
12    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SECURITY

ARM Memory Tagging Extension and
How It Improves C/C++ Memory Safety
K O S T Y A S E R E B R Y A N Y

I discuss memory safety bugs typical to C and C++, current tools and
approaches to finding such bugs or mitigating their risk, and a new
hardware feature, ARM MTE, that promises to be the biggest improve-

ment since the introduction of page protection.

Memory (Un)safety
More than 30 years after the Internet Worm, we are still talking about memory safety bugs
in C and C++ programs. Numerous improvements in the software development process are
dwarfed by the exponential increase in the amount of software, its exposed attack surface,
and the discovery of new attack techniques.

Memory safety bug is an umbrella term to represent program defects inherent in C and C++
but also present in other languages. The most common classes of bugs are buffer overflows,
heap-use-after-free, and stack-use-after-return.

These bugs often make the code vulnerable to exploitation. Malicious actors can leverage
memory-unsafe behavior to remotely execute code, leak sensitive information, escalate
privileges, or escape VMs. A buffer overflow in OpenSSL, nicknamed Heartbleed, achieved
notoriety for its ease of exploitation and high impact. It allowed attackers to steal a server’s
private memory, including cryptographic information such as keys and passwords, without
being detected. But named bugs like Heartbleed and Stagefright, a family of remotely exploit-
able bugs in Android, are just the tip of the iceberg.

Thousands of memory safety bugs are filed as CVEs every year. Roughly two-thirds of all
CVEs in the Android platform are memory safety bugs. A similar picture is seen across the
industry, affecting browsers, operating systems, and server-side and IoT software [1, 2]. And
even these bugs are still the tip of the iceberg. Many more bugs do not get CVEs assigned, and
many others remain unknown to software vendors. Some are being silently exploited, others
cause hard to detect data corruption, and some lie dormant waiting to strike.

Typical Bugs
Before we dive deeper, let’s take a closer look at two of our most beloved insects.

A heap-buffer-overflow happens when an object of a certain size is allocated on the heap,
and then a pointer to this object is used to access memory outside of the object bounds.
Typically, the object is an array of n elements, and the code accesses the i-th element where
i < 0 or i >= n.

int *array = new int[n]; // heap allocation

array[n] = 42; // buffer overflow

array[-1] = 42; // buffer overflow (underflow)

array[100500] = 42; // buffer overflow, assuming n <= 100500

Konstantin (Kostya) Serebryany
is a Software Engineer at
Google. His team develops
and deploys dynamic testing
tools, such as AddressSanitizer,

MemorySanitizer, ThreadSanitizer, and
libFuzzer. Prior to joining Google in 2007,
Konstantin spent four years at Elbrus/MCST
working for Sun compiler lab and then three
years at Intel Compiler Lab. Konstantin holds
a PhD from Moscow State University of
Economics, Statistics, and Informatics and an
MS from Moscow State University.
kcc@google.com

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  13

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

A heap-use-after-free happens when an object is allocated on
the heap, and later deallocated, but a pointer to the object is pre-
served somewhere and is used to access the deallocated memory.

Object *obj = new Object; // heap allocation, or “malloc”

delete obj; 	 // heap deallocation, or “free”

obj->member = 0; 	 // heap-use-after-free, or

 	 // access via a dangling pointer

In both cases the buggy memory access touches someone
else’s memory. In the C and C++ standards this is considered
undefined behavior. In real life it may cause a loud crash, a
silent data corruption, or a convenient back door.

Existing Tools and Practices
We haven’t been exactly ignoring the problem for 30 years.

Coding practices and testing tools reduced the likelihood of
introducing a memory bug. A test-driven development process
together with dynamic testing tools like AddressSanitizer [3] or
Valgrind will help avoid many bugs. Fuzzing (and, ideally, fuzz-
driven development [4]) will pick up the next layer of bugs. Some
memory bugs can be spotted by static analysis.

Software-based code-hardening techniques make it harder for
attackers to exploit memory safety bugs that reach production.
Stack cookies, non-executable memory, ASLR, control f low
integrity (LLVM CFI, Microsoft CFG, Shadow Call Stack), and
other techniques help prevent memory safety bugs from divert-
ing program control flow, the end goal of many exploits. Hard-
ened memory allocators, such as Scudo Hardened Allocator or
Chrome’s Partition Alloc, frustrate exploitation and may make it
impossible in some cases.

Hardware-based solutions have begun to appear as well.
ARM Pointer Authentication, already available in the most
recent Apple hardware, cryptographically authenticates return
addresses and discourages attackers from using return-oriented
programming (ROP). Intel Control-flow Enforcement Technol-
ogy is expected to appear soon to solve ROP in a different way,
by keeping the return address on a separate stack with special
permissions.

All these tools are making our software more stable and secure,
but they are not enough. No amount of testing guarantees the
absence of bugs, and existing exploit mitigations only prevent
some attacks, while almost entirely ignoring others, e.g., data-
oriented attacks.

Among the hardware-based solutions two stand out, SPARC
ADI and ARM MTE, both implementations of a concept known
as memory tagging or memory coloring. SPARC ADI has been
available in mass-produced hardware since 2016; we covered this
feature in an earlier paper [5]. This article focuses on ARM MTE.

ARM MTE
On September 2018 ARM announced the Memory Tagging
Extension, or MTE [6], a part of the ARM v8.5 architecture. It
does not yet exist in real hardware, but everything else about this
extension is very promising.

The extension introduces a notion of two types of tags: address
tags and memory tags.

An address tag is a 4-bit value stored at the top of every pointer in
the process. MTE utilizes top-byte-ignore, an existing AArch64
feature that instructs the hardware to ignore the topmost byte of
addresses, allowing this byte to be used as user-controlled meta-
data. Therefore MTE is applicable only to 64-bit software.

A memory tag is a 4-bit value associated with every aligned
16-byte region of application memory (memory granule). The
way memory tags are stored is a hardware implementation
detail. Logically, every 16 bytes of memory now contain an
extra 4 bits of metadata in addition to 128 bits of data.

Every time a heap region is allocated, the software chooses a
random 4-bit tag and marks both the address and all the newly
allocated memory granules with this tag. The load and store
instructions verify that the address tag matches the memory tag,
causing a hardware exception on tag mismatch. MTE introduces
new instructions to manipulate the tags.

Let’s look at the example in Figure 1. When the user code requests
20 bytes of heap to be allocated, operator new() rounds up the
size to the 16-byte boundary (i.e., to 32), allocates a 32-byte
chunk of memory (i.e., two 16-byte memory granules), chooses
a random 4-bit tag (in this case, 0xA), puts this tag into the
top-byte of the address, and updates the tags for the two newly
allocated memory granules (the white-colored regions in the
diagram). The adjacent memory regions have different memory
tags (light gray granules have the tag 0x7, dark gray granules
have the tag 0xE), so when the code tries to access memory at
offset 32 from the pointer, MTE raises an exception because the
tag of the pointer does not match the tag of the memory granule
being accessed.

Figure 2 demonstrates an example of how heap-use-after-free
is detected. On deallocation, operator delete() changes the tag
of all three deallocated granules of memory from 0xD to 0x4,

Figure 1: Heap-buffer-overflow is detected by MTE because the pointer’s
address tag 0xA does not match the memory tag 0xE.

14    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

so that any access to this memory via an old (dangling) pointer
causes an exception because the pointer still has the old tag 0xD.
The adjacent memory regions (tagged with 0x9 and 0xB) are not
affected by retagging of this region.

You may have noticed that bug detection with MTE is proba-
bilistic. Indeed, there are only 16 possible values of a 4-bit tag.
One random tag will be different from another random tag with
a probability of 15/16 or ~93%. It is up to the software to decide
whether to increase this probability with other tricks. For
example, in order to detect contiguous buffer overflows with
perfect accuracy, the allocator may enforce that tags for adjacent
chunks are never equal.

With MTE, the heap memory is tagged inside malloc() and
free(), and the tag checking is performed by the hardware. It
means that recompilation will not be required for detecting
heap-related bugs. MTE can also identify stack-use-after-return
and buffer overflows on the stack or in global variables, but it
will require recompilation with extra compiler options.

Comparison with AddressSanitizer
AddressSanitizer is a widely used tool for detecting memory
safety issues. It uses compiler instrumentation to observe all
loads and stores. Its specialized malloc “poisons” red zones
around heap objects to detect buffer overflows and keeps freed
memory in quarantine to detect use-after-free. The red zones
and the quarantine are the major causes of AddressSanitizer’s
high memory overhead.

MTE is conceptually similar to AddressSanitizer: both detect
bugs at runtime, both require special functionality in malloc and
free, and both require some amount of compiler support.

However, the use of address tags makes MTE sufficiently dif-
ferent: it does not require red zones or quarantine to detect bugs.
This allows MTE to consume less memory. Moreover, MTE
performs checking in hardware, thus eliminating the overhead
of compiler instrumentation for every load and store.

Compared to AddressSanitizer, MTE brings the following
benefits:

◆◆ MTE checking can be turned on and off at runtime.
◆◆ CPU overhead is expected to be very small, hopefully a small

single-digit percentage, while AddressSanitizer typically has
2x–3x slowdown.

◆◆ MTE can find heap-related bugs without recompilation.
◆◆ Due to the small overhead, the same binary can be used for

testing and for production.
◆◆ MTE’s memory overhead is 3%–5%, compared to 2x–3x for

AddressSanitizer.
◆◆ Memory accesses that happen far from the object bounds

or long after the object lifetime are more likely to be spotted
by MTE than AddressSanitizer, which makes MTE a better
exploit mitigation.

The only downside of MTE is that it may fail to detect buffer
overflows that happen within the 16-byte granule:

char *array = new char [13]; // allocates one 16-byte granule

array[14] = 0; // access within the same 16-byte granule

Various software strategies are possible to improve bug detec-
tion for such cases with additional cost or complexity.

Uses of MTE
We envision several different usage modes for MTE.

First, MTE is going to be a much nicer version of AddressSani-
tizer for testing and fuzzing. It will find more bugs at a fraction
of the cost. In many cases it will allow testing using the same
binary as shipped to production.

Second, MTE could be used as a mechanism for testing in pro-
duction (e.g., crowdsourced bug detection), always-on or enabled
randomly. For client software, such as web browsers, it means
that when a bug happens on a user device it will be detected, and,
with user consent, an actionable bug report will be sent to the
vendor. For server-side software it means that even the rarest
bugs will be detected immediately once they get triggered.

Finally, MTE can be seen as a strong security mitigation. It
is true that it prevents exploitation with less than 100% prob-
ability, but the probability is still very high, and the first failed
exploitation attempt will warn the user and the software vendor.
We believe that memory tagging will detect the most common
classes of memory safety bugs in the wild, helping vendors
identify and fix them and discouraging malicious actors from
exploiting them.

Other clever ways to use MTE will likely be discovered. MTE
may allow building debuggers with infinite hardware watch-
points, efficient race detectors, or faster garbage collectors.

Figure 2: Heap-use-after-free is detected by MTE because the pointer’s
address tag 0xD does not match the memory tag 0x4.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  15

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

HWASAN
The full potential of memory tagging will only be available with
future hardware, several years from now. But you can reap some of
the benefits now, like significantly reduced memory consumption,
by using a software implementation of memory tagging: HWASAN
(hardware-assisted AddressSanitizer) [7]. HWASAN is similar in
spirit to AddressSanitizer, but its smaller memory footprint makes
it a better choice on memory-restricted devices, such as mobile
phones. Today, the tool only supports 64-bit ARM CPUs, since it
requires the top-byte-ignore feature and a small modification in
the kernel to allow passing tagged addresses to system calls.

Compatibility
MTE and HWASAN offer a high level of compatibility with exist-
ing code bases. We build the Android platform and the Chromium
browser with HWASAN with few source code changes.

However, we have observed several cases of incompatibility.
In one such case, pointers to a particular type had application-
specific metadata stored in the top 16 address bits. In another
case, a pointer was cast to double and then back, losing the
lower address bits. In one more case, the code computed dif-
ference between the addresses of local variables from different
stack frames as a way to measure recursion depth. All these
cases were easy to fix.

Related Work
With this article I hope to increase the awareness of the concept
of memory tagging, as well as ARM’s fantastic Memory Tagging
Extension, so that other CPU vendors adopt it sooner rather than
later. Unlike most other existing hardware security extensions,
ARM MTE directly addresses the memory safety bugs, that is,
the root cause of many vulnerabilities, not just how attackers
happen to exploit their consequences today. Beyond its effective-
ness as a mitigation, MTE also serves as an effective bug detec-
tion tool that can be deployed in the wild. But even MTE is not a
panacea for all classes of memory safety bugs.

Intra-Object-Buffer-Overflow
There are other classes of C/C++ bugs waiting to be dealt with.
One such bug class is called intra-object-buffer-overflow.

struct S {

 int array[5];

 int another_field;

};

int GetInt(int *p, size_t idx) {

 return p[idx];

}

int Foo(S *s) {

 return GetInt(s->array, 5);

}

Here, by accessing an array out of bounds we end up reading
another field in the same struct. In this case, AddressSanitizer,
HWASAN, or MTE will not find the bug because the access
happens within the same heap- (or stack-) allocated object. The
Undefined Behavior Sanitizer (UBSan) can detect some simper
cases, but not the more complex ones like this one because the
function GetInt() that accesses the memory has lost the static
bound information available in Foo(). There were multiple
attempts to solve this problem (including at least one hardware
extension, Intel MPX), but none were practical enough to be
widely used.

A potential solution would combine dynamic bounds checking,
static analysis (proving that either the code is correct or that
dynamic checks are effective), and the banning of certain language
constructs (like passing sub-objects without their bound infor-
mation to unknown functions). For modern C++ code, perhaps
the best solution is to replace arrays inside structs or classes
with std::array and rely on the runtime for bounds checking.

Type-Confusion
Another bug class not directly addressed by MTE is
type-confusion.

struct Image {

 int pixels[100];

};

struct Secret {

 int sensitive_data[200];

};

Secret *secret = new Secret;

...

DrawOnScreen((Image*) secret);

This code performs a cast between incompatible types; the
following memory accesses in DrawOnScreen() will mistak-
enly access sensitive data without violating object bounds or
lifetimes.

A potential solution is to use a stricter subset of C++ that dis
allows some invalid casts statically (via compile-time errors)
and some other invalid casts dynamically (using a mechanism
such as implemented in LLVM CFI).

Uninitialized Memory
A side effect of MTE is that whenever a memory allocation is
tagged, it can also be initialized at no extra cost. The new ARM
instructions can store memory tags and initialize the memory
itself at the same time. Therefore, enabling MTE for an applica-
tion’s heap and stack will mitigate most vulnerabilities from
another class, uses of uninitialized memory.

16    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SECURITY
ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety

However, we do not have to wait for MTE to eradicate this class
of bugs. For example, Clang/LLVM 9.0 will have an option [8] to
automatically initialize all stack variables.

Safer Languages
No discussion of memory safety in C and C++ can ignore the
existence of “safe languages.” Java, Go, Swift, and Rust, among
others, are indeed much safer, and in many cases they are a bet-
ter choice for developing new software.

But none of them are really safe. Go and Swift have data races,
Java’s huge runtime is itself written in C++, and only Rust
comes close to being safe, at a cost of a (subjectively) steeper
learning curve.

All of these languages, of course, have the “unsafe” escape hatch.
Whenever the unsafe section is used, it turns the language into
C, but just slightly worse, because fewer tools, practices, and
habits are available for that language to avoid memory safety
bugs. Here, again, Rust is probably the best with its support for
AddressSanitizer and fuzzing. MTE will be useful for Rust and
any other memory-safe language with “unsafe” code.

Besides, the billions of lines of C and C++ code are not going
away any time soon.

GWP-ASan
GWP-ASan [9] is another bug detection tool that finds heap-
use-after-free and heap-buffer-overflows. It relies on protected
guard pages, the old trick used in the Electric Fence Malloc
and similar tools. But there is a twist: guarded allocations are

sampled. This means that the overhead, and the bug detection
probability, can be scaled to be arbitrarily small. The small prob-
ability of bug detection can be improved by deploying the tool at
large scale in production. We are beginning to detect bugs this
way in the Google Chrome browser and other software.

GWP-ASan is not a replacement for AddressSanitizer or
HWASAN since it handles a smaller subset of bugs and has very
low detection probability, but it finds bugs that evade testing and
only manifest in production. In the most performance-critical
applications, where even 1% overhead is prohibitively expensive,
we will be able to use MTE to implement sampled bug detection
similar to GWP-ASan, but with a much lower cost and hence
higher sampling and detection rate.

Conclusion
Once available in hardware, the ARM Memory Tagging Exten-
sion will reduce C and C++ memory unsafety from disastrous
to tolerable. Hopefully, other hardware vendors will implement
their variants of memory tagging. Before that happens, don’t
forget to test your software with all available testing tools (e.g.,
AddressSanitizer or HWASAN) and fuzzers (e.g., libFuzzer),
and harden your binaries in production.

Acknowledgments
I want to thank my colleagues Vlad Tsyrklevich, Dmitry Vyukov,
Alexander Potapenko, and Evgeniy Stepanov for helping me
prepare this article.

References
[1] K. Serebryany, “Hardware Memory Tagging to Make C/
C++ Memory Safe(r),” iSecCon’18: https://github.com/google​
/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon​
-2018.pdf.

[2] M. Miller, “Trends, Challenges, and Strategic Shifts in the
Software Vulnerability Mitigation Landscape,” BlueHat 2019:
https://www.youtube.com/watch?v=PjbGojjnBZQ.

[3] K. Serebryany, D. Bruening, A. Potapenko, D. Vyukov,
“AddressSanitizer: A Fast Address Sanity Checker,” 2012
USENIX Advanced Technical Conference (USENIX ATC ’12):
https://www.usenix.org/system/files/conference/atc12/atc12​
-final39.pdf.

[4] K. Serebryany, “OSS-Fuzz—Google’s Continuous Fuzzing
Service for Open Source Software,” 26th USENIX Security
Symposium (USENIX Security ’17): https://www.usenix.org​
/conference/usenixsecurity17/technical-sessions/presentation​
/serebryany.

[5] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich,
D. Vyukov, “Memory Tagging and How It Improves C/C++
Memory Safety”: https://arxiv.org/pdf/1802.09517.pdf.

[6] Arm A-Profile Architecture Developments 2018: Armv8.5-
A: https://community.arm.com/processors/b/blog/posts/arm​
-a-profile-architecture-2018-developments-armv85a.

[7] HWASAN documentation: https://clang.llvm.org/docs/Har
dwareAssistedAddressSanitizerDesign.html.

[8] J. F. Bastien, “Automatic Variable Initialization”: https://​
reviews.llvm.org/D54604.

[9] GWP-ASan for Chromium documentation: https://chromium​
.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md.

https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/MTE-iSecCon-2018.pdf
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://arxiv.org/pdf/1802.09517.pdf
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://reviews.llvm.org/D54604
https://reviews.llvm.org/D54604
https://chromium.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md
https://chromium.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md

