
10    S U M M ER 20 1 8  VO L . 4 3 , N O. 2 	 www.usenix.org

SECURITY

Interview with Travis McPeak
R I K F A R R O W

I missed attending Enigma this year, so I started watching the online
videos as soon as they became available. As always, I was doing more
than just satisfying my own curiosity—I was also looking for talks that

deserve a wider audience. I found several, asked the speakers, and Travis
McPeak was the first to respond.

The technique of least privilege goes back to the dawn of computer security. First published
in 1973, and presented at the fourth SOSP, Saltzer and Schroeder [1] laid out the ideas for
granting only the level of privilege needed so that a particular application can function as
intended.

Travis McPeak adds a new spin on this technique by applying it to applications deployed in
the AWS cloud, starting with a safe list of permissions and automatically removing unused
permissions over time, using an application he shares on GitHub.

Rik Farrow: What is least privilege, and why is it so hard for developers to get right?

Travis McPeak: Least privilege is a classic case of a simple concept that is very difficult to
apply at scale. The idea itself is intuitive: we should only give applications the permissions
that are required to function correctly. This is useful because in the case that an application
becomes compromised, we can constrain the potential impact. For example, we protect files
on Linux systems by granting read/write/execute permissions to only the user or group that
needs access. This protects application resources from other processes on the system that
we may not trust. Browsers enforce tab-level isolation so that a compromised tab can’t affect
the confidentiality or integrity of other tabs. One important point about least privilege is that
it’s a moving target. As an application changes, permissions may need to be added or removed
to match the new requirements. This is analogous to applications that require and then shed
root privileges when no longer needed.

The problems with manually applying least privilege become increasingly apparent when
an organization grows in size and complexity. If I work by myself on an application, it’s
pretty easy for me to add permissions as I need them. Removing permissions when they are
no longer required is a bit more challenging as there is no built-in reminder or incentive to
remove them. I can set periodic reminders for myself and remove things that aren’t needed
anymore, but this may not be my top priority. However, what about organizations with dozens
of applications and hundreds of developers continuously developing and redeploying? Who is
responsible for periodically cleaning up permissions?

In many organizations the security team is responsible for granting and revoking privileges.
There are a few problems with this. The security team doesn’t work on all of these applica­
tions, so they don’t know when an application changed and no longer needs some of the per­
missions. Manual security reviews are also a big problem because security teams are trying
to balance lots of high priority work with a relatively small number of staff. If security teams
are expected to stay on top of application changes and manually adjust permission sets to
least privilege, they may not have enough time left to perform other critical work such as

Travis works at Netflix on
the Cloud Security team. He
enjoys building automation to
increase security while boosting
developer productivity. Travis

is a core developer of the Bandit and Repokid
open source projects and has presented at
security conferences, including BlackHat USA
2017, Enigma 2018, and re:Invent 2017. He
currently serves as the Bay Area Open Web
Application Security Project chapter leader. In
previous roles he has served on the OpenStack
Security team and as a founding member of
the Cloud Foundry Security Team.
travis.mcpeak@gmail.com

Rik Farrow is the editor of ;login:.
rik@usenix.org

www.usenix.org	   S U M M ER 20 1 8  VO L . 4 3 , N O. 2  11

SECURITY
Interview with Travis McPeak

applying patches, building tools to support secure development,
and reviewing applications for security vulnerabilities.

For these reasons security teams seem forced into a binary deci­
sion: if the application is “important” enough, manually review
it, otherwise ignore it. Every application that is “important” and
manually reviewed saps time from both the application’s devel­
opers and the security team. Every application that’s ignored
presents a risk to the business.

RF: In your Enigma ’18 talk [2], you mention an AWS mechanism
for controlling privilege. Could you describe that mechanism?

TM: At Netflix we rely on Amazon Web Services (AWS) heavily
as our cloud provider. AWS provides a powerful access-control
system called Identity and Access Management (IAM) that
gives us very fine-grained control over specific actions and the
resources they apply to. Here’s a simple example policy:

{

 “Effect”: “Allow”,

 “Action”: [“s3:GetObject”, “s3:PutObject”],

 “Resource”: “arn:aws:s3:::example_bucket/example_path”

}

This policy statement grants read and write access to the
“example_path” in the S3 “example_bucket.” While this policy
is simple, it can quickly become difficult to determine which
actions and resources should be allowed in a policy. With thou­
sands of permissions, AWS can be configured very granularly
compared to Linux file permissions. This configurability makes
it both a powerful tool for security teams and very complicated
for regular users. Even IAM experts may have difficulty deter­
mining exactly which permissions are needed to support a given
application workflow.

RF: What techniques did the security team at Netflix come up
with to deal with maintaining or improving least privilege in
their applications?

TM: We use data about the permissions and resources that are
actually used by an application to remove permissions that
aren’t required. To understand how this works in our environ­
ment it is useful to track the life cycle of an application and its
permissions, beginning with how it gets permissions in the first
place. Rather than wasting the valuable time of both developers
and the security team, we automatically grant, by default, most
of the benign permissions that applications need to perform
common tasks. When a developer creates a new application, an
application-specific role with the default permissions is created
on their behalf by our deployment tool. If the application needs
to perform any unusual or potentially dangerous actions, the
security team and developers will perform a manual review, but
in most cases the default permissions allow the application to do
everything it needs.

After the application has been launched, we begin profiling it
with tools that collect the data that AWS provides about which
permissions and resources are actually used. Once a threshold of
time has passed, unused permissions are automatically removed.
Our open-source tool Repokid [3] automatically calculates
new policies that preserve used permissions, removes unused
permissions, and rewrites the new policy over the old. This
approach eventually generates perfect least-privilege policies
because anything that is kept is, by definition, actually used by
the application.

If developers require a new permission or need something
that was previously taken away added back, the security team
manually adds it, but this is done with a quick conversation
rather than the manual security reviews that we used to have to
perform. The reasoning is simple: if developers are asking for a
permission, then they either need it and will use it, or it will be
automatically removed.

Once an application stops being used entirely, Repokid will
remove all of the permissions, and the role becomes powerless.
This is important because unused and unmaintained applica­
tions are huge headaches for security teams. The old applica­
tions have the same permissions with which they were originally
deployed but aren’t receiving patches or attention. By automati­
cally removing permissions from these unmaintained applica­
tions, we can close a huge security hole.

RF: What are the challenges to this approach and how do you
address them in your solution?

TM: Some applications don’t regularly use their permissions
but need them on an infrequent basis. Our usage-based analysis
fails for these applications, and if we aren’t careful, we can break
them. For this reason, it’s important to identify such applications
and exclude them. Fortunately, there are relatively few, and we
can fall back to the traditional manual review process for them.

Another concern is the eventuality that we will break something.
We have put a lot of thought and consideration into how we can
recover quickly and also detect as rapidly as possible that we
have broken an application. Our goal is to use high quality data
sources to avoid breaking applications. If we do break something
we detect it, and when we detect a broken application we can fix
it with the push of a button by rolling back to an earlier permis­
sions state.

At Netflix we are focusing on logistics such as how to inform
developers when changes are occurring for their applications
and to give them options to defer or entirely block changes. Our
goal is for developers to view this as a service that the security
team provides for them to automatically make their applications
more secure. The better we can communicate this message, the
more successful our program will ultimately be.

12    S U M M ER 20 1 8  VO L . 4 3 , N O. 2 	 www.usenix.org

SECURITY
Interview with Travis McPeak

RF: Does this approach only work for AWS or can it be applied to
other areas of security?

TM: The solution we developed is for AWS applications and
permissions, but we think this approach extends equally well to
other areas of security. For example, it should be possible to use
the same kind of data to constrain application container permis­
sions to allow only the required syscalls and capabilities. Appli­
cations running directly on Linux systems may similarly be
constrained by AppArmor or seccomp profiles that are generated
automatically based on usage profiling. Mobile application privi­
leges may be reduced by profiling usage in a sandbox environ­
ment and then having required permissions suggested, taking
the guesswork out of permissions for the application’s developer.
There are many other possibilities for a similar approach applied
to other areas of security in the future.

RF: What are the next steps for the project and its application at
Netflix?

References
[1] J. Saltzer, M. Schroeder, “The Protection of Information in
Computer Systems,” in Fourth ACM Symposium on Operating
System Principles (October 1973): http://www.cs.virginia
.edu/~evans/cs551/saltzer/.

[2] T. McPeak, “Least Privilege: Security Gain without Devel­
oper Pain,” ENIGMA Conference (USENIX, 2018): https://
www.usenix.org/conference/enigma2018/presentation
/mcpeak.

[3] Repokid: https://github.com/Netflix/repokid.

TM: We are continuing active development on the Repokid [3]
project. As we add more data sources, we’ll gain both more con­
fidence in the policy suggestions and the ability to trim unused
permissions even further. Specifically, we’re excited about using
data to constrain policy access to resources. We’re starting
with S3 but look forward to protecting other resources as well.
Another data source that might be interesting is the software
we’re deploying itself. By examining the package, we may be able
to infer what access it needs and remove access that it doesn’t.
As always, we welcome contributions to Repokid and feedback
from organizations that are using it.

XKCD xkcd.com

http://www.cs.virginia
http://www.usenix.org/conference/enigma2018/presentation
https://github.com/Netflix/repokid

J A N 2 8 – 3 0 , 2 0 1 9
BUR LING A ME, C A , USA

A USENIX CONFERENCE

enigma.usenix.org

The submission deadline is August 22, 2018.

Submit a Talk
Enigma centers on a single track of engaging talks covering a wide range of topics in security and
privacy. Our goal is to clearly explain emerging threats and defenses in the growing intersection

of society and technology, and to foster an intelligent and informed conversation within the
community and the world. We view diversity as a key enabler for this goal and actively work to

ensure that the Enigma community encourages and welcomes participation from all employment
sectors, racial and ethnic backgrounds, nationalities, and genders.

Enigma is committed to fostering an open, collaborative, and respectful environment.
Enigma and USENIX are also dedicated to open science and open conversations,

and all talk media is available to the public after the conference.

PROGR AM CO-CHAIRS

Franziska Roesner,
University of Washington

Ben Adida
Clever

