
www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  73

SECURITY

Internet of Pwnable Things
Challenges in Embedded Binary Security

J O S W E T Z E L S

Embedded systems are everywhere, from consumer electronics to
critical infrastructure, and with the rise of the Internet of Things
(IoT), such systems are set to proliferate throughout all aspects of

everyday life. Due to their ubiquitous and often critical nature, such systems
have myriad security and privacy concerns, but proper attention to these
aspects in the embedded world is often sorely lacking. In this article I will
discuss how embedded binary security in particular tends to lag behind what
is commonly expected of modern general purpose systems, why bridging
this gap is non-trivial, and offer some suggestions for promising defensive
research directions.

Embedded Systems Security
Because embedded systems are so diverse, the threat landscape is equally varied, ranging
from life-threatening sabotage of cyber-physical systems (e.g., electrical blackouts, smart-
car crashes, insulin pump tampering) to economic (e.g., cable TV piracy, smart meter fraud)
and privacy (e.g., smart-home surveillance) threats. Embedded security priorities also differ
from those in the general purpose (GP) world. Whereas the latter tend to be mostly concerned
about threats to confidentiality, embedded systems tend to prioritize availability and integ-
rity. You want nuclear reactors to operate safely and automotive braking and flight control
systems to function properly at all times.

Compared to GP systems, attention to embedded security is relatively recent, something that
is especially visible in the industrial control systems (ICS), which form the technological
backbone of electric grids, water supplies, and manufacturing environments. These sys-
tems were never designed to be connected to untrusted networks in the first place but, over
the years, have steadily become more and more networked and exposed. As a result, these
systems do not have corresponding security improvements. And concerns here are far from
hypothetical as high-profile attacks have damaged nuclear facilities in Iran, caused black-
outs on the Ukrainian power grid, and physically damaged a German steel mill.

This situation is compounded by the challenges of embedded patch deployment. Whereas in
the GP world, patch management is often centralized and automated, the embedded world
is faced by a myriad of problems (absence of hot-patching capabilities, safety recertifica-
tion upon introduction of new code, extreme availability requirements, long device lifespans
exceeding vendor support, etc.) complicating such an approach. This creates a situation of
prolonged vulnerability exposure and exploits with long shelf-life capable of targeting mil-
lions of vulnerable, unpatched, and connected embedded devices.

Memory Corruption, Safe Languages, and Exploit Mitigations
When it comes to embedded systems, memory corruption issues (e.g., buffer overflows)
consistently rank among the most prevalent categories of vulnerabilities as exemplified by a
2016 Kaspersky study of ICS vulnerabilities [1]. This prevalence is largely due to the domi-
nance of unsafe languages such as C++ and assembly in embedded software development. As

Jos Wetzels is a Research
Assistant with the Distributed
and Embedded Security
(DIES) Research Group at the
University of Twente in The

Netherlands. He currently works on projects
aimed at hardening embedded systems used
in critical infrastructure, where he focuses
on binary security in general and exploit
development and mitigation in particular, and
has been involved in research regarding on-
the-fly detection and containment of unknown
malware and advanced persistent threats.
He has assisted teaching hands-on offensive
security classes for graduate students at the
Dutch Kerckhoffs Institute for several years.
a.l.g.m.wetzels@gmail.com

74    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

someone once said: “C is a terse and unforgiving abstraction of
silicon.” Ideally, this problem would be mitigated by widespread
adoption of safe languages, and while some are currently used
(e.g., Ada, which is used in civilian and military avionics and
aerospace systems) or show potential (e.g., Rust, which provides
memory safety without garbage collection) for future adoption in
the embedded world, there are some serious limitations.

First of all, the “close to metal” nature of C makes it well-
suited for writing similarly bare-metal software (e.g., OSes
or firmware) in a way that almost all safe languages are not.
Note that Rust seems promising in this regard as shown by the
intermezzOS and Tock [2, 8] OSes. Secondly, there’s the issue of
portability as there are billions of lines of legacy code written in
unsafe languages, and there already are C toolchains for nearly
every platform out there. Hence, even if the ideal embedded safe
language existed right now, it would still take quite a while for an
industry-wide shift in development practices to take off, never
mind what to do with all that legacy code. So safe languages are a
long-term solution at best, and we live in a short-term world that
needs short-term solutions.

Exploit mitigations are just such a short-term solution since they
seek to complicate exploitation of existing vulnerabilities rather
than prevent their introduction in the first place. Exploit devel-
opment can be conceptualized as the programming of so-called
“weird machines” [3] through composition of “exploit primitives”
into a chain. Complicating this chain means making each link
harder to forge by making mitigations harder to overcome and
lengthening the chain by crafting mitigations for various steps of
the exploitation process in order to raise attacker cost and elimi-
nate practical exploitability of certain vulnerabilities altogether.

Ever since memory corruption vulnerabilities started getting
widespread attention with Aleph One’s 1996 Phrack article
“Smashing the Stack for Fun and Profit,” various exploit mitiga-
tions have been proposed, implemented, broken, and improved
until we’ve arrived at the present-day situation, where exploiting
a stack buffer overflow on a modern GP system often requires
you to at least either find an information leak to bypass stack
canaries or overwrite a function pointer, find an information
leak to bypass ASLR, craft a ROP (return-oriented program-
ming) chain to bypass non-executable memory, and find a sand-
box escape: that’s two to three additional bugs (though less if one
has a flexible enough vulnerability) on top of the actual vulner-
ability itself to achieve arbitrary code execution.

Embedded Exploitation: Blast from the Past
Compared to the GP world, embedded exploitation often feels
like it’s stuck somewhere in the ’90s. Consider, for example, the
Shadow Brokers incident [4] last year, where an unknown threat
actor managed to obtain exploit and implant code used by the
top-tier, probably state-sponsored, Equation Group threat actor
and published part of the plunder online. This included exploits
targeting enterprise firewalls used in very sensitive environ-
ments; what stood out here is that none of the exploits needed
bypasses for any mitigation whatsoever.

In order to get an idea of what the situation with respect to
embedded mitigation adoption looks like, I surveyed 36 popular
embedded operating systems (ranging from high-end Linux-
based ones to tiny proprietary real-time microkernels) for
support of the “bread & butter” baseline of mitigations: Execut-
able Space Protection (ESP, also known as DEP, NX, or W^X
memory), Address Space Layout Randomization (ASLR), and
stack canaries (also known as stack cookies or stack smashing
protection). Briefly put: ESP forces attackers to use code-reuse
payloads (such as ROP chains) by making data memory non-
executable, while ASLR complements this by ensuring memory
layout secrecy in order to prevent attackers from constructing
such code-reuse payloads. Stack canaries are orthogonal to the for-
mer mitigations and work by inserting a randomized secret value,
between stackframe metadata and local variables, that is checked
for integrity when a function returns in order to detect whether it
has been overwritten as part of a stack-smashing attack.

As you can see in Figure 1, only a minority supports these
mitigations, and this becomes a negligibly small minority once
you discard the Linux-, BSD-, and Windows-based OSes or only
consider the most constrained OSes. And note that this survey
was an optimistic one: if a mitigation is supported by an OS for
even a single platform, no matter implementation quality, it was
marked as supported. It’s pretty safe to say embedded binary
security lags behind the GP world significantly.

44.4

25.9

15
22.2

4.9
0

33.3

11.1
5

Figure 1: Exploit mitigation support among 36 popular embedded OSes.
Non-LBW means Non-Linux, BSD, and Windows-based OSes, and
Constrained indicates those tiny, minimalistic OSes designed for so-called
deeply embedded systems.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  75

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

Dependencies, Constraints, and Possible
Solutions
So what’s the reason for this adoption gap? Well, it turns out
that if you map out the hardware and software dependencies of
these mitigations (Figure 2), there’s some serious constraints
that complicate adoption. Embedded devices are designed for a
specific task and tend to have limited resources as well as often
being headless and diskless. The hardware is often simple and
lacking in advanced features, and the software is tailored for
such constraints. And on top of all that there are often real-time
and safety-critical requirements.

In order to get an idea of the state of mitigation dependency sup-
port among common embedded hardware and OSes, I surveyed
51 popular von Neumann-style embedded core families (Figure
3) and mapped out OS feature dependency support (Figure 4)
among the 36 previously surveyed OSes. As shown in these fig-
ures, widespread support for key dependencies is lacking, which
presents a significant hurdle to mitigation adoption. To see why
these dependencies are so crucial and to provide some sugges-
tions for research directions that can potentially overcome exist-
ing limitations, let’s take a look at each mitigation in our baseline
in detail.

Stack Canaries and Embedded Random Number
Generators (RNGs)

Stack canary mechanisms are implemented as a compiler fea-
ture but require some sort of (secure) random number generator
to be present on the target OS to generate the master canary
value when the binary in question is loaded. This is best left to
the cryptographically secure pseudo-random number genera-
tor (CSPRNG) provided by the OS itself (e.g., /dev/urandom
on UNIX-like systems), but as Figure 4 shows, only 41.7% of

surveyed embedded OSes provide a system CSPRNG, and this
number drops to 22.2% if you eliminate Linux-, BSD-, and
Windows-based ones and becomes negligible altogether if you
only consider the most constrained operating systems.

I’ve discussed the issues with embedded OS CSPRNGs in more
detail in my recent 33C3 talk “Wheel of Fortune: Analyzing
Embedded OS Random Number Generators.” To put it briefly,
it’s not trivial to port existing designs from the GP world, mainly
because of a combination of resource constraints in terms
of processing speed, memory and power consumption, and a
general low entropy environment. These systems are designed
for limited, specific tasks, often in a machine-to-machine set-
ting without human activity, and are designed to perform those
tasks in a reliable, predictable fashion. This is a major stumbling
block because PRNGs need sources with some external entropy
in order to stretch their output into longer sequences of pseudo-
random output.

On GP systems common sources for entropy are user input
devices like the mouse, keyboard, or disk activity, but since many
embedded systems are headless and/or diskless this is not an
option. Depending on the embedded device in question, poten-
tially suitable entropy sources might be available from sensor
values, radio measurements, accelerometer data, etc., but from
an OS designer’s point of view these sources cannot be assumed
to be universally present on all devices the OS is to be deployed
on. This problem would ideally be solved by having omnipres-
ent on-chip high-throughput true random number generators
(TRNGs), but this is quite unrealistic considering accompanying
cost increases. In addition, it doesn’t help with existing legacy
systems.

Figure 2: Exploit mitigation hardware and OS feature dependencies

43.1
47.1

11.8

Figure 3: Hardware feature support among 51 popular von Neumann
embedded core families

76    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

Two promising research directions upon which embedded OS
CSPRNG designers could draw are advances in lightweight
cryptography and investigation of omnipresent entropy sources.
The former encompasses various cryptographic primitives
designed for highly constrained systems. Initiatives such as the
ACRYPT project [5] have produced a “zoo” of IoT-oriented light-
weight primitives, with accompanying implementation footprint
information (in terms of code size, memory usage, and execution
time), which can serve as building blocks in a larger OS CSPRNG
design. The embedded entropy problem is a more fundamental
one and doesn’t lend itself well to a one size fits all solution, but
a thorough exploration of the suitability of potential entropy
sources, which are virtually omnipresent in embedded systems,
such as startup values of on-chip SRAM, clock jitter, and so on,
would definitely be worthwhile.

Executable Space Protection (ESP)
Essentially there are two main CPU architectural styles: Har-
vard and von Neumann. The former has physically separate
code and data memories, while the latter has a single memory
holding both code and data. There are many possible nuances
to these “pure” styles, but when it comes to the goals of ESP the
only thing that matters is that memory can’t be both writable
and executable so that attackers can’t easily inject malicious
shellcode payloads into memory. As such, Harvard architectures
trivially provide ESP, but for von Neumann-style CPUs, ESP
will have to be implemented either in a hardware-assisted way
or through software emulation. The former case is implemented
in the form of a dedicated hardware feature (x86 NX bit, ARM
XN bit, etc.), usually as part of the memory management unit
(MMU) regulating memory executability at a certain granular-
ity level on a per-page basis. In the case of software emulation,

there are multiple approaches all outside the scope of this article,
the most famous of them probably being the PaX project’s imple-
mentation [6], but all of them incur at least some overhead and
tend to be architecture-specific.

As shown in Figure 3, 43.1% of surveyed core families have hard-
ware ESP support, something you need to consider in light of
the fact that software emulation-based approaches to ESP only
exist for a limited number of OS and architecture combinations
(e.g., Linux on x86). Both ESP implementations require memory
protection support (and as such an MMU or more lightweight
memory protection unit (MPU)) on the part of the OS to allow
for memory permission management. And while most embedded
OSes offer memory protection support, we can see in Figure 3
that only 47.1% of all surveyed core families have MMU sup-
port and only 11.8% have MPU support, leaving 41.1% unable to
accommodate memory protection. Now some microcontrollers
might offer (limited) memory permission management capabili-
ties without featuring an MPU/MMU, and for some processors
there are external MMUs available, like the Motorola 68851,
but apart from these edge cases, there’s a significant “gap seg-
ment” of embedded systems without support for the core ESP
dependencies.

Ideally, embedded systems designers would start consciously
using either Harvard CPUs (AVR, 8051, PIC, etc.) or von Neu-
mann ones with hardware ESP support (ARMv6+, MIPS32r3+,
x86, etc.), but for those systems where this is not an option we
will need widespread embedded OS adoption of a multi-architec-
ture, low-overhead software emulation ESP approach. This does,
however, still leave us with the open problem of how to deal with
MPU-/MMU-less systems that cannot offer any form of memory
protection to begin with.

Address Space Layout Randomization (ASLR)
In order to craft the code-reuse payloads used to bypass ESP,
attackers will have to know the addresses of particular code
fragments (so-called “gadgets”) to incorporate into their pay-
load. ASLR aims to complicate this by ensuring memory layout
secrecy through randomization, which is done by placing various
different memory objects—the stack, heap, main program image,
loaded libraries—at randomized addresses. In order to do this,
ASLR has three key dependencies: a CSPRNG, OS virtual mem-
ory support, and hardware with an MMU. The ASLR random-
ization takes place at load-time and draws upon an OS CSPRNG,
as we’ve seen earlier, and is far from omnipresently available in
all embedded operating systems.

Virtual memory provides memory isolation between different
tasks/processes and thus prevents shared memory conflicts that
might otherwise arise from ASLR’s memory object randomiza-
tion. If we look at Figure 4, however, we can see that only 44.4%
of all surveyed embedded operating systems provide virtual

80.6
74.1

65

44.4

17.1

0

41.7

22.2

5

Figure 4: OS feature support among 36 popular embedded OSes

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  77

SECURITY
Internet of Pwnable Things: Challenges in Embedded Binary Security

memory support, and this number drops to a mere 17.1% if we
eliminate the Linux-, BSD-, and Windows-based OSes. Even
worse are the most constrained operating systems, none of
which support virtual memory for various reasons, such as being
designed for MMU-less and diskless targets or having conflict-
ing hard real-time requirements.

This widespread lack of embedded virtual memory and MMU
support are two major obstacles to widespread ASLR adoption
that are not going away anytime soon, which means that we need
an embedded alternative to ASLR. ASLR’s dependency on vir-
tual memory arises from the fact that it is a load-time software
diversification technique [7]. This dependency does not apply,
however, to diversification techniques operating at earlier points
in the software life cycle such as at compile or install time. In
these cases either a compiler feature or a dedicated transforma-
tion program produce diversified binaries by randomizing code
layout and/or individual instruction sequences. Such approaches
achieve a similar effect to ASLR by randomizing the addresses
(and nature) of code-reuse gadgets but have the downside of
being less effective since they only diversify between differ-
ent software builds or individual device instances rather than
between individual boots or program runs as well as only diver-
sifying code memory. There are currently no mature, widely
adopted implementations of such schemes that I know of, nor has
their applicability to the embedded world been covered, but they
seem to be a promising embedded ASLR alternative.

A Call to Action
So where do we go from here? First of all, security research-
ers should continue to demonstrate the urgency and impact of
embedded vulnerabilities to drive the point home that embed-
ded systems cannot afford to keep lagging behind when they
are becoming increasingly ubiquitous and interconnected.
Secondly, work on short-term solutions (researchers addressing
the challenges outlined in this article working together with OS
developers to push for embedded exploit mitigation adoption)
should be conducted alongside work on more long-term solu-
tions such as embedded safe language research and development
of secure embedded patching and updating mechanisms. And,
finally, with the rise of the Internet of Things there is a real need
for IoT standardization, policy, and regulation that focuses on
security by design rather than leaving it as an afterthought or
something that has to be retrofitted after the first vulnerabili-
ties are discovered due to a vendor focus on novel features and
time-to-market.

References
[1] O. Andreeva, S. Gordeychik, G. Gritsai, O. Kochetova, E.
Potseluevskaya, S. I. Sidorov, and A. A. Timorin, “Industrial Con-
trol Systems Vulnerabilities Statistics,” Kaspersky Lab, 2016:
https://kasperskycontenthub.com/securelist/files/2016/07/KL​
_REPORT_ICS_Statistic_vulnerabilities.pdf.

[2] http://intermezzos.github.io/.

[3] S. Bratus, S. Bratus, M. E. Locasto, M. L. Patterson, L. Sas-
saman, and A. Shubina, “Exploit Programming: From Buffer
Overflows to ‘Weird Machines’ and Theory of Computation,”
;login: vol . 36, no. 6 (December 2011): https://www.usenix.org​
/system/files/login/articles/105516-Bratus.pdf.

[4] M. Al-Bassam, Equation Group Firewall Operations
Catalog, 2016.

[5] A. Biryukov, D. Dinu, J. Großschädl, D. Khovratovich, Y. Le
Corre, L. Perrin, “The ACRYPT Project: Lightweight Cryp-
tography for the Internet of Things,” CRYPTO 2015 Rump
Session, 2015.

[6] NOEXEC, PaX project Documentation, 2003.

[7] P. Larsen, A. Homescu, S. Brunthaler, M. Franz, “SoK:
Automated Software Diversity,” 2014 IEEE Symposium
on Security and Privacy: https://www.ics.uci.edu/~perl​
/automated_software_diversity.pdf.

[8] https://www.tockos.org/.

https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
https://kasperskycontenthub.com/securelist/files/2016/07/KL_REPORT_ICS_Statistic_vulnerabilities.pdf
http://intermezzos.github.io/
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.ics.uci.edu/~perl/automated_software_diversity.pdf
https://www.ics.uci.edu/~perl/automated_software_diversity.pdf
https://www.tockos.org/

