
44    S U M M ER 20 1 8  VO L . 4 3 , N O. 2 	 www.usenix.org

COLUMNS

iVoyeur
Sensu Rising: An Interview with Matt Broberg

D A V E J O S E P H S E N

Matt Broberg is VP of
Community for Sensu, Inc.,
focused on the incredible
community around Sensu,
the open source monitoring

framework. Matt is on the board of the
Influence Marketing Council, co-maintains
the Evangelist Collective, contributes to the
Go Community Outreach Working Group,
occasionally blogs on Medium.com, and shares
code on GitHub. He’s also a fan of tattoos, rock
climbing, and cats, though remains unsure of
Schrödinger’s.

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

It’s hard to believe that Sensu, the open-source, distributed monitoring
framework, is over seven years old. Its scalable, ultra-flexible design and
practitioner-focused development model still make it the most forward-

thinking centralized poller in existence. The project is one of the very few
that still “feels” fresh to me, and yet it retains that aura of bullet-proof resil­
iency that only comes with time in the trenches.

In recent months, the project founders have incorporated to form Sensu, Inc., hiring on a
dream-team of people I personally adore, including engineers Greg Poirier (Opsee) and Jason
Dixon of Graphite fame, as well as ace community architect extraordinaire, Matt Broberg.
The fledgling corporation is busy funding and managing Sensu community development,
providing enterprise Sensu support, and laying the groundwork for the future in the form of
Sensu-Go, a ground-up rewrite of Sensu in the Go programming language.

Given all the exciting change happening in the Sensusphere, I thought it’d be fun to interview
Matt and get a feel for what’s going on from within.

Dave Josephsen: Describe Sensu in your own words.

Matt Broberg: Sensu provides total visibility for your business, from the server closet to the
cloud. Said simply, Sensu connects the dots between every tool in your monitoring solution,
providing a single way to manage service checks, telemetry, alerting, and remediation, and it
gives you the right primitives to build custom monitoring that scales.

DJ: Who is using Sensu today? How many teams? How are they distributed with respect to
industry?

MB: It’s helpful to recall that Sensu has been around for seven years, while Sensu Enterprise
has nearly three years (full story at [1]). With over 13,000 downloads a day of Sensu Core
packages, we know there are more users than the team behind Sensu, Inc. has gotten to know,
and we look forward to discovering them. Shameless request: if you’re a current user, I’d love
to hear from you: community@sensu.io.

Talks from last year’s Sensu Summit are a great cross-section of our user base. We have com­
panies large and small, off- and on-premises, running in every environment from bare metal
to Kubernetes to AWS. You have folks like GoDaddy scaling a self-service Sensu environ­
ment with 40,000 clients spread throughout their globally distributed datacenters. Spin up a
box, get base knowledge about your environment out-of-the-box, and then help your product
team customize it all.

Then you have an architect at T-Mobile talking about Sensu monitoring their Cloud Foundry
environment. Nagios migration is a very common use case for us. Sometimes it seems like
everyone at the summit has a story about migrating from Nagios at some point due to scaling
or customization challenges. My personal favorite comes from David Schroeder who goes
into the detail of the how and why he needed to move on [2].

www.usenix.org	   S U M M ER 20 1 8  VO L . 4 3 , N O. 2  45

COLUMNS
iVoyeur: Sensu Rising: An Interview with Matt Broberg

Like any healthy open core model, we have a majority of users
successfully running on their own with the MIT-licensed open
source version. A healthy majority of users are open source,
using our large library of plugins filled with service checks and
telemetry collectors, or running their pre-Sensu plugins for Nag­
ios, or pushing data using the StatsD extension. Some significant
OSS shops, like Yelp or TripAdvisor, have open sourced tools
that make Sensu even easier to run. One of my favorites is Sens8,
which extends Sensu functionality to fit smoothly into Kuber­
netes. Schuberg Philis [3], for example, has a great blog about the
custom code they’re running to monitor 20 Kubernetes clusters
with Sensu and Sens8.

We have a growing number of Sensu Enterprise customers as
well, who get the benefit of enterprise-y integrations (Service­
Now and Jira are popular) along with support and training. It’s
a perfect choice for those who want all the pieces of Sensu put
together for them so they can focus on introducing monitoring
to their teams. These companies run the gamut of company size,
from those as large as GE, who use Sensu to monitor Predix
infrastructure, to smaller organizations like David’s I mentioned
above. And what I personally love is that many of them are con­
tributors to the community, answering questions for new users
or by sharing plugins.

Sensu 1.0
DJ: Compared to other monitoring tools you generally compete
with, what are Sensu’s particular strengths?

MB: Sensu’s strength is how well it meets the challenge of moni­
toring dynamic infrastructure. Whether you run on bare metal,
hypervisors, container orchestrators, or clouds, no matter how
short-lived or ephemeral, it all works with Sensu. Our client runs
on all operating systems, everything from Windows and Linux
to Mac OS, and we can ingest and emit monitoring data with any
purpose-specific monitoring system out there.

Scalability is a big win for Sensu as well. Our clients participate
in a pub/sub relationship with a scalable transport layer which,
in turn, communicates with a scalable server layer. If you have
more infrastructure to monitor, spinning up more Sensu serv­
ers linearly scales your processing of checks. Dynamic client
registration has historically been a bit of a thorny problem in the
monitoring world, but it’s been a solved problem for Sensu from
its inception. The Sensu client’s dynamic self-registration (and
deregistration) hits home for those who have felt the pain of get­
ting alerts for servers that were deprovisioned long ago.

The last major category of users that I know will love Sensu are
used to monitoring tools that only work when you use them in
the exact way they were intended. Configuration of those tools
becomes unmanageable as soon as you leave that happy path,

and our users love customization. Sensu has sane defaults, but
will also never give you that feeling of being limited. Its API
exposes the right primitives to let you build the monitoring you
need with all the event handling, filtering, and automation of bits
you can imagine.

DJ: We understand Sensu was architected from the ground up
with a scalable distributed architecture model. Can you give us a
rough idea of what the architecture looks like? For example, what
are the primary components of a Sensu install, and how do they
work together to achieve visibility?

MB: The Sensu client is our heavy lifter; it collects measure­
ments. Typically, it runs on the instance you want to monitor,
but it can also interrogate remote entities like switches or act
as a process-local endpoint to receive, for example, thread-level
metrics from a locally running app. Clients can also cooperate
with other clients to achieve summarization or route messages,
commonly around things like firewalls.

Clients self-register with the Sensu transport layer, which, by
default, is a RabbitMQ Queue. Clients use the transport layer to
publish their check results to the Sensu server and consume new
check requests from Sensu server or events from other clients.

The Sensu server orchestrates service checks by publish­
ing check requests to, and collecting service check results
from, various clients via the transport layer. Nagios style
(OK,WARN,CRIT,UNKNOWN) checks, as well as metrics and
telemetry collection, happen by the same means, via messages
passed through the transport layer. The Sensu server stores its
state in Redis, performing roughly a single write operation per
check result. Every Sensu server in the installation uses the
same Redis state DB, ensuring that each individual Sensu server
is, itself, stateless.

Most users persist data beyond Sensu, which fits perfectly with
the design. It was a design goal for Sensu to easily and cheaply
route telemetry or check results to external time-series data­
bases like Graphite, Librato, and InfluxDB or store output to
logging platforms like ElasticSearch.

DJ: Sensu ships with a very nice RESTful API. What sorts of
operations are available from the API, and how do your custom­
ers use it?

MB: One of Sensu’s greatest strengths is its RESTful API,
making all of the data captured by Sensu accessible via HTTP.
This API-first approach is a huge win for those living in dash­
boards; users can query for everything from current events (i.e.,
incidents) to registered Sensu client information. The fact that
everything—from the Uchiwa dashboard and CLI to third-party
dashboards like Grafana—uses the same API to communicate
provides a single authority to keep results consistent.

46    S U M M ER 20 1 8  VO L . 4 3 , N O. 2 	 www.usenix.org

COLUMNS
iVoyeur: Sensu Rising: An Interview with Matt Broberg

Beyond the dashboard, you have a ton of options when you think
about the API. Customers are a quick curl loop away from silenc­
ing alerts or getting a snapshot of the client health. There are
endless ways users can combine API calls to flesh out runbooks,
then add links to them to your check results with a custom attri­
bute. The world is your oyster.

DJ: Many monitoring systems are protective with the monitor­
ing data they collect and inflexible with respect to exporting
that data to other systems. Can you talk a little bit about Sensu’s
philosophy on interoperability?

MB: What personally attracted me to working at Sensu was
the story of how we intentionally fit into a best-of-class set
of monitoring software instead of trying to be everything to
everyone. Sensu wants to help you build the monitoring pipeline
you need. In most cases we can natively ingest check results
from your existing plugins in foreign data formats (Nagios,
StatsD, and now Prometheus through extensions) and output to
an ever-growing litany of other monitoring systems (Graphite,
OpenTSDB, Metrics 2.0, JSON, and more).

Through our pluggable architecture, you choose where your
data lives: your favorite TSDB, SaaS, S3 buckets, or anywhere
else. Same goes for on-call or escalation management through
OpsGenie or VictorOps or otherwise. Sensu makes sure it gets
there. You get to decide where it goes.

DJ: Can you give us a rough idea of how hard it is to migrate to
Sensu from an existing monitoring system (like Nagios)?

MB: It’s as easy as running an existing Nagios check in a Sensu
check config file. If you have an existing plugin for Nagios,
maybe through yum install, and if you want to run it in Sensu,
you deploy Sensu—ideally through your favorite configuration
management tooling—and then wrap the command into a check
definition under the ‘command’ attribute. Ta-da, you’re done.

Sensu 2.0
DJ: We understand Sensu2 is available via GitHub at https://​
github.com/sensu/sensu-go. What is the release date, and what
is the current status of the release candidate?

MB: Sensu Core 2.0 is in an Alpha state as of today, making it
the perfect time to dive in to make sure to get your feedback in
to guide the user experience. I recommend spinning it up on a
non-production environment and seeing how it goes. When we
hit Beta, we’ll have a fully documented API and some larger-
scale test cases to point to for performance expectations. Our
official release target is for later this year, but we are committed
to production readiness being a gate to GA, not a date.

DJ: We understand Sensu 2 is a from-scratch rewrite in Golang.
Can you talk about what prompted the rewrite and share any
top-level goals you set out to accomplish?

MB: While extremely resilient and powerful, Sensu 1.x’s depen­
dencies are numerous. We knew an adjustment was necessary
to get to where monitoring needs to go to manage bare metal
alongside container and serverless workloads. Moving from
the external dependence and runtime requirements to a simple
two-binaries-and-you’re-done design will have a major impact to
ease of deployment.

Go, as a language, offers clear advantages for that future as well.
Concurrency is straightforward with goroutines, and many
features that are seen as advanced in other languages are baked
into Go’s suite of tools, like race detection, testing, and perfor­
mance analysis to name a few of my favorites.

In recent years, Go has established itself as the new language of
systems programming. Because of this, our users are increas­
ingly learning Go as part of their development toward an SRE
skill set, making it even more essential to ensure community
participation. Go’s popularity and growing community provide
a wealth of shared knowledge and understanding. The language
and its documentation are welcoming to this new, growing seg­
ment of users coming from higher-level interpreted languages
and frameworks in Ruby and Python.

DJ: We were excited to hear that the datastore in Sensu2 will be
changed from Redis to etcd. Has your experience with etcd been
positive so far?

MB: Etcd has been a powerhouse of a datastore. Sensu backend
will have etcd embedded for clustered state and configuration
management, replacing the state that Redis managed and the
configuration files that used to live on disk. It’s exciting to get
a highly available Sensu backend that has the thorough testing
that etcd gets in order to support large-scale Kubernetes deploy­
ments. That’s a slam dunk for us.

We’ve also really enjoyed our interactions with the team working
on etcd. We’ve contributed a few patches and have seen turn­
around on bug reports in just a few days. The last fix we worked
on with them was in a release only two weeks after the bug was
filed and fixed on master. It’s wonderful to be part of that com­
munity as well.

DJ: To what extent, as a user of Sensu2, will I need to be an etcd
adept? Is its presence completely abstracted away to the point
where I don’t even know it’s there? Or will I be expected to per­
form light maintenance/tuning?

https://github.com/sensu/sensu-go
https://github.com/sensu/sensu-go

www.usenix.org	   S U M M ER 20 1 8  VO L . 4 3 , N O. 2  47

COLUMNS
iVoyeur: Sensu Rising: An Interview with Matt Broberg

Most importantly, all your existing plugins will run on both
versions of Sensu. We will have runtimes available for download
so you can pick up an embedded Ruby environment to keep your
plugins up-and-running. Client config and plugins will need to
be deployed alongside the new binaries. Our main focus will be
to release updated Ansible, Puppet, and Chef code to enable the
majority of users to painlessly deploy Sensu Core 2.0. For others
not living the infrastructure-as-code paradigm, we will have
upgrade readiness guides and CLI tooling to ease the transition.

DJ: Where can I hang out with the Sensu community at large
and/or perhaps contribute to the development of Sensu2?

MB: We would love to have you get involved. We have a #sensu2
channel to talk through user experience and give live feedback in
our Community Slack (and yes, you can sign in using IRC!). For
the day-to-day banter of software development, join the #core-
dev channel. If—or should I say when—you have a great idea or
a new bug to share with us, get involved on GitHub at https://​
github.com/sensu/sensu-go. Star the repo to let us know you’re
interested, or watch it to get regular notifications every step of
the way. If you prefer the highlights over the details, sign up for
our newsletter for regular updates.

MB: Our goal with 2.x is to abstract project dependencies so
users can focus on the goal of monitoring the right services. If
we can stick to sane defaults and avoid exposing config we don’t
need, it will be for the better. Maybe that’s idealistic and we’ll
need to allow users to tune etcd’s configuration, but we’ll cross
that bridge when it’s warranted. The core team is open to adapt­
ing as we continue to test in larger environments.

DJ: Given that the datastore is changing, is the transport layer,
RabbitMQ, also changing or possibly going away entirely?

MB: Yes, it is. RabbitMQ is a great piece of technology, providing
pub/sub messaging with queueing and several routing topolo­
gies. It also does way more than Sensu ever needed it to do. With
Sensu 2.x, we’ve implemented a built-in messaging transport,
greatly simplifying Sensu’s architecture, while still having the
key capabilities that RabbitMQ provided. Given that we only
ever scratched the surface of the power of RabbitMQ, it made
sense for us to simplify the architecture and build the little bit of
queueing we need. Fans of simpler architectures will be happy
to know we have the same pub/sub model without additional
services to run.

DJ: What will the upgrade path between Sensu and Sensu2 look
like? Can Sensu2 process events from an in-place Sensu client?
Is Sensu2 plugin-compatible with Sensu? API-compatible?

MB: The team at Sensu, Inc. and the many community contribu­
tors are committed to making the migration path as simple as
can be. That said, this major release will be a breaking change in
a few ways. New Sensu clients, backend and dashboard, will be
deployed during installation. They will no longer need RabbitMQ
and Redis services alongside them, so these can be spun down as
part of installation as well.

References
[1] Caleb Hailey, “From Open Source to Open Core: The Hard
Way,” The Sensu Blog, May 2, 2016: https://blog.sensuapp.org​
/from-open-source-to-open-core-bc3007c96236.

[2] Sensu Summit 2017, YouTube: https://bit.ly/2GEcWsR.

[3] Andy Repton, “Our Journey Implementing Sensu to Moni­
tor Kubernetes in Production,” The Sensu Blog: https://blog​
.sensuapp.org/our-journey-implementing-sensu-to-monitor​
-kubernetes-in-production-5764aff2dd50.

https://github.com/sensu/sensu-go
https://github.com/sensu/sensu-go
https://blog.sensuapp.org/from-open-source-to-open-core-bc3007c96236
https://blog.sensuapp.org/from-open-source-to-open-core-bc3007c96236
https://bit.ly/2GEcWsR
https://blog.sensuapp.org/our-journey-implementing-sensu-to-monitor-kubernetes-in-production-5764aff2dd50
https://blog.sensuapp.org/our-journey-implementing-sensu-to-monitor-kubernetes-in-production-5764aff2dd50
https://blog.sensuapp.org/our-journey-implementing-sensu-to-monitor-kubernetes-in-production-5764aff2dd50

