
82    S U M M ER 20 17   VO L .  42 ,  N O.  2 	 www.usenix.org

COLUMNS

Practical Perl Tools
Perl on a Plane

D A V I D  N .  B L A N K - E D E L M A N

I travel a great deal these days for my work, so it isn’t uncommon for me to 
find myself on an airplane hoping to get some work done with only drib-
bles of WiFi. In those cases, you often have to make do with whatever is 

already on your laptop. I thought it might be interesting to explore what sort 
of goodies you might have available under those conditions from a stock Perl 
installation. To make this column extra realistic, let me report that as I write 
this I am flying at 34,153 ft at a speed of 437 mph over Lake Ontario (hon-
est truth). Right before I left for the airport, I used perlbrew to install a stock 
version of the stable version of Perl (5.24.1) on my laptop. Let’s switch to it 
and start our exploration:

$ source ~/perl5/perlbrew/etc/bashrc

$ perlbrew --notest install perl-5.24.1

$ perlbrew use perl-5.24.1

Perlbrew is a lovely tool for installing a discrete installation of Perl on a machine without 
perturbing any version of Perl shipped with the system. It will pull down the source for the 
version you desire and compile it. In the second line, I had to add --notest because 5.24.1 
appears to have an issue on the version of OS X I’m running, which has a few broken tests 
in Time::Hires to be fixed in future versions of Perl. After hitting that failure a few times, I 
didn’t think it would materially change what happens in this column, so I chose to skip the 
tests normally run as part of installing Perl.

The first place to look for interesting material is in the documentation system. Say what 
you’d like about Perl, no one can accuse it of not shipping with enough documentation. If I 
type “perldoc perl” it lists the following (heavily excerpted) list:

  Overview

        perl         	 Perl overview (this section)

        perlintro     	 Perl introduction for beginners

        perlrun       	 Perl execution and options

        perltoc       	 Perl documentation table of contents

  Tutorials

        perlreftut     	 Perl references short introduction

        perldsc         	 Perl data structures intro

        perllol          	 Perl data structures: arrays of arrays

        perlrequick    	 Perl regular expressions quick start

        perlretut      	 Perl regular expressions tutorial

        perlootut      	 Perl OO tutorial for beginners

        perlperf        	 Perl performance and optimization techniques

        perlstyle       	 Perl style guide

David Blank-Edelman is the 
Technical Evangelist at Apcera 
(the comments/views here 
are David’s alone and do not 
represent Apcera/Ericsson) . 

He has spent close to 30 years in the systems 
administration/DevOps/SRE field in large 
multiplatform environments including Brandeis 
University, Cambridge Technology Group, 
MIT Media Laboratory, and Northeastern 
University. He is the author of the O’Reilly 
Otter book Automating System Administration 
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David 
is honored to serve on the USENIX Board of 
Directors. He prefers to pronounce Evangelist 
with a hard ‘g’.  dnb@usenix.org



www.usenix.org	   S U M M ER 20 17   VO L .  42 ,  N O.  2  83

COLUMNS
Practical Perl Tools: Perl on a Plane

        perlcheat     	 Perl cheat sheet

        perltrap     	 Perl traps for the unwary

        perldebtut    	 Perl debugging tutorial

        perlfaq     	 Perl frequently asked questions

  Reference Manual

        perlsyn     	 Perl syntax

        perldata    	 Perl data structures

        perlop      	 Perl operators and precedence

        perlsub    	 Perl subroutines

        perlfunc    	 Perl built-in functions

...

        perluniintro   	 Perl Unicode introduction

...

        perlunitut   	 Perl Unicode tutorial

        perlebcdic    	 Considerations for running Perl on 

                 	 EBCDIC platforms

        perlsec     	 Perl security

        perlmod      	 Perl modules: how they work

... 

  Internals and C Language Interface

        perlembed     	 Perl ways to embed perl in your C or C++ 

                    	 application

        perldebguts     	 Perl debugging guts and tips

        perlxstut        	 Perl XS tutorial

...

  Miscellaneous

        perlbook       	 Perl book information

        perlcommunity   	 Perl community information

        perldoc       	 Look up Perl documentation in Pod 

                	 format

        perlhist     	 Perl history records

        perldelta       	 Perl changes since previous version

        perlexperiment  	 A listing of experimental features in Perl

...

  Language-Specific

        perlcn         	 Perl for Simplified Chinese (in EUC-CN)

        perljp          	 Perl for Japanese (in EUC-JP)

        perlko         	 Perl for Korean (in EUC-KR)

        perltw          	 Perl for Traditional Chinese (in Big5)

  Platform-Specific

        perlaix       	 Perl notes for AIX

        perlamiga      	 Perl notes for AmigaOS

        perlandroid     	 Perl notes for Android

        perlbs2000     	 Perl notes for POSIX-BC BS2000

...

Be sure to run that command to see the full list for yourself. 
There are 178 documents in all. So even if you just decide to 
spend your time reading Perl docs on a plane, you’ve got plenty of 
material available to you.

The Weirdest Module Search You Ever Did See
There’s a straightforward way to find the modules installed 
with Perl, but let’s go looking for interesting modules the hard 
way. What if we searched for all of the modules mentioned in the 
Perlfaq documents and used that as the starting place for our 
exploration? There are more sophisticated ways to find all of the 
modules, but let’s start with a crude hammer and look for all of 
the :: sequences in the FAQs. And as we do it, let’s eliminate all 
of those mentioned with CPAN on the same line (since we theo-
retically don’t have great access to it here in the air):

for i in 1 2 3 4 5 6 7 8; do 

    perldoc perlfaq$i|grep ‘::’|grep -v CPAN

done

This yields 307 lines (not all of which actually include non-CPAN-
dwelling module names), so I’m going to cherry-pick a few that 
look interesting and talk about them:

Module::CoreList—Why, yes, there is a madness in my method. 
Wait, strike that, reverse that. Module::CoreList is a great place 
to start because it is a module that can help us find and describe 
the modules that have shipped with Perl (core) over the years. 
We could either use the command line utility that comes with it 
(corelist) or write little snippets of code like:

use Module::CoreList;

print join(“\n”,Module::CoreList->find_modules(‘^Text::’,$]));

This will display all of the Text::* modules that ship in core 
with the current version of Perl. find_modules() searches for a 
regular expression and also takes a second argument describing 
which Perl versions it should consider. The magic variable $] 

returns the current version of Perl. We print this using a join just 
to place each element in the returned array on its own line. And, 
yes, this would be a fine and dandy way to find all of the modules 
shipped with the current copy of Perl. Something like this:

print join(“\n”,Module::CoreList->find_modules(‘’,$]));

But if I told you that, it might cut short our little wandering 
walk together, so let’s keep this between the two of us. As a 
small aside, it probably would have made my cherry-picking of 
modules to discuss here more efficient if I had run them through 
Module::CoreList::is_core first.

ExtUtils::Installed—Okay, really I’m not cooking the books 
here. This is the next module that comes up in the FAQ. 
ExtUtils::Installed gives you a way to figure out the names of all 
of the modules installed and the files and directories for each. 



84    S U M M ER 20 17   VO L .  42 ,  N O.  2 	 www.usenix.org

COLUMNS
Practical Perl Tools: Perl on a Plane

This is distinct from the previous module that talks about what 
modules are shipped with the core vs. the ones that are currently 
installed (core + whatever else you installed). It does this by 
inspecting the special “dot file droppings” that get installed with 
a module (.packlist). When I first tried out this module, it briefly 
puzzled me. I wrote:

use ExtUtils::Installed;

my $inst = ExtUtils::Installed->new();

print join(“\n”,$inst->modules());

And it printed:

Perl

That’s right, just “Perl.” It turns out that ExtUtils::Installed 
attempts to be smart. It knows which modules are considered 
“core” and lumps those all into “Perl.” When I ran the same 
script using an older version of Perl that had more modules that 
I had expressly installed, it did indeed report the list of installed 
modules in addition to just “Perl.” ExtUtils::Installed can do 
other tricks like show you the files and directories installed by a 
module—for example:

print join(“\n”,$inst->directories(“Perl”))

will indeed show you all of the directories of all of the modules 
shipped with that version of Perl live from your file system.

TimePiece—If you’ve ever found it annoying to use localtime() 
or gmtime() in Perl because it either returns an array of fields 
you have to guess how to index to find the field you want or (in a 
scalar context) just a string:

$ perl -de 0

DB<1> x localtime()

0  24

1  47

2  20

3  20

4  2

5  117

6  1

7  78

8  1

DB<2> x scalar localtime()

0  ‘Mon Mar 20 20:47:27 2017’

Time::Piece can help. It lets you write code that looks like this 
instead (to quote the docs):

use Time::Piece;

my $t = localtime;

print “Time is $t\n”;

print “Year is “, $t->year, “\n”;

localtime() now returns an object that has methods you can 
call to retrieve the part of the time structure you want (for 
example, “$t->hour” will return the current hour). It also gives 
you some convenience methods like “->isdst” to determine if it 
is currently daylight savings time. Check out the documentation 
for the full list.

TieFile—In a previous column many moons ago I went gaga for 
the cool and cruel things you can do with the Perl tie() function. 
This function lets you essentially run arbitrary code as part 
of the process of retrieving and setting variable contents. For 
example, instead of getting a value from memory when asking  
for $weather{‘Boston’}, Perl could query some weather service 
on the Web and return the information instead. Tie::File isn’t 
that futuristic, but it can do something pretty cool. If you use it 
like this:

use Tie::File;

tie @array, ‘Tie::File’, filename

you can access lines of the file (getting and setting) by just read-
ing or changing array values. The doc gives these examples:

  $array[13] = ‘blah’;     # line 13 of the file is now ‘blah’

  print $array[42];        # display line 42 of the file

If you truncate the array by changing its size, so too does the file 
change. Your other standard array operations (push, pop, etc.) 
behave exactly as you would expect. Oh, and here’s a fun tidbit 
from the doc:

The file is not loaded into memory, so this will work even for 

gigantic files.

FileCopy—Yup, does what you would expect.

FilePath—Probably not what you would expect. Use this to 
create or delete directory trees.

FileTemp—Use this, and probably only this, for dealing with 
temporary files.

TextBalanced—If you ever read Jeffrey Friedl’s Mastering 
Regular Expressions you know that trying to extract things from 
delimited text (for example, some text that has parentheses 
around it, like this one) can be less than straightforward. This 
comes up in all sorts of situations, like when parsing HTML or 
XML, program source code, and so on. 

TermANSIColor—I’m almost tempted not to mention this one 
because it has such a potential to be overused (thus allowing you 
to write code that outputs “angry fruit salad”), but I’m going to 
assume that we’re all adults here and that with great power…



www.usenix.org	   S U M M ER 20 17   VO L .  42 ,  N O.  2  85

COLUMNS
Practical Perl Tools: Perl on a Plane

Yup, time to write code like (from the doc):

 use Term::ANSIColor;

 print color ‘bold blue’;

 print “This text is bold blue.\n”;

 print color ‘reset’;

 print “This text is normal.\n”;

 print colored(“Yellow on magenta.”, ‘yellow on_magenta’), “\n”;

Do me a favor and don’t tell anyone where you got this super-
power. On a serious note, I would commend you to consider that 
a larger part of the population than you probably think has some 
sort of color blindness (bring yourself up to speed about color 
blindness via a quick online search). Please consider this when 
writing code where the color of the output is significant and 
important.

And with that fun set of modules, I’m going to stop. Since I find 
myself on a plane too often it is entirely likely that this will be 
the first part in a several part series. Do let me know what you 
think of the idea. Take care, and I’ll see you next time.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft  NetApp

USENIX Benefactors
VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki Fotosearch

Open Access Publishing Partner
PeerJ


