vendor focus on novel features and 
time-to-market.

References
[1] O. Andreeva, S. Gordeychik, G. Gritsai, O. Kochetova, E. 
Potseluevskaya, S. I. Sidorov, and A. A. Timorin, “Industrial Con-
trol Systems Vulnerabilities Statistics,” Kaspersky Lab, 2016: 
https://kasperskycontenthub.com/securelist/files/2016/07/KL​
_REPORT_ICS_Statistic_vulnerabilities.pdf.

[2] http://intermezzos.github.io/.

[3] S. Bratus, S. Bratus, M. E. Locasto, M. L. Patterson, L. Sas-
saman, and A. Shubina, “Exploit Programming: From Buffer 
Overflows to ‘Weird Machines’ and Theory of Computation,” 
;login: vol . 36, no. 6 (December 2011): https://www.usenix.org​
/system/files/login/articles/105516-Bratus.pdf.

[4] M. Al-Bassam, Equation Group Firewall Operations 
Catalog, 2016.

[5] A. Biryukov, D. Dinu, J. Großschädl, D. Khovratovich, Y. Le 
Corre, L. Perrin, “The ACRYPT Project: Lightweight Cryp-
tography for the Internet of Things,” CRYPTO 2015 Rump 
Session, 2015.

[6] NOEXEC, PaX project Documentation, 2003.

[7] P. Larsen, A. Homescu, S. Brunthaler, M. Franz, “SoK: 
Automated Software Diversity,” 2014 IEEE Symposium 
on Security and Privacy: https://www.ics.uci.edu/~perl​
/automated_software_diversity.pdf.

[8] https://www.tockos.org/.

https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
http://intermezzos.github.io/
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.ics.uci.edu/~perl/automated_software_diversity.pdf
https://www.ics.uci.edu/~perl/automated_software_diversity.pdf
https://www.tockos.org/

